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Conjugate Gradient Method

Recall that for the conjugate graident method, we choose f(uk+1) = infu∈Uk+Gk
f(u)

where Gk is the span of ∇f(u0), . . . ,∇f(uk). Suppose that we know the descent
direction dk from uk to uk+1. Then the minimization problem becomes f(uk+1) =
infρ>0 f(uk + ρdk), which is a minimization problem in one variable. How could we
find such a dk? It turns out that if f(v) = 1

2
vTAv − bTv is quadratic, we have the

following results.

Lemma. Let ul+1 − ul = ∆l =
∑l

i=0 δil∇f(ul) for 0 ≤ l ≤ k. Then (A∆j,∆i) = 0
for all i 6= j. Thus, if the ∆ elements are nonzero, they must be linearly independent.

This essentially says that

(
∆0 ∆1 . . . ∆k

)
=
(
∇f(u0) ∇f(u1) . . . ∇f(uk)

)


δ00 δ01 . . . δ0k
0 δ11 . . . δ1k
...
0 0 . . . δkk


If the first matrix is assumed to have full rank, then the diagonal elements δii must
be nonzero up to i = k. Now define dl = α∆l = α

∑l−1
i=0 δil∇f(ui) + αδll∇f(ul).

Now choose α = 1
δll

, so that the last term has coefficient 1. Then dl = ∇f(ul) +∑l−1
i=0

δil
δll
∇f(ui), so that λil = δil

δll
. Now if we can only calculate the λ terms, we will

have our dl, since the minimization problem

f(uk+1) = inf
ρ∈R

f(uk − ρdk)
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is solved with ρ(uk, dk) = (∇f(uk),dk)
(Adk,dk)

since f is quadratic. It can then be shown that

δkk = −ρ(uk, dk). Then λik = ‖∇f(uk)‖2
‖∇f(ui)‖2 , and so we get that

dk = ∇f(uk) +
‖∇f(uk)‖2

‖∇f(uk−1)‖2
dk−1

Now to describe the actual method. We start with some initial vector u0. We
define d0 = ∇f(u0) and r0 = (∇(u0),d0)

(Ad0,d0)
, and set u1 = u0− r0d0. So far, this is simply

steepest decent. Assume by induction, that the algorithm has proceeded to uk, dk−1.

We set dk = ∇f(uk) + ‖∇f(uk)‖2
‖∇f(uk−1)‖2

dk−1 and rk = (∇f(uk),dk)
(Adk,dk)

.

For the actual implementation, r0 = b = Au0. For i = 1, . . ., ρi−1 = rTi−1ri−1, if
i = 1 then d1 = r0, else βi−1 = ρi−1/ρi−2, di = ri−1 + βi−1di−1. We end this if we
let qi = Adi, αi = ρi−1/d

T
i qi, vi = vi−1 + αidi, and ri = ri−1 − αiqi, and then the

convergence appears to be quick.

For the general nonlinear case, the implementation of this method is called
Fletcher Reeves. Most of this theory is gone for the highly nonlinear case.

Ellipsoid Method

Let f : Rn → R be convex and differentiable. Suppose that x∗ is the minimizer
of f , and x0 is some starting vector for the method. At each iteration k, let Ek be
te ellipsoid centered at xk and suppose that x∗ ∈ Ek. The hyperplane ∇f(xk) · (x−
xk) = 0 seperates Rn into two half spaces, S+ = {x : ∇f(xk) · (x − xk) ≥ 0} and
S− = {x : ∇f(xk) · (x− xk) ≤ 0}. Since f is convex,

f(x) ≥ f(xk) +∇f(xk) · (x− xk) ≥ f(xk)

for x ∈ X+, hence we can discard S+, so that x∗ ∈ S−. Indeed, x∗ ∈ Ek ∩ S−. We
let Ek+1 be the minimum volume ellipsoid which contains Ek ∩ S− and let xk+1 be
the center of Ek+1.

To compute these ellipsoid, observe that every ellipsoid can be expressed as E =
{x ∈ Rn : (x−c)TA−1(x−c) ≤ 1}, where c is the center and A is symmetric, positive
definite. Then xk+1 = xk − 1

n+1
Akg̃k, where Ak+1 = n2

n2−1

(
Ak − 2

n+1
Akg̃kg̃

T
kAk

)
and

gk = ∇f(xk), g̃k = gk√
gTk Akgk

. Note that the Sherman-Morrison formula says that

(A+ uvT )−1 = A−1 − A−1(uV T )A−1

1 + vTA−1u
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It can be shown that the volume of Ek+1 is strictly less than e−1/2n times the volume
of Ek, and so the volume gradually approaches zero. We obviously need to begin
with an initial A0 = R2I, with R big enough so that x∗ ∈ E0.

We would like for these centers xk to converge to the minima. Assume that f
is Lipshitz, namely ‖f(x) − f(y)‖ ≤ M‖x − y‖ for some M . Fix ε > 0 sufficiently
small so that the ball Bε = {x : ‖x−x∗‖ < ε

M
} ⊆ E0. Also define SE = {x : f(x) ≤

f(x∗)+ε} ⊆ E0. Suppose that f(xi) > f(x∗)+ε, then the Lipshitz condition means
that

f(x)− f(x∗) ≤ |f(x)− f(x∗)| ≤M‖x− x∗‖ ≤ ε

which implies that x ∈ SE, and so Bε ⊆ Sε. Then ε ≤ e−k/2n
2
MR.

For our stopping criteria, notice that f(x∗) ≥ f(xk) + ∇f(xk) · (x∗ − xk) ≥
f(xk) + infx∈Ek

∇f(xk) · (x − xk) = f(xk) −
√
∇f(xk)TAk∇f(xk). This says that

after k iterations, f(xk) ≤ f(x∗)+
√
∇f(xk)TAk∇f(xk). Then we can simply check

the size of this square root to determine how close we are.

Projected Gradient Method

Let V be a Hilbert space, with U ⊆ V nonempty, convex, and closed. Let
f : V → R be convex. We want u = P (u− ρ∇f(u)) for ρ > 0, where P : V → U is
the projection onto U . Let g(u) = P (u−ρ∇f(u)), so that we are in fact looking for
the fixed points of g. We impliment the fixed point algorithm uk+1 = g(uk). We say
that the projected gradient method is simply uk+1 = P (uk − ρk∇f(uk)) for some
choice of ρk > 0.

Theorem. Let U ⊆ V be a nonempty, closed, convex subset of a Hilbert space, with
f : V → R differentiable and with constants α,M > 0 such that (∇f(v)−∇f(u), v−
u) ≥ α‖v − u‖2 and ‖∇f(u)−∇f(v)‖ ≤ M‖v − u‖ for all u, v ∈ V . Suppose also
that there exist a, b such that 0 < a ≤ ρk ≤ b < 2α

M2 , then the projection gradient
method with ρk steps converges and there exists β < 1 depending on α,M, a, b such
that ‖uk+1 − u‖ ≤ β‖uk − u‖.
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Penalty Method

Theorem. Let f : Rn → R be continuous, coercive, and strictly convex. Let U ⊆ Rn

be nonempty, closed, and convex. We let Ψ ≥ 0 be a penalty function on Rn, such
that Ψ(u) = 0 if and only if u ∈ U . Then for any ε > 0 there exists a unique uε such
that fε(uε) = infv∈Rn f(v), where fε(v) = f(v) + 1

ε
Ψ(v). Furthermore, limε→0 uε is

the minimizer of f over U .

Proof. The minimization problem for f has a unique solutions since f is coercive.
Furthermore, for each ε > 0 the function fε is also coercive and strictly convex, so
it has a unique solution uε. Then

f(uε) ≤ f(uε) +
1

ε
Ψ(uε) ≤ fε(uε) ≤ fε(u) ≤ f(u) +

1

ε
Ψ(u) ≤ f(u)

where u ∈ U . Then uε is bounded since f is coercive, and so there is a subsequence
of uε which converges in Rn. The continuity of Ψ implies that this limit lies in U .
�

Kuhn-Tucker Theorem

Lemma (Farkas Lemma). Suppose that V is a vector space, and {w ∈ V : (ai, w) ≥
0, i ∈ I} ⊆ {w ∈ V : (b, w) ≥ 0} for some ai, then there exists λi so that b =∑

i∈I λiai.

Suppose that U represents a constraint set that is not necessarily convex,
thought of as U = {v ∈ V : ϕi(v) ≤ 0, i = 1, . . . ,m}. For u ∈ U , the cone
C(u) of feasible directions is the union of {0} and the set of vectors w ∈ V for
which there exists a sequence {uk}k≥0 such that uk ∈ U , uk 6= u, limk→∞ uk = u,
and limk→∞

u−uk
‖u−uk‖

= w
‖w‖ . C(u) is a cone with vertex 0. We also define I(u) = {i =

1, . . . ,m : ϕi(u) = 0}.

Theorem. Let U ⊆ V be nonempty, (V, (·, ·)) a Hilbert space.

(i) At every u ∈ U , C(u) is closed.

(ii) Let f : Ω→ R with U ⊆ Ω open. If f has a local minimum at u with respect
to U and f is differentiable at u, then f ′(u)(v − u) ≥ 0 for all v ∈ u+ C(u).
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Definition. For u ∈ U , let C∗(u) = {w ∈ V : ϕ′i(u)w ≤ 0}.

Definition. We say that the constraints {ϕi}mi=1 are qualified at the point u ∈ U
if either all ϕi for i ∈ I(u) are affine, or there exists some w̃ ∈ V such that for
i ∈ I(u), ϕ′i(u)w̃ ≤ 0 and ϕ′i(u)w̃ < 0 if ϕi is not affine.

Theorem. Let u ∈ U , ϕi differentiable for i ∈ I(u).

(i) C(u) ⊆ C∗(u)

(ii) If the constraints are qualified at u, and if ϕi for i ∈ I(u) are continuous at
u, then C(u) = C∗(u).

Theorem (Kuhn-Tucker). Let V be a Hilbert space, U ⊆ V given by U = {v ∈
V : ϕi(v) ≤ 0}. Let ϕi for i ∈ I(u) be differentiable at u, with the rest of the ϕi
continuous. Suppose also that a function f : V → R is differentiable at u. If f has
a local minimum at u with respect to U , then there exist numbers λi(u) for i ∈ I(u)
such that

f ′(u) +
∑
i∈I(u)

λi(u)ϕ′i(u) = 0

and furthermore that λi(u) ≥ 0.

Sufficient Conditions for a Local Minimum

Definition. Let Ω ⊆ V be convex, and ϕi convex. We say that the constraints are
qualified at u ∈ U if either the ϕi are all affine, or if there exists ṽ ∈ Ω such that
ϕi(ṽ) ≤ 0 and ϕi(ṽ) < 0 if ϕi is not affine.

Theorem. Let f : Ω → R with Ω convex, U = {v ∈ Ω : ϕi(v) ≤ 0} ⊆ Ω with ϕi
convex, and u ∈ U with f and ϕi differentiable at u.

(i) If f has a local minimum at u with respect to U and if the constraints are
qualified, then there exists λi(u) which satisfy the Kuhn-Tucker condition.
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(ii) Conversely, if f : U → R is convex and there exist numbers λi such that the
Kuhn-Tucker conditions are satisfied, then f has a global minimum at u with
respect to U .

In practice, the Kuhn-Tucker conditions are very hard to implement. Conse-
quently, we rely on duality to solve this infimum problem. We begin by introducing
the Lagrangian L(v, µ) = f(v) +

∑m
i=1 µiϕi(v). Given some µ ∈ Rm

+ , we define
uµ ∈ V as the minimizer of L(uµ, µ), called G(µ). The dual problem to our original
problem is finding the maximum of G over Rm

+ .

Definition. Let V and M be two sets, and let L : V ×M → R be a function. The
point (u, λ) ∈ V ×M is called a saddle point of L if

sup
µ∈M

L(u, µ) = L(u, λ) = inf
u∈V

L(v, λ)

Theorem. If (u, λ) is a saddle point of L : V ×M → R, then

sup
µ∈M

inf
v∈V

L(v, µ) = L(u, λ) = inf
v∈V

sup
µ∈M

L(v, µ)

Theorem.

(i) If (u, λ) ∈ V ×Rm
+ is a saddle point of the Lagrangian L, then u is a solution

of the minimization problem over f .

(ii) Sppose f and ϕi are convex, and that f is differentiable at u ∈ U with qualified
constraints. Then if u is the single minimizer, there exists λ ∈ Rm

+ such that
(u, λ) is a saddle point of L.

Theorem. Suppose that ϕi are continuous and that for every µ ∈ Rm
+ , the prob-

lem of finding uµ to minimize infv∈V L(v, µ) has a unique solution which depends
continuously on µ. Then if λ ∈ Rm

+ is any solution to the supremum over G, the
corresponding uλ is a solution the the original minimization problem over f .
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Example. Consider f(v) = 2v21 + 2v1v2 + 3v22, with constraint U = {v ∈ R2 :
v1 + v2 ≥ 2}. The Lagrangian is L(v,mu) = 2v21 + 2v1v2 + 3v22 + µ(2− v1− v2). For
fixed µ, L(v, µ) is elliptic. Then the second derivative of L is

L′′(v, µ) =

(
4 2
2 6

)
which is symmetric positive-definite. Therefore, L(v, µ) has a unique minimizer uµ
over R2. Solving for the minimum gives u1 = µ

5
and u2 = µ

1
0. Letting G(µ) =

L(uµ, µ) = − 3
20
µ2 + 2µ, which is maxmized for µ = 20

3
. Then the minimum for the

original problem is u1 = 4
2

and u2 = 2
3
.

Example. As another example, let f(v) = 1
2
(Av, v) − (b, v), with A symmetric

positive-definite and b ∈ Rn. Suppose the constraint set is {v ∈ Rn : Cv ≤ d} for
C an m × n matrix and d ∈ Rm. Then ϕi(v) = −di +

∑n
j=1 cijvj for i = 1, . . . ,m,

and L(v, µ) = 1
2
(Av, v) − (b, v) +

∑m
i=1 µi

(
−di +

∑n
j=1 cijvj

)
= 1

2
(Av, v) − (b −

CTµ, v) − (µ, d). This is indeed elliptic, so L(v, µ) has a unique minimizer uµ. We
get that uµ = A−1(b−CTµ). Rather than maximizing G, we will actually attempt
to minimize −G(µ) = 1

2
(CA−1CTµ, µ) − (CA−1b − d, µ) + 1

2
(A−1b, b). Note that

CA−1CT is nonnegative definite, and will be positive definite only if kerCT = {0}. If
CA−1CT is positive definite then−G is elliptic and therefore has a unique minimizer
in Rm

+ .

Uzawa’s Method

The basis of Uzawa’s method is to apply the projected gradient method to
the problem of µ 7→ G(µ) = infv∈V L(v, µ). Given λ0 ∈ Rm

+ , a sequence of pairs
(uk, λk+1) ∈ V × Rm

+ is deined by first calculating uk as

f(uk) +
m∑
i=1

λkiϕ(uk) = inf
v∈V

{
f(v) +

m∑
i=1

λkiϕi(v)

}

and then calculating λk+1 as

λk+1
i = max

{
λki + ρϕi(u

k), 0
}

Note that λk+1 = Pm
+

[
λk + ρ∇G(λk)

]
.
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Theorem (Convergence of Uzawa’s Method). Suppose V = Rn, and f is ellipc with
α > 0 its ellipticity constant. Suppose U ⊆ V is of the form U = {v ∈ Rn : Cv ≤ d},
for C ∈ Rm×n and d ∈ Rm. Assume that U is nonempty, and let ‖C‖ be the normal
operator norm. If 0 < ρ < 2α

‖c‖2 , then the sequence {uk} will converge to the unique
solution of the original problem. If additionally the rank of C is m, then the sequence
λk is also convergent to a unique solution λ of the dual problem.

Proof. If f is elliptic (coercive), then the fact that U is closed implies that the
problem has a unique solution u. Also, L(·, µ) is strictly convex and coercive, so
the minimization problem is Uzawa’s method has unique solutions uk. Then

L(, vµ) = f(v) + (CTµ, v)− (µ, d)

By the theorem, there exists λ ∈ Rm
+ such that (u, λ) is a saddle point of L a min-

imizer of L(u, λ) = infv∈V L(v, λ). Then ∇f(u) + CTλ = 0. Also, L(u, lambda) =
supµ∈Rm

+
L(u, µ). Since U is convex, the angle condition holds. The supremum im-

plies that −(ρϕ(u), µ− λ) ≤ 0 for any ρ > 0, which is equivalent to

(λ− (λ+ ρϕ(u)), µ− λ) ≥ 0

for all µ ∈ Rm
+ , or similarly that λ = P+(λ+ρϕ(u)). Uzawa’s method sets ∇f(uk)+

CTλk = 0, and λk+1 = P+(λk + ρϕ(uk)). Subtracting these, we get that

∇f(uk)−∇f(u) + CT (λk − λ) = 0

‖λk+1 − λ‖ ≤ ‖(λk + ρϕ(uk))− (λ+ ρϕ(u))‖

We can then write that

‖λk+1 − λ‖2 ≤ ‖λk − λ‖2 − 2ρ(CT (λk − λ), uk − u) + ρ2‖C(uk − u)‖2

= ‖λk − λ‖2 − 2ρ(∇f(uk)−∇f(u), uk − u) + ρ2‖C(uk − u)‖2

≤ ‖λk − λ‖2 − ρ
(
2α− ρ‖C‖2

)
‖uk − u‖2

Since 0 < ρ < 2α
‖C‖2 , it follows that 0 ≤ ‖λk+1 − λ‖ ≤ ‖λk − λ‖. Then the sequence

of norms ‖λk − λ‖ is non-increasing and bounded from below, so it must converge.
Then

lim
k→∞
‖λk+1 − λ‖ − ‖λk − λ‖ = 0

8
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But this, together with what we saw with our long inequality, shows that

ρ
(
2α− ρ‖C‖2

)
‖uk − u‖2 ≤ ‖λk − λ‖2 − ‖λk+1 − λ‖2 → 0

Then uk → u.

Next, the fact that ‖λk − λ‖ → 0 implies that λk is a bounded sequence. Then
there is a convergence subsequence λk

′ → λ′ ∈ Rm
+ . By continuity, ∇f(u) +CTλ′ =

limk′→∞
(
∇f(uk

′
) + CTλk

′)
= 0, so that CT (λ′ − λ) = 0. If the range of C is m,

then the kernel of CT is zero, so that λ′ = λ.

In this case, we wish to show that the entire sequence λk converges to λ. This
proof follows as in the proof for the penalty function convergence. �

Linear Programming

We now look at a common problem in linear programming, minimizing a linear
function f subject to affine equality and inequality constraints. Specifically, we wish
to find u ∈ U such that f(u) = infv∈U f(v), where U is described as those v ∈ Rn

such that
∑n

j=1 cijvj ≤ di for i = 1, . . . , p, and
∑n

j=1 cijvj = di for i = p+ 1, . . . ,m.
It is even possible to transform some nonlinear problems into this form.

These kinds of problems usually arrive in three equivalent forms (note that the
values of n,m will certainly be different if a problem is transformed from one type
or problem to the other):

(i) Find u ∈ U = {v ∈ Rn : Cv ≤ d}, where C ∈ Rm×n, d ∈ Rm, such that
f(u) = infv∈U f(v) where f(v) = (a, v) for a ∈ Rn.

(ii) Find u ∈ U = {v ∈ Rn
+ : Cv ≤ d}, where C ∈ Rm×n, d ∈ Rm, such that

f(u) = infv∈U f(v) where f(v) = (a, v) for a ∈ Rn.

(iii) Find u ∈ U = {v ∈ Rn
+ : Cv = d}, where C ∈ Rm×n, d ∈ Rm, such that

f(u) = infv∈U f(v) where f(v) = (a, v) for a ∈ Rn.

To transform a problem from type (i) to type (ii), we express v ∈ Rn as v =
v+ − v−, where v+, v− ∈ Rn

+. Then there is a correspondence between Rn and R2n
+

where v → (v+, v−). Similarly, a gets sent to a→ (a+, a−), and C → [C : −C].

The transformation from type (ii) to type (iii) is similar. We introduce slack
variables ṽ ∈ Rm

+ , and take v ∈ Rn
+ which is subject to Cv ≤ d to (v, ṽ) ∈ Rn+m

+

9
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subject to C → [C : Im]. To make this all work, we also take a→ (a, 0), where the
0 ∈ Rm.

Lastly, suppose we have a problem of type (iii) and want to convert it to type
(i). We take C → [C : −C : −I]T , d→ [d : −d : 0]T , and a→ a.

Lemma. No interior point of U can be a solution to the linear programming problem
unless a = 0.

Theorem. Consider the linear programming problem of type (iii). If U 6= ∅, then
either infv∈U f(v) = −∞ or else the problem has at least one solution.

Consider a minimizing sequence uk ∈ U , so that limk→∞ f(uk) = infv∈U f(v). We
want to show that uk → u ∈ U . Consider the 1 +m×n matrix B = [aT , C]T = [b1 :
b2 : . . . : bn]. Note that the sequence Buk belongs to C̃ = {

∑n
i=1 vibi : vi ≥ 0}, which

is convex and closed. Then Buk = [a0uk : Cuk]
T = [f(uk) : d]T → [infv∈U f(v) : d]T ,

which we define as β ∈ Rm+1 such that Buk → β. Since C̃ is closed, β ∈ C̃. Let
u ∈ Rn

+ be such that β =
∑n

i=1 uibi, which is precisely such that Bu = [aT , C]Tu =
β.

Definition. If U is a convex set of a vector space V , a point u ∈ U is called an
extreme point of U if u = λv + (1− λ)w for v, w ∈ U implies that u = v = w. An
extreme point of a polyhedron is called a vertex.

Theorem. A point u ∈ U where u 6= 0 is a vertex of the polyhedron U = {v ∈ Rn
+ :∑n

j=1 vjC
i = d} if and only if the vectors Cj where uj 6= 0 are linearly independent.

Simplex Method

Suppose we have the problem of finding u ∈ U = {v ∈ Rn
+, Cv = d} such that

f(u) = infv∈U f(v), where f(v) = (a, v). We have previously seen that either the
infimum is −∞, or else there is an attainable solution.

For any v ∈ U , we define I∗(v) = {j : 1 ≤ j ≤ n, vj > 0}. If zero is in U , then
I∗(0) = ∅ and it must be a vertex of U .

10
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Theorem. A nonzero point u ∈ U is a vertex of U = {v ∈ Rn
+ : Cv = d} if and

only if the vectors Cj for j ∈ I∗(u) are linearly independent.

Theorem. If the problem described has a solution, then at least one vertex is a
solution.

Proof. Let u be a solution. If u = 0 is a solution, then it is a vertex. Otherwise,
if the Cj columns where j ∈ I∗(u) are all linearly independent, then u is again
a vertex. If the columns are linearly dependent, then there exist wj (not all zero)
such that wj = 0 for j 6= I∗(u) and

∑
wjC

j = 0.

Now consider vectors u + θw, with θ ∈ R. Note that C(u + θw) = Cu = d,
so that u + θw ∈ U . Furthermore, I∗(u + θw) ⊆ I∗(u). Then let −∞ < θ0 =

max
{
− uj
wj

: j ∈ I∗(u), wj > 0
}
< 0 and 0 < θ1 = min

{
− uj
wj

: j ∈ I∗(u), wj < 0
}

.

If we let θ0 < θ < θ1, then f(u + θw) = (a, u + θw) = f(u) + θ(a, w). Since θ can
take on negative and positive values, we must have that (a, w) = 0, meaning that
all vectors of the form u+ θw are solutions to the original problem.

Now by our definitions, we can consider u′ = u + θ0w, so that I∗(u′) ⊂ I∗(u).
If the Cj for j ∈ I∗(u′) are linearly independent, then we are done since u′ is a
vertex. If not, we can repeat the process. However, each time we do we get another
u′′ with the set I∗(u′′) ⊂ I∗(u′). Since the cardinality of these sets are decreasing,
we must eventually have a set that reduces to nothing. �

Theorem. If a polyhedron is nonempty, then it has at least one vertex and the
number of vertices is finite.

These theorems tells us that if there is a solution, then it suffices to check all of
the vertices.

Simplex Algorithm

Recall that we were trying to solve the problem of finding u ∈ U = {v ∈ Rn
+ :

Cv = d} such that f(u) = infv∈U f(v), where f(v) = (a, v). We know that if there
exists a solution to this problem, then at least one of the vertices of U is a solution.

We now consider the alternative problem of finding (u, ũ) in Ũ = {(v, ṽ) ∈
Rn

+ × Rm
+ : Cv + ṽ = d} such that f̃(u, ũ) = inf(v,ṽ)∈Ũ f̃(v, ṽ), where we define

11
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f̃(v, ṽ) =
∑m

i=1 ṽi = (0, . . . , 0, 1, . . . , 1) · (v, ṽ) ≥ 0. If v is a solution of the original
problem, then (v, 0) is a solution to the above problem.

We will now look at the simplex algorithm itself. The idea behind the method
is to move from one vertex uk to another uk+1, with the intent of decreasing the
primary function f(uk+1) < f(uk) which you want to minimize. Recall that a point
uk is a vertex if the columns {Cj : j ∈ Ik} corresponding to the indices of uk that
are nonzero are linearly independent, forming a basis for Rm. The idea is to choose
one of these columns Cj to be ejected and introduce another one, so that uk+1 is
another vertex with {Cj : j ∈ Ik+1 = (Ik − {j−}) ∪ {j+} /∈ Ik}.

The simplex algorithm involves using elementary row operators to change Cv =
d into some C ′v = d′, where the original set U is preserved. Note that if our
minimization problem is f(v) = a · v over U = {Cv = d}, then it is equivalent to
minimize over f ′(v) = (a± θr) · v if r is any row of C.

As an example, suppose we have U = {v ∈ R3
+ : 3v1−v2+2v3 ≤ 7,−2v1+4v2 ≤

12,−4v1+3v2+8v3 ≤ 10}, and want to minimize f(v) = v1−3v2+2v3. We introduce
slack variables v4, v5, v6 ≥ 0 and begin to build our tableau

3 −1 2 1 0 0 7
−2 4 0 0 1 0 12
−4 3 8 0 0 1 10
1 −3 2 0 0 0 0

Our basic feasible solution is u0 = (0, 0, 0, 7, 12, 10). Note that the last entry in the
bottom right corner is the value of f(u0). If all the ai’s are nonnegative, then we
stop and take our basic feasible solution, but in this case the second column has
a negative ai. In general, we choose the most negative ai and denote its column
as j+ (in our case j+ = 2). Suppose that Cj+ has at least one positive element,
we will choose one of these elements to become a pivot point. The choice relies on
comparing each positive element with its di value, so we look at 12

4
and 10

3
, choosing

the one that gives us the smallest value.

5
2

0 2 1 1
4

0 10

−1
2

1 0 0 1
4

0 3

−5
2

0 8 0 −3
4

1 1

−1
2

0 2 0 3
4

0 9

Next we choose the top left element to act as a pivot.
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1 0 4
5

2
5

1
10

0 4

0 1 2
5

1
5

3
10

0 5

0 0 10 1 −1
2

1 11

0 0 12
5

1
5

4
5

0 11

Now we are done, with minimal value −11. Furthermore, (4, 5, 0, 0, 0, 11) is the
solution to the larger problem, meaning that (4, 5, 0) is a solution to the original
problem.
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