A Survey of Recent Results on the Hardy Space of Dirichlet Series

Gregory Zitelli

University of Tennessee, Knoxville

September 2013
Notation

\(\mathbb{D} \) is the open unit disc.
\(\mathbb{T} \) is the unit circle.
\(\mathbb{C}_\rho \) is the right half plane with real part \(> \rho \).
\(\mathbb{C}_+ = \mathbb{C}_0 \).
We begin with the standard definition of the Hardy-Hilbert space on \mathbb{D}, a Hilbert space of holomorphic functions on \mathbb{D} with a square summable power series.

$$H^2(\mathbb{D}) = \left\{ f(z) = \sum_{n=0}^{\infty} a_n z^n : \sum_{n=0}^{\infty} |a_n|^2 < \infty \right\}$$

where the inner product is given by

$$\langle f, g \rangle_{H^2(\mathbb{D})} = \left\langle \sum_{n=0}^{\infty} a_n z^n, \sum_{n=0}^{\infty} b_n z^n \right\rangle_{H^2(\mathbb{D})} = \sum_{n=0}^{\infty} a_n \overline{b_n}$$
This formulation of the Hardy-Hilbert space $H^2(\mathbb{D})$ is useful because it emphasizes the canonical equivalence of $H^2(\mathbb{D})$ and $\ell^2(\mathbb{N})$, namely

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \sim (a_0, a_1, a_2, \ldots)$$
Interestingly, the Hardy-Hilbert space norm is equivalent to a growth condition on the radial boundary values of its functions, so that if \(f(z) = \sum_{n=0}^{\infty} a_n z^n \),

\[
\|f\|_{H^2(\mathbb{D})}^2 = \sum_{n=0}^{\infty} |a_n|^2 = \sup_{0 \leq r < 1} \int_{0}^{2\pi} |f(re^{it})|^2 \frac{dt}{2\pi}
\]
Hardy Spaces

Hardy-Hilbert space functions living on \mathbb{D} have nontangential boundary values almost everywhere on \mathbb{T}, allowing us to extend functions $f \in H^2(\mathbb{D})$ to functions $\tilde{f} \in H^2(\mathbb{T}) \subseteq L^2(\mathbb{T})$, where

$$\|f\|_{H^2(\mathbb{D})}^2 = \sup_{0 \leq r < 1} \int_0^{2\pi} |f(re^{it})|^2 \frac{dt}{2\pi} = \int_0^{2\pi} |\tilde{f}(e^{it})|^2 \frac{dt}{2\pi} = \|\tilde{f}\|_{H^2(\mathbb{T})}^2$$

and $H^2(\mathbb{T})$ is the subspace of $L^2(\mathbb{T})$ whose elements have only nonnegative Fourier coefficients.
For general $1 < p < \infty$, we can form the Hardy space H^p similarly, with

$$
\|f\|_{H^p(D)}^p = \sup_{0 \leq r < 1} \int_0^{2\pi} |f(re^{it})|^p \frac{dt}{2\pi} = \int_0^{2\pi} |\tilde{f}(e^{it})|^p \frac{dt}{2\pi} = \|\tilde{f}\|_{H^p(T)}^p
$$

Here $H^p(D) \cong H^p(T) \subseteq L^p(T)$. We treat H^p as both $H^p(D)$ and $H^p(T)$ interchangeably.
Hardy Spaces

The Hardy spaces H^p can be thought of both as the holomorphic functions on \mathbb{D} which satisfy a growth condition on the boundary, and the nontangential boundary functions which live inside of the L^p space on that boundary.
There are three important properties possessed by the Hardy space H^2 as a Hilbert space which we would like to contrast:

- Reproducing kernels k_λ
- Zero sets $\{z_n\}$
- Multiplier algebra $\mathcal{M}(H^2)$
Reproducing Kernels for the space $H^2(\mathbb{D})$

Point evaluations are bounded linear functionals on $H^2(\mathbb{D})$, and can therefore be expressed as inner products with appropriate reproducing kernels.

If $\lambda \in \mathbb{D}$ and $f(z) = \sum_{n=0}^{\infty} a_n z^n \in H^2(\mathbb{D})$, then the reproducing kernel $k_{\lambda}(z) = \sum_{n=0}^{\infty} \lambda^n z^n$ is such that

$$f(\lambda) = \sum_{n=0}^{\infty} a_n \lambda^n = \sum_{n=0}^{\infty} a_n \overline{\lambda^n} = \langle f, k_{\lambda} \rangle_{H^2(\mathbb{D})}$$

Note that $\sum_{n=0}^{\infty} |\lambda^n|^2 < \infty$, so that $k_{\lambda} \in H^2(\mathbb{D})$.
Zero Sets of $H^2(\mathbb{D})$

Given a sequence of points $\{z_n\} \subseteq \mathbb{D}$, there is a nontrivial function $f \in H^2(\mathbb{D})$ which vanishes at each z_n if and only if $\{z_n\}$ satisfies the Blaschke condition

$$\sum_{n=1}^{\infty} (1 - |z_n|) < \infty$$
Multiplier Algebra of $H^2(\mathbb{D})$

The multipliers $\mathcal{M}(H^2(\mathbb{D}))$ are precisely $H^\infty(\mathbb{D})$, the bounded holomorphic functions on the disc.
Hardy Spaces in Half Planes

There is similarly a Hardy space for the half plane \mathbb{C}_+ using the growth condition on the imaginary line

$$H^p(\mathbb{C}_+) = \left\{ f \in \text{Hol}(\mathbb{C}_+) : \sup_{\sigma > 0} \int_{-\infty}^{\infty} |f(\sigma + it)|^p dt < \infty \right\}$$

One can also define spaces $H^p(\mathbb{C}_\rho)$ for arbitrary ρ. Like the Hardy space $H^2(\mathbb{D})$, $H^2(\mathbb{C}_+)$ has well understood reproducing kernels, zero sets, and a multiplier algebra.
Reproducing Kernels for the space $H^2(\mathbb{C}_+)$

Point evaluations are bounded linear functionals on $H^2(\mathbb{C}_+)$, and can therefore be expressed as inner products with appropriate reproducing kernels.

If $\lambda \in \mathbb{C}_+$ and $f \in H^2(\mathbb{C}_+)$, then the reproducing kernel $k_\lambda(z) = \frac{1}{z + \lambda}$ is such that

$$f(\lambda) = \langle f, k_\lambda \rangle_{H^2(\mathbb{D})}$$

Note that $\sup_{x>0} \int_{-\infty}^{\infty} \left| \frac{1}{x+it+\lambda} \right|^2 dt < \infty$, so that $k_\lambda \in H^2(\mathbb{D})$.
Zero Sets of $H^2(\mathbb{C}_+)$

Given a sequence of points $\{z_n\} \subseteq \mathbb{C}_+$, there is a nontrivial function $f \in H^2(\mathbb{C}_+)$ which vanishes at each z_n if and only if $\{z_n\}$ satisfies the following condition

$$\sum_{n=1}^{\infty} \frac{x_n}{1 + |z_n|^2} < \infty$$

where $z_n = x_n + iy_n$. If the sequence $\{z_n\}$ is bounded, then we recover a Blaschke-type condition

$$\sum_{n=1}^{\infty} x_n < \infty$$
Multiplier Algebra of $H^2(\mathbb{C}_+)$

The multipliers $\mathcal{M}(H^2(\mathbb{C}_+))$ are precisely $H^\infty(\mathbb{C}_+)$, the bounded holomorphic functions on the right half plane.
Dirichlet Series

A Dirichlet series is a series of the form $f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$. We write $s = \sigma + it$, and let Ω_{ρ} denote the half plane with real part $> \rho$.

Unlike power series, the “radius” of convergence and absolute convergence may be different.
Dirichlet Series

For a particular \(f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} \), we write

\[
\sigma_c(f) = \inf \left\{ \mathcal{K}(s) : \sum_{n=1}^{\infty} \frac{a_n}{n^s} \text{ converges} \right\}
\]

\[
\sigma_b(f) = \inf \left\{ \rho : \sum_{n=1}^{\infty} \frac{a_n}{n^s} \text{ converges to a bounded function in } \Omega_{\rho} \right\}
\]

\[
\sigma_u(f) = \inf \left\{ \rho : \sum_{n=1}^{\infty} \frac{a_n}{n^s} \text{ converges uniformly in } \Omega_{\rho} \right\}
\]

\[
\sigma_a(f) = \inf \left\{ \mathcal{K}(s) : \sum_{n=1}^{\infty} \frac{a_n}{n^s} \text{ converges absolutely} \right\}
\]

\[
\sigma_c \leq \sigma_b = \sigma_u \leq \sigma_a \leq \sigma_c + 1
\]
The Riesz-Fischer theorem states that $\varphi(x) = \sqrt{2} \sin(\pi x)$ can be dilated to form a complete orthonormal basis

$$\left\{ \sqrt{2} \sin(\pi x), \sqrt{2} \sin(\pi 2x), \ldots \right\} = \left\{ \varphi(x), \varphi(2x), \ldots \right\}$$

for $L^2(0, 1)$.
A natural extension of the theorem would be to ask which functions φ can take the place of \sin so that $\{\varphi(nx)\}_{n \geq 1}$ forms an orthonormal basis for $L^2(0, 1)$ under an equivalent norm. Such a sequence is called a Riesz basis.
Riesz-Basis

The characterization of Riesz-type sets which are complete in $L^2(0, 1)$ was characterized by Beurling in 1945, by transforming the expression

$$\varphi(x) = \sum_{n=1}^{\infty} a_n \sqrt{2} \sin(n\pi x)$$

into

$$S'\varphi(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

and analyzing properties of the analytic $S'\varphi$. In 1995, Hedenmalm, Lindqvist, and Seip solved the Reisz-basis problem completely by exploiting a Hilbert space of analytic functions of this form.
The system $\{\varphi(nx)\}_{n \geq 1}$ is a Riesz basis for $L^2(0,1)$ if and only if $S\varphi$ and $1/S\varphi$ are in the multiplier algebra $\mathcal{M}(\mathcal{H}^2)$.
The proof used the Hardy space of Dirichlet series (or Hardy-Dirichlet space),

$$\mathcal{H}^2 = \left\{ f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} : \sum_{n=1}^{\infty} |a_n|^2 < \infty \right\}$$

along with the characterization of the multipliers $\mathcal{M}(\mathcal{H}^2)$ of the space. The paper also further established Bohr’s work on the connection between the Hardy-Dirichlet space \mathcal{H}^2 and the Hardy space of the infinite polycircle $H^2(\mathbb{T}^\infty)$.
Hardy Space of Dirichlet Series

The work by Hedehmalm, Lindqvist, and Seip inspired an investigation of the space \mathcal{H}^2 and various related spaces over the next 15 years. Contributors in analysis include Aleman, Andersson, Bayart, McCarthy, Olsen, Saskman.

Topics included

- Multipliers
- Reproducing kernels
- Zero sets for \mathcal{H}^2 and related \mathcal{H}^p spaces
- Boundary behavior (What happens on the line $\sigma = 1/2$? Can you look at behavior of the function on the line $\sigma = 0$?)
- Connections with the infinite polycircle $H^p(\mathbb{T}^\infty)$
- Carleson measures
The condition on the Hardy-Dirichlet space ensures that all functions \(f \in \mathcal{H}^2 \) have \(\sigma_a \leq \frac{1}{2} \), as by Cauchy-Schwarz

\[
\left(\sum_{n=1}^{\infty} \frac{|a_n|}{n^s} \right)^2 \leq \sum_{n=1}^{\infty} |a_n|^2 \sum_{n=1}^{\infty} \left| \frac{1}{n^{2s}} \right|
\]

This bound is sharp, since

\[
\sum_{n=1}^{\infty} \frac{1}{n^{s-1/2} \log(n + 1)} = \sum_{n=1}^{\infty} \frac{\sqrt{n}/\log(n + 1)}{n^s} \in \mathcal{H}^2
\]

so \(\mathcal{H}^2 \subset \text{Hol}(\mathbb{C}_{1/2}) \).
Hardy Space of Dirichlet Series

The Hardy-Dirichlet space \mathcal{H}^2 clearly mirrors the classical Hardy space H^2 of the disc

$$\mathcal{H}^2 = \left\{ f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} : \sum_{n=1}^{\infty} |a_n|^2 < \infty \right\}$$

$$H^2 = \left\{ f(z) = \sum_{n=0}^{\infty} a_n z^n : \sum_{n=0}^{\infty} |a_n|^2 < \infty \right\}$$
Reproducing Kernels in \mathcal{H}^2

The reproducing kernels on \mathcal{H}^2 are actually quite easy to define, since if $f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} \in \mathcal{H}^2$ and $\lambda \in \mathbb{C}_{1/2}$ then

$$f(\lambda) = \sum_{n=1}^{\infty} \frac{a_n}{n^\lambda} = \sum_{n=0}^{\infty} a_n e^{-\lambda \log(n)} = \sum_{n=0}^{\infty} a_n e^{-\bar{\lambda} \log(n)}$$

$$= \sum_{n=0}^{\infty} a_n \left(\frac{1}{n^\lambda} \right) = \left\langle f(s), \sum_{n=1}^{\infty} \frac{1}{n^{s+\bar{\lambda}}} \right\rangle_{\mathcal{H}^2}$$

so that $k_\lambda(s) = \zeta(s + \bar{\lambda})$.
Zero Sets of \mathcal{H}^2

Like the space $H^2(\mathbb{C}_+)$, bounded sequences \{\(z_n\)\} have the same Blaschke-type condition that

$$\sum_{n=1}^{\infty} (x_n - 1/2) < \infty$$

On the other hand, Dirichlet series have strange vertical limit behavior which has made it difficult to fully classify unbounded sequences.
Almost Periodic Behavior of Dirichlet Series

If a function \(f \in \text{Hol}(\mathbb{C}_\rho) \), \(\epsilon > 0 \), then we say that \(t \) is an \(\epsilon \)-translation number for \(f \) if

\[
\sup_{s \in \mathbb{C}_\rho} |f(s + it) - f(s)| \leq \epsilon
\]

We say that \(f \) is uniformly almost periodic if for every \(\epsilon > 0 \) there is a length \(M \) such that every interval of length \(M \) contains at least one \(\epsilon \)-translation number for \(f \).

Theorem

If \(f \in \text{Hol}(\mathbb{C}_\rho) \) is represented by a Dirichlet series which converges uniformly in \(\mathbb{C}_\rho \), then \(f \) is uniformly almost periodic.
Zero Sets of \mathcal{H}^2

Since all functions in \mathcal{H}^2 are uniformly almost periodic in $\mathbb{C}_{1/2}$, they will either have no zeros or infinitely many zeros, and those zeros may be distributed quite wildly along vertical strips.
Multiplier Algebra of \mathcal{H}^2

The multiplier algebra of \mathcal{H}^2 consist precisely of those holomorphic functions in \mathbb{C}_+ which are bounded and representable by a Dirichlet series. If \mathcal{D} is used to denote the collection of holomorphic functions representable by a convergence Dirichlet series on some half space, then we can write

$$\mathcal{M}(\mathcal{H}^2) = H^\infty(\mathbb{C}_+) \cap \mathcal{D} = \mathcal{M}(H^2(\mathbb{C}_+)) \cap \mathcal{D}$$
“Arms-Reach” Boundary Condition

Theorem (Carlson’s Lemma)

If \(f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} \) is convergent and bounded in \(\mathbb{C}_+ \), then

\[
\|f\|_{\mathcal{H}^2}^2 = \sum_{n=1}^{\infty} |a_n|^2 = \lim_{\sigma \to 0^+} \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |f(\sigma + it)|^2 dt
\]

Note that \(\sigma \) moves all the way back to \(\mathbb{C}_+ \) rather than just \(\mathbb{C}_{1/2} \), and requires that \(f \) be convergent and bounded in \(\mathbb{C}_+ \) to begin with. An interesting extension of \(\mathcal{H}^2 \) is as follows.
\(\mathcal{H}^p \) Spaces

For \(1 \leq p < \infty \) we define the space \(\mathcal{H}^p \) as the closure of the Dirichlet polynomials under the norm

\[
\lim_{T \to \infty} \left(\frac{1}{2T} \int_{-\infty}^{\infty} \left| \sum_{n=1}^{\infty} \frac{a_n}{n^it} \right|^p dt \right)^{1/p}
\]

We will refer to this as the \(\mathcal{H}^p \) norm. Bayart (2002) showed that the Dirichlet series which represent such functions have \(\sigma_u \leq 1/2 \), so that they represent holomorphic functions on \(\mathbb{C}_{1/2} \).
Notes on D^∞ and T^∞

Let T^k be the k-dimensional polycircle, and let p_1, \ldots, p_k enumerate the first k primes. Then the injection $(p_1^{it}, \ldots, p_k^{it})$ for $t \in \mathbb{R}$ has dense range in T^k.

This means that there is a dense subset of the infinite polydisc D^∞ such that its elements can be expressed as $z = (p_1^{-s}, p_2^{-s}, \ldots)$, where $s = \sigma + it$ such that $t \in \mathbb{R}$ and $\sigma > 0$.
Let each n factor into $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$. Setting $z = (p_1^{-s}, p_2^{-s}, \ldots)$ we have

$$f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} = \sum_{n=1}^{\infty} a_n z_1^{\alpha_1} \cdots z_r^{\alpha_r}$$

We consider the transformation $Df(z) = \sum_{n=1}^{\infty} a_n z_1^{\alpha_1} \cdots z_r^{\alpha_r}$ as being a function of $z \in \mathbb{D}^\infty$.

Survey of Hardy-Dirichlet Series Spaces
University of Tennessee, Knoxville
H^p Spaces as \(H^p(\mathbb{T}^\infty) \)

Bohr showed that in fact for Dirichlet polynomials
\[
P(s) = \sum_{n=1}^{N} \frac{a_n}{n^s},
\]

\[
\|P\|^p_{H^p} = \lim_{T \to \infty} \frac{1}{2T} \left| \sum_{n=1}^{N} \frac{a_n}{n^{it}} \right|^p dt
\]

\[
= \lim_{T \to \infty} \frac{1}{2T} \left| \sum_{n=1}^{N} a_n p_1^{-it} \cdots p_k^{-it} \right|^p dt
\]

\[
= \int_{\mathbb{T}^\infty} \left| \sum_{n=1}^{N} a_n z_1^{\alpha_1} \cdots z_k^{p_k} \right|^p dm(z) = \|\mathcal{D}P\|_{H^p(\mathbb{T}^\infty)}
\]

Which follows from properties of the Kronecker flow and Birkhoff-Khintchin theorem.
Proof that $\mathcal{H}^p \subseteq \text{Hol}(\mathbb{C}_{1/2})$

Let $\omega \in \mathbb{C}_{1/2}$, and $z = (2^{-\omega}, 3^{-\omega}, \ldots) \in \mathbb{D}^\infty$. Note that since $\Re(\omega) > \frac{1}{2}$, $z \in \ell^2$ as well.

If $f \in \mathcal{H}^p$, then $\mathcal{D}f \in H^p(\mathbb{T}^\infty)$. On $H^p(\mathbb{T}^\infty)$ we have the inequality

$$|f(\omega)|^p = |\mathcal{D}f(z)|^p \leq \frac{\|\mathcal{D}f\|^p_{H^p(\mathbb{T}^\infty)}}{\prod_{j=1}^{\infty} (1 - |z_j|^2)} = \|f\|^p_{H^p} \prod_{j=1}^{\infty} \frac{1}{1 - |p_j^{-2}\omega|}$$
Proof that $\mathcal{H}^p \subseteq \text{Hol}(\mathbb{C}_{1/2})$

$$|f(\omega)|^p = |Df(z)|^p \leq \frac{\|Df\|_{\mathcal{H}^p(\mathbb{T}^\infty)}^p}{\prod_{j=1}^{\infty} (1 - |z_j|^2)} = \|f\|_{\mathcal{H}^p}^p \prod_{j=1}^{\infty} \frac{1}{1 - |p_j^{-2}\omega|}$$

However, Euler's identity concerning the Riemann zeta function says that the last term is precisely

$$\|f\|_{\mathcal{H}^p}^p \sum_{n=1}^{\infty} \frac{1}{n^{2\Re(\omega)}}$$

which is simply finite by p-series. Consequently,

$$|f(\omega)|^p \leq \|f\|_{\mathcal{H}^p}^p \zeta(2\Re(\omega))$$
Almost-Sure Properties of \mathcal{H}^p

An element $\chi \in \mathbb{T}^\infty$ can be thought of as a character in the sense that it acts on the prime elements in the canonical way. We define the function f_χ where $f \in \mathcal{H}^p$ is the function to be influence by the character as

$$f_\chi(s) = \sum_{n=1}^\infty \frac{a_n\chi(n)}{n^s}$$

Theorem

*For $f \in \mathcal{H}^p$ and for almost every $\chi \in \mathbb{T}^\infty$, f_χ is a Dirichlet series which converges in \mathbb{C}_+.***
Comparing \mathcal{H}^p to $H^p(\mathbb{C}_{1/2})$

Since \mathcal{H}^p are spaces of Dirichlet series which are well defined in $\mathbb{C}_{1/2}$, it is interesting to note comparisons between \mathcal{H}^p and $H^p(\mathbb{C}_{1/2})$.

Theorem (Hedenmalm, Lindqvist, Seip)

If $f \in \mathcal{H}^2$ then $f(s)/s \in H^2(\mathbb{C}_{1/2})$.

In particular, this tells us that all functions in \mathcal{H}^2 have nontangential boundary values (as do functions in \mathcal{H}^p).
Comparing \mathcal{H}^p to $H^p(\mathbb{C}_{1/2})$

Let $H^p_{\infty}(\mathbb{C}_{1/2})$ denote the uniform local H^p space of the right half plane, defined as those elements such that

$$\|f\|_{H^p_{\infty}(\mathbb{C}_{1/2})}^p = \sup_{y \in \mathbb{R}} \sup_{\sigma > 1/2} \int_y^{y+1} |f(\sigma + it)|^p dt < \infty$$

Theorem (Bayart)

If $p \geq 2$, then $\mathcal{H}^p \subset H^p_{\infty}(\mathbb{C}_{1/2})$ and the injection is continuous.
Theorem (Bayart)

If $1 \leq p < \infty$ and μ is a positive measure on $\mathbb{C}_{1/2}$, and if μ is a Carleson measure for \mathcal{H}^p then it is also a Carleson measure for $H^p(\mathbb{C}_{1/2})$.
Open Problems

Does \mathcal{H}^p embed in $H^p_{\infty}(C_{1/2})$ for $1 \leq p < 2$?

Is there a BMOA theory for the \mathcal{H}^p spaces?

Can \mathcal{H}^2 be factored like $H^2(\mathbb{D})$?

What kind of classification for zero-sets can be achieved in the \mathcal{H}^p setting?
Thank you!