# Generalizations of Egyptian fractions

David A. Ross Department of Mathematics University of Hawai'i

March 2019

**Recall:** An *Egyptian Fraction* is a sum of unitary fractions

$$\frac{1}{m_1} + \dots + \frac{1}{m_n}$$

(where  $n, m_i \in \mathbb{N}$ ; for today  $0 \notin \mathbb{N}$ )

These have been studied for a *very* long time:

## Fibonacci/Leonardo of Pisa 1202

Every rational number has a representation as an Egyptian fraction with distinct summands.

(In fact, any rational a with one Egyptian fraction representation has infinitely many, eg

$$\frac{3}{4} = \frac{1}{2} + \frac{1}{4} = \frac{1}{3} + \frac{1}{4} + \frac{1}{6} = \cdots$$

where you can always replace  $\frac{1}{k}$  by  $\frac{1}{2k} + \frac{1}{2k+1} + \frac{1}{2k(k+1)}$ )

### Kellogg 1921; Curtiss 1922

Bounded the number of (positive) integer solutions to the Diophantine equation

$$1=\frac{1}{x_1}+\cdots+\frac{1}{x_n}$$

(which is the same as counting the number of *n*-term representations of 1 as an Egyptian fraction.)

#### Erdös 1932

No integer is represented by a harmonic progression

$$\frac{1}{n} + \frac{1}{n+d} + \frac{1}{n+2d} + \dots + \frac{1}{n+kd}$$

### Erdös-Graham 1980; Croot 2003

If we finitely-color  $\mathbb{N}$  then there is a monochrome finite set *S* such that

$$1 = \sum_{s \in S} \frac{1}{s}$$

etc.

# Sierpinski 1956

Several results about the structure of the set of Egyptian fractions, eg:

- 1. The number of representations of a given number by *n*-term Egyptian fractions is finite.
- 2. No sequence of *n*-term Egyptian fractions is strictly increasing (Mycielski)
- 3. If  $a \neq 0$  has a 3-term representation but no 1-term representations then a has only finitely many representations (even if we allow negative terms).
- 4. The set of *n*-term Egyptian fractions is nowhere dense (even if we allow negative terms).

(Nathanson 2018) Extended results like these to more generalized sets of real numbers (*Weighted Real Egyptian Numbers*, below)

(R 2018) Nonstandard methods are natural tools for understanding and extending the Sierpinski results, also apply to related Diophantine equations (generalizations of Kellogg; Znám, Lagarias, ...)

Today: Do Sierpinski-like results extend to general topological groups?

**Fix** a topological group  $\langle G, 0, + \rangle$  (not necessarily Abelian) **Definition:**  $T \subset G$  is *locally cofinite at* 0 if

- 0 ∉ *T*
- For every open neighborhood u of 0,  $T \setminus u$  is finite



**Note:** For such *T*, if  $x \in {}^*T$  then either  $x \in T$  or  $x \approx 0$ .

**Fix**  $T_1, T_2, \dots \subseteq G$  locally cofinite at 0

**Define** 
$$E_n := T_1 + \dots + T_n = \{a_1 + a_2 + \dots + a_n : a_i \in T_i\}$$
  
(n-term generalized Egyptian fractions)

**EG**  $\forall i T_i = \{\frac{1}{m} : m \in \mathbb{N}\}$  (classical Egyptian fractions)

**EG**  $\forall i A_i \subset \mathbb{R}^+$  finite,  $B_i \subset \mathbb{R}^+$  discrete,  $T_i = \{\frac{a}{b} : a \in A_i, b \in B_i\}$ (Nathanson's Weighted Real Egyptian Numbers) Sierpinski somehow didn't notice the following:

**Theorem 0.1.** For n > 0 the set  $E'_n := T'_1 + \dots + T'_n$  is compact (where  $T'_i = T_i \cup \{0\}$ )

In the case of  $G = \mathbb{R}$  this implies Sierpinski's result:

**Corollary 0.1.** (Sierpinski) The set of n-term Egyptian fractions is NWD in  $\mathbb{R}$ .

and Nathanson's result

**Corollary 0.2.** The set of n-term weighted Egyptian real numbers is NWD in  $\mathbb{R}$ .

*Proof of corollaries.* Otherwise  $E'_n$  would contain an interval (since it is closed), but it is countable from the definition.

Theorem 0.1 is trivial using Robinson's compactness criterion:

Proof. Suppose

$$x = x_1 + \dots + x_n$$
  
 $\in {}^*(T'_1 + \dots + T'_n)$   
 $= {}^*T'_1 + \dots + {}^*T'_n$ 

Let

$$y_i = \begin{cases} x_i, x_i \text{ standard;} \\ 0, \text{ otherwise.} \end{cases}$$

-

Then  $^{\circ}x = y_1 + \cdots + y_n \in E'_n$ .

**Note:** The result about  $E_n = T_1 + \cdots + T_n$  being NWD fails on arbitrary groups.

### **However:**

**Theorem 0.2.** Suppose  $T_1, \ldots, T_n$  are locally cofinite at 0 and NWD in G. Then  $E_n = T_1 + \cdots + T_n$  is NWD in G.

The proof follows by induction and a lemma:

**Lemma 0.1.** Let T, E be NWD subsets of G with T be locally cofinite at 0. Then E + T is NWD in G.

*Outline of proof:* Let  $u \subseteq G$  be nonempty open. To find:  $v \subseteq u$  nonempty open missing (E + T)

Let  $c \in u, \mu = \text{monad}(c) \subseteq *u$  with  $\mu \cap *E = \emptyset$ 

Show:  $\exists I \subset G$  finite s.t.  $\mu \cap {}^*(E + T) \subseteq {}^*(E + I)$ 

(This is the meat of the argument, uses saturation and the structure of *T*) Since *I* is finite,  ${}^{*}E + I$  is  ${}^{*}NWD$ , so  $\exists {}^{*}open v \subseteq \mu$  s.t.  $({}^{*}E + I) \cap v = \emptyset$ Then  $\exists {}^{*}open v \subseteq {}^{*}u$  s.t.  $({}^{*}E + T) \cap v = \emptyset$ and apply transfer. **Other results that still hold** (sometimes with slight modification):

**Theorem 0.3** Let  $0 \neq a \in E_3 \setminus E_1$ . Then *a* has only finitely many representations

- **Theorem 0.4** Let  $(G, +, 0, \leq)$  be a linearly ordered group, and  $T_1, T_2, \ldots$  locally cofinite subsets of the positive cone of G. Then no sequence of elements of  $E_n$  is strictly increasing.
- **Theorem 0.5** Let  $(G, +, 0, \leq)$  be a partially ordered abelian group, and  $T_1, T_2, \ldots$ locally cofinite subsets of the positive cone of G. Then the number of n-term representations of any element of  $E_n$  is finite.

-

*Proof of one of these:* On board, if there is time (and a board).

## Some obvious questions:

In the case of  $G = \mathbb{R}$  there are some interesting results this technology produces for Diophantine equations, eg

Generalization of Znám equation Suppose in the equation

$$\sum_{I} \frac{a_{I}}{\prod_{i \in I} x_{i}} = a_{\emptyset}$$

where the sum ranges over nonempty subsets *I* of  $\{1, \ldots, s\}$ , and  $a_I \in \mathbb{R}$  such that every  $a_I \ge 0$  and  $a_{\emptyset} > 0$ .

The following are equivalent:

- 1. For every  $i \leq s$  there is an *I* with  $i \in I$  and  $a_I \neq 0$ .
- 2. The equation has only finitely many solutions in  $\mathbb{N}$ .
- **Lagarias 2013** Let  $a, b, c \in \mathbb{Z} \setminus \{0\}$  with  $c \ge 1$  and gcd(b, c) = 1. If the equation

$$c(1/x_1 + \cdots + 1/x_s) + b/x_1x_2 \cdots x_s = a$$

has infinitely many integer solutions then c = 1, and either (a) |a| = s - 1and  $b = -(sign(a)^{s-1})$ , or (b) |a| < s - 1 and b is arbitrary

**Question 1:** Are there interesting variants of these for groups?

**Question 2:** How much nonstandard analysis do we actually need?

- **Facetious answer:** None. Didn't use any powerful tools like Loeb measures or nonstandard hulls.
- **But:** Used saturation, transfer, nonstandard characterizations of 'compact' and 'dense' to get *much* shorter proofs of the results in  $\mathbb{R}$ . Is there some way to isolate fundamental principles to make these arguments accessible to standard number theorists?

**Question 3:** Is Theorem 0.4 true for partially-ordered groups?

**Question 4:** Is Theorem 0.5 true for non-Abelian groups?

#### References

- [1] Brenton, L., and Vasiliu, A., Znam's Problem, Mathematics Magazine, 2002, 3–11.
- [2] Curtiss, D. R., On Kellogg's Diophantine Problem, Amer. Math. Monthly, 29, 1922, 380–387.
- [3] Erdös, P., On a Diophantine equation, Matematikai Lapok., 1950, 192–210.
- [4] Graham, R. L., On finite sums of unit fractions, Proc. London Math. Soc., 1964, 193–207.
- [5] Kellogg, O. D., On a Diophantine problem, Amer. Math. Monthly 28, 1921, 300–303.
- [6] Lagarias, J. C., Cyclic systems of simultaneous congruences, Int. J. Number Theory 6, 2010, no. 2, 219–245.
- [7] Nathanson, M. B., *Weighted real Egyptian numbers*, Functiones et Approximatio Commentarii Mathematici, 2018
- [8] Pisano, Leonardo, Scritti, vol. 1, B. Boncompagni, Rome (1857) 77-83.
- [9] Ross, David, Egyptian fractions, nonstandard extensions of  $\mathbb{R}$ , and some Diophantine equations without many solutions, 2018
- [10] Sierpinski, W., Sur les décompositions de nombres rationnels en fractions primaires, 1956.