

AMS Sectional Meeting at University of Hawaii: Special Session on
Applications of Ultrafilters and Nonstandard Methods

Local weak*-Convergence, algebraic actions, and
a max-min principle.

Ben Hayes

University of Virginia

March 22, 2019

Overview

The main goal of this talk will be to explain how ultraproduct analysis naturally occurs in the context of ergodic theory of actions on compact groups.

Overview

The main goal of this talk will be to explain how ultraproduct analysis naturally occurs in the context of ergodic theory of actions on compact groups.

- Discussion of algebraic actions.

Overview

The main goal of this talk will be to explain how ultraproduct analysis naturally occurs in the context of ergodic theory of actions on compact groups.

- Discussion of algebraic actions.
- Sofic groups.

Overview

The main goal of this talk will be to explain how ultraproduct analysis naturally occurs in the context of ergodic theory of actions on compact groups.

- Discussion of algebraic actions.
- Sofic groups.
- Discussion of entropy.

Overview

The main goal of this talk will be to explain how ultraproduct analysis naturally occurs in the context of ergodic theory of actions on compact groups.

- Discussion of algebraic actions.
- Sofic groups.
- Discussion of entropy.
- The appearance of the Loeb measure space.

Overview

The main goal of this talk will be to explain how ultraproduct analysis naturally occurs in the context of ergodic theory of actions on compact groups.

- Discussion of algebraic actions.
- Sofic groups.
- Discussion of entropy.
- The appearance of the Loeb measure space.
- Order lattices associated to the Loeb measure space.

Algebraic Actions

Let G be a countable, discrete, group. An *algebraic action* of G is an action $G \curvearrowright X$ by automorphism of a compact, metrizable group X .

Algebraic Actions

Let G be a countable, discrete, group. An *algebraic action* of G is an action $G \curvearrowright X$ by automorphism of a compact, metrizable group X .

This is measure-preserving, if we give G the Haar measure, m_X .

Algebraic Actions

Let G be a countable, discrete, group. An *algebraic action* of G is an action $G \curvearrowright X$ by automorphism of a compact, metrizable group X .

This is measure-preserving, if we give G the Haar measure, m_X .

View this as either part of *topological dynamics* or as a *probability measure-preserving action*.

Algebraic Actions

Let G be a countable, discrete, group. An *algebraic action* of G is an action $G \curvearrowright X$ by automorphism of a compact, metrizable group X .

This is measure-preserving, if we give G the Haar measure, m_X .

View this as either part of *topological dynamics* or as a *probability measure-preserving action*.

For certain groups, we have the notion of (topological or measure-theoretic) entropy of these actions.

Algebraic Actions

Let G be a countable, discrete, group. An *algebraic action* of G is an action $G \curvearrowright X$ by automorphism of a compact, metrizable group X .

This is measure-preserving, if we give G the Haar measure, m_X .

View this as either part of *topological dynamics* or as a *probability measure-preserving action*.

For certain groups, we have the notion of (topological or measure-theoretic) entropy of these actions. Which groups?

Sofic Groups

For $n \in \mathbb{N}$, define d_H on S_n by

$$d_H(\sigma, \tau) = \frac{1}{n} |\{j : \sigma(j) \neq \tau(j)\}|.$$

Sofic Groups

For $n \in \mathbb{N}$, define d_H on S_n by

$$d_H(\sigma, \tau) = \frac{1}{n} |\{j : \sigma(j) \neq \tau(j)\}|.$$

Fix a free ultrafilter \mathcal{U} on \mathbb{N} .

Sofic Groups

For $n \in \mathbb{N}$, define d_H on S_n by

$$d_H(\sigma, \tau) = \frac{1}{n} |\{j : \sigma(j) \neq \tau(j)\}|.$$

Fix a free ultrafilter \mathcal{U} on \mathbb{N} . Set

$$(\mathcal{S}, d_H) = \prod_{n \rightarrow \mathcal{U}} (S_n, d_H) := \frac{\prod_n S_n}{\{(\sigma_n)_n : \lim_{n \rightarrow \mathcal{U}} d_H(\sigma_n, \text{id})\}}.$$

Sofic Groups

For $n \in \mathbb{N}$, define d_H on S_n by

$$d_H(\sigma, \tau) = \frac{1}{n} |\{j : \sigma(j) \neq \tau(j)\}|.$$

Fix a free ultrafilter \mathcal{U} on \mathbb{N} . Set

$$(\mathcal{S}, d_H) = \prod_{n \rightarrow \mathcal{U}} (S_n, d_H) := \frac{\prod_n S_n}{\{(\sigma_n)_n : \lim_{n \rightarrow \mathcal{U}} d_H(\sigma_n, \text{id})\}}.$$

A group G is sofic if there is a homomorphism $\sigma: G \rightarrow \mathcal{S}$ so that $d_H \circ (\sigma \times \sigma)$ is the discrete metric.

Sofic Groups

For $n \in \mathbb{N}$, define d_H on S_n by

$$d_H(\sigma, \tau) = \frac{1}{n} |\{j : \sigma(j) \neq \tau(j)\}|.$$

Fix a free ultrafilter \mathcal{U} on \mathbb{N} . Set

$$(\mathcal{S}, d_H) = \prod_{n \rightarrow \mathcal{U}} (S_n, d_H) := \frac{\prod_n S_n}{\{(\sigma_n)_n : \lim_{n \rightarrow \mathcal{U}} d_H(\sigma_n, \text{id})\}}.$$

A group G is sofic if there is a homomorphism $\sigma: G \rightarrow \mathcal{S}$ so that $d_H \circ (\sigma \times \sigma)$ is the discrete metric. Write $\sigma(g) = (\sigma_n(g))_{n \rightarrow \mathcal{U}}$, we call $(\sigma_n)_n$ a sofic approximation.

Examples

- \mathbb{Z} ,

Examples

- \mathbb{Z} ,
- Amenable groups,

Examples

- \mathbb{Z} ,
- Amenable groups,
- Residually finite groups,

Examples

- \mathbb{Z} ,
- Amenable groups,
- Residually finite groups,
- Linear groups,

Examples

- \mathbb{Z} ,
- Amenable groups,
- Residually finite groups,
- Linear groups,
- Closed under direct products,

Examples

- \mathbb{Z} ,
- Amenable groups,
- Residually finite groups,
- Linear groups,
- Closed under direct products, free products with amalgamation over amenable groups, (Paunescu, Dykema-Kerr-Pichot, Popa)

Examples

- \mathbb{Z} ,
- Amenable groups,
- Residually finite groups,
- Linear groups,
- Closed under direct products, free products with amalgamation over amenable groups, (Paunescu, Dykema-Kerr-Pichot, Popa) and wreath products (H-Sale).

Sofic Entropy

Consider the Loeb measure space $(Z_{\mathcal{U}}, u_{\mathcal{U}}) = \prod_{n \rightarrow \mathcal{U}} ([n], u_n)$.

Sofic Entropy

Consider the Loeb measure space $(Z_{\mathcal{U}}, u_{\mathcal{U}}) = \prod_{n \rightarrow \mathcal{U}} ([n], u_n)$. So $Z_{\mathcal{U}}$ as a set is $\prod_n [n]$ modulo the relation $(j_n)_n = (k_n)_n$ if $j_n = k_n$ along \mathcal{U} , and

Sofic Entropy

Consider the Loeb measure space $(Z_{\mathcal{U}}, u_{\mathcal{U}}) = \prod_{n \rightarrow \mathcal{U}} ([n], u_n)$. So $Z_{\mathcal{U}}$ as a set is $\prod_n [n]$ modulo the relation $(j_n)_n = (k_n)_n$ if $j_n = k_n$ along \mathcal{U} , and

$$u_{\mathcal{U}}((A_n)_n) = \lim_{n \rightarrow \mathcal{U}} \frac{|A_n|}{n}, \quad A_n \subseteq [n].$$

Sofic Entropy

Consider the Loeb measure space $(Z_{\mathcal{U}}, u_{\mathcal{U}}) = \prod_{n \rightarrow \mathcal{U}} ([n], u_n)$. So $Z_{\mathcal{U}}$ as a set is $\prod_n [n]$ modulo the relation $(j_n)_n = (k_n)_n$ if $j_n = k_n$ along \mathcal{U} , and

$$u_{\mathcal{U}}((A_n)_n) = \lim_{n \rightarrow \mathcal{U}} \frac{|A_n|}{n}, \quad A_n \subseteq [n].$$

σ_n naturally induces a pmp action $G \curvearrowright (Z_{\mathcal{U}}, u_{\mathcal{U}})$.

Sofic Entropy

Consider the Loeb measure space $(Z_{\mathcal{U}}, u_{\mathcal{U}}) = \prod_{n \rightarrow \mathcal{U}} ([n], u_n)$. So $Z_{\mathcal{U}}$ as a set is $\prod_n [n]$ modulo the relation $(j_n)_n = (k_n)_n$ if $j_n = k_n$ along \mathcal{U} , and

$$u_{\mathcal{U}}((A_n)_n) = \lim_{n \rightarrow \mathcal{U}} \frac{|A_n|}{n}, \quad A_n \subseteq [n].$$

σ_n naturally induces a pmp action $G \curvearrowright (Z_{\mathcal{U}}, u_{\mathcal{U}})$.

Given another pmp action $G \curvearrowright (X, \mu)$ the sofic entropy of $G \curvearrowright (X, \mu)$ measure "how many" factor maps $(Z_{\mathcal{U}}, u_{\mathcal{U}}) \rightarrow (X, \mu)$. If X is compact, and $G \curvearrowright X$, then the topological entropy of $G \curvearrowright X$ measures "how many" Borel equivariant maps $Z_{\mathcal{U}} \rightarrow X$ there are. (Due to Bowen, Kerr-Li).

Let $G \curvearrowright X$ be an algebraic action with G sofic.

Let $G \curvearrowright X$ be an algebraic action with G sofic.

Question: When is $h_{\text{top}}(G \curvearrowright X) = h_{m_X}(G \curvearrowright X)$?

- Deninger: always true if G is amenable.

Let $G \curvearrowright X$ be an algebraic action with G sofic.

Question: When is $h_{\text{top}}(G \curvearrowright X) = h_{m_X}(G \curvearrowright X)$?

- Deninger: always true if G is amenable.
- H: True if $G \curvearrowright (X, m_X)$ ergodic and under a “local wk^* ” convergence assumption.

Let $G \curvearrowright X$ be an algebraic action with G sofic.

Question: When is $h_{\text{top}}(G \curvearrowright X) = h_{m_X}(G \curvearrowright X)$?

- Deninger: always true if G is amenable.
- H: True if $G \curvearrowright (X, m_X)$ ergodic and under a “local wk^* ” convergence assumption.

Previous results: Berg, Lind-Schmidt, Bowen + Kerr-Li, Bowen-Li, Gaboriau-Seward.

Local wk*-convergence

Wk*-topology on $\text{Prob}(X)$: $\mu_n \rightarrow \mu$ if $\int f \, d\mu_n \rightarrow \int f \, d\mu$ for all $f \in C(X)$.

Local wk*-convergence

Wk*-topology on $\text{Prob}(X)$: $\mu_n \rightarrow \mu$ if $\int f \, d\mu_n \rightarrow \int f \, d\mu$ for all $f \in C(X)$.

Fix $\mu_n \in \text{Prob}(X^n)$. Say that μ_n is *supported on topological microstates* if

$$\mu_n \times u_n(\{(x, j) : \rho(x(\sigma_n(g)(j)), gx(j)) < \varepsilon\}) \rightarrow 1$$

for all $\varepsilon > 0$.

Local wk*-convergence

Wk*-topology on $\text{Prob}(X)$: $\mu_n \rightarrow \mu$ if $\int f \, d\mu_n \rightarrow \int f \, d\mu$ for all $f \in C(X)$.

Fix $\mu_n \in \text{Prob}(X^n)$. Say that μ_n is *supported on topological microstates* if

$$\mu_n \times u_n(\{(x, j) : \rho(x(\sigma_n(g)(j)), gx(j)) < \varepsilon\}) \rightarrow 1$$

for all $\varepsilon > 0$.

Consider the *marginals* $\mu_{n,j}$ for $1 \leq j \leq n$:

Local wk*-convergence

Wk*-topology on $\text{Prob}(X)$: $\mu_n \rightarrow \mu$ if $\int f \, d\mu_n \rightarrow \int f \, d\mu$ for all $f \in C(X)$.

Fix $\mu_n \in \text{Prob}(X^n)$. Say that μ_n is *supported on topological microstates* if

$$\mu_n \times u_n(\{(x, j) : \rho(x(\sigma_n(g)(j)), gx(j)) < \varepsilon\}) \rightarrow 1$$

for all $\varepsilon > 0$.

Consider the *marginals* $\mu_{n,j}$ for $1 \leq j \leq n$:

$$\int_X f(x) \, d\mu_{n,j} = \int_{X^n} f(x(j)) \, d\mu_{n,j}(x).$$

Local wk*-convergence

Wk*-topology on $\text{Prob}(X)$: $\mu_n \rightarrow \mu$ if $\int f \, d\mu_n \rightarrow \int f \, d\mu$ for all $f \in C(X)$.

Fix $\mu_n \in \text{Prob}(X^n)$. Say that μ_n is *supported on topological microstates* if

$$\mu_n \times u_n(\{(x, j) : \rho(x(\sigma_n(g)(j)), gx(j)) < \varepsilon\}) \rightarrow 1$$

for all $\varepsilon > 0$.

Consider the *marginals* $\mu_{n,j}$ for $1 \leq j \leq n$:

$$\int_X f(x) \, d\mu_{n,j} = \int_{X^n} f(x(j)) \, d\mu_{n,j}(x).$$

Say $\mu_n \xrightarrow[n \rightarrow \infty]{lw^*} \mu$ if μ_n is supported on topological microstates and:

Local wk*-convergence

Wk*-topology on $\text{Prob}(X)$: $\mu_n \rightarrow \mu$ if $\int f \, d\mu_n \rightarrow \int f \, d\mu$ for all $f \in C(X)$.

Fix $\mu_n \in \text{Prob}(X^n)$. Say that μ_n is *supported on topological microstates* if

$$\mu_n \times u_n(\{(x, j) : \rho(x(\sigma_n(g)(j)), gx(j)) < \varepsilon\}) \rightarrow 1$$

for all $\varepsilon > 0$.

Consider the *marginals* $\mu_{n,j}$ for $1 \leq j \leq n$:

$$\int_X f(x) \, d\mu_{n,j} = \int_{X^n} f(x(j)) \, d\mu_{n,j}(x).$$

Say $\mu_n \xrightarrow[n \rightarrow \infty]{lw^*} \mu$ if μ_n is supported on topological microstates and:
for all $f \in C(X)$,

Local wk*-convergence

Wk*-topology on $\text{Prob}(X)$: $\mu_n \rightarrow \mu$ if $\int f \, d\mu_n \rightarrow \int f \, d\mu$ for all $f \in C(X)$.

Fix $\mu_n \in \text{Prob}(X^n)$. Say that μ_n is *supported on topological microstates* if

$$\mu_n \times u_n(\{(x, j) : \rho(x(\sigma_n(g)(j)), gx(j)) < \varepsilon\}) \rightarrow 1$$

for all $\varepsilon > 0$.

Consider the *marginals* $\mu_{n,j}$ for $1 \leq j \leq n$:

$$\int_X f(x) \, d\mu_{n,j} = \int_{X^n} f(x(j)) \, d\mu_{n,j}(x).$$

Say $\mu_n \xrightarrow[n \rightarrow \infty]{lw^*} \mu$ if μ_n is supported on topological microstates and:
for all $f \in C(X)$, for all $\varepsilon > 0$

Local wk*-convergence

Wk*-topology on $\text{Prob}(X)$: $\mu_n \rightarrow \mu$ if $\int f \, d\mu_n \rightarrow \int f \, d\mu$ for all $f \in C(X)$.

Fix $\mu_n \in \text{Prob}(X^n)$. Say that μ_n is *supported on topological microstates* if

$$\mu_n \times u_n(\{(x, j) : \rho(x(\sigma_n(g)(j)), gx(j)) < \varepsilon\}) \rightarrow 1$$

for all $\varepsilon > 0$.

Consider the *marginals* $\mu_{n,j}$ for $1 \leq j \leq n$:

$$\int_X f(x) \, d\mu_{n,j} = \int_{X^n} f(x(j)) \, d\mu_{n,j}(x).$$

Say $\mu_n \xrightarrow[n \rightarrow \mathcal{U}]{lw^*} \mu$ if μ_n is supported on topological microstates and: for all $f \in C(X)$, for all $\varepsilon > 0$

$$\lim_{n \rightarrow \mathcal{U}} \frac{1}{n} \left| \left\{ j : \left| \int f \, d\mu_{n,j} - \int f \, d\mu \right| < \varepsilon \right\} \right| = 1.$$

Relation to Entropy

Theorem

If $G \curvearrowright (X, m_X)$ is ergodic, and there exists $\mu_n \rightarrow^{lw^*} m_X$, then

$$h_{\text{top}}(G \curvearrowright X) = h_{m_X}(G \curvearrowright X).$$

Relation to Entropy

Theorem

If $G \curvearrowright (X, m_X)$ is ergodic, and there exists $\mu_n \rightarrow^{lw^*} m_X$, then

$$h_{\text{top}}(G \curvearrowright X) = h_{m_X}(G \curvearrowright X).$$

Ideas:

- $\frac{1}{n} \sum_j \mu_{n,j} \rightarrow m_X$ wk*

Relation to Entropy

Theorem

If $G \curvearrowright (X, m_X)$ is ergodic, and there exists $\mu_n \rightarrow^{lw^*} m_X$, then

$$h_{\text{top}}(G \curvearrowright X) = h_{m_X}(G \curvearrowright X).$$

Ideas:

- $\frac{1}{n} \sum_j \mu_{n,j} \rightarrow m_X$ wk*
- A "random" $\phi_n \in X^n$ will give a factor map

$$(Z_{\mathcal{U}}, u_{\mathcal{U}}) \rightarrow (X, m_X),$$

by extremality of m_X .

Relation to Entropy

Theorem

If $G \curvearrowright (X, m_X)$ is ergodic, and there exists $\mu_n \xrightarrow{lw^*} m_X$, then

$$h_{\text{top}}(G \curvearrowright X) = h_{m_X}(G \curvearrowright X).$$

Ideas:

- $\frac{1}{n} \sum_j \mu_{n,j} \rightarrow m_X$ wk*
- A "random" $\phi_n \in X^n$ will give a factor map

$$(Z_{\mathcal{U}}, u_{\mathcal{U}}) \rightarrow (X, m_X),$$

by extremality of m_X . Because $\int \theta_*(u_n) d\mu_n(x) \approx m_X$

Relation to Entropy

Theorem

If $G \curvearrowright (X, m_X)$ is ergodic, and there exists $\mu_n \rightarrow^{lw^*} m_X$, then

$$h_{\text{top}}(G \curvearrowright X) = h_{m_X}(G \curvearrowright X).$$

Ideas:

- $\frac{1}{n} \sum_j \mu_{n,j} \rightarrow m_X$ wk*
- A “random” $\phi_n \in X^n$ will give a factor map

$$(Z_{\mathcal{U}}, u_{\mathcal{U}}) \rightarrow (X, m_X),$$

by extremality of m_X . Because $\int \theta_*(u_n) d\mu_n(x) \approx m_X$

- Convolve μ_n to make it have “better separation properties.”

Good news/Bad news

- Good news: In every case we can actually compute the measure entropy, we can show that the existence of an l_w * converging sequence.

Good news/Bad news

- Good news: In every case we can actually compute the measure entropy, we can show that the existence of an lw^* converging sequence.
- Bad news: the construction of such a sequence, as well as the fact that it lw^* converges can be *very technical*.

Good news/Bad news

- Good news: In every case we can actually compute the measure entropy, we can show that the existence of an lw^* converging sequence.
- Bad news: the construction of such a sequence, as well as the fact that it lw^* converges can be *very technical*.
- Hard analysis proofs.

Good news/Bad news

- Good news: In every case we can actually compute the measure entropy, we can show that the existence of an l^w * converging sequence.
- Bad news: the construction of such a sequence, as well as the fact that it l^w * converges can be *very technical*.
- Hard analysis proofs. We'd like soft analysis proofs.

Finally, back to ultraproduct spaces.

Want to do, but can't: Take any sequence $\mu_n \in \text{Prob}(X^n)$ and a produce a local wk^* -limit $\mu \in \text{Prob}_G(X)$ (along \mathcal{U}).

Finally, back to ultraproduct spaces.

Want to do, but can't: Take any sequence $\mu_n \in \text{Prob}(X^n)$ and a produce a local wk^* -limit $\mu \in \text{Prob}_G(X)$ (along \mathcal{U}).

Instead: Fix $\mu_n \in \text{Prob}(X^n)$.

Finally, back to ultraproduct spaces.

Want to do, but can't: Take any sequence $\mu_n \in \text{Prob}(X^n)$ and a produce a local wk^* -limit $\mu \in \text{Prob}_G(X)$ (along \mathcal{U}).

Instead: Fix $\mu_n \in \text{Prob}(X^n)$. Consider the marginals as a map $[n] \rightarrow \text{Prob}(X)$.

Finally, back to ultraproduct spaces.

Want to do, but can't: Take any sequence $\mu_n \in \text{Prob}(X^n)$ and a produce a local wk^* -limit $\mu \in \text{Prob}_G(X)$ (along \mathcal{U}).

Instead: Fix $\mu_n \in \text{Prob}(X^n)$. Consider the marginals as a map $[n] \rightarrow \text{Prob}(X)$. Passing to the ultraproduct get a map:

$$\mathcal{E}((\mu_n)_n) : Z_{\mathcal{U}} \rightarrow \text{Prob}(X).$$

Finally, back to ultraproduct spaces.

Want to do, but can't: Take any sequence $\mu_n \in \text{Prob}(X^n)$ and a produce a local wk^* -limit $\mu \in \text{Prob}_G(X)$ (along \mathcal{U}).

Instead: Fix $\mu_n \in \text{Prob}(X^n)$. Consider the marginals as a map $[n] \rightarrow \text{Prob}(X)$. Passing to the ultraproduct get a map:

$$\mathcal{E}((\mu_n)_n) : Z_{\mathcal{U}} \rightarrow \text{Prob}(X).$$

For $\mu \in \text{Prob}(X)$, $\mathcal{E}((\mu_n)_n) = \mu$ if and only if $\mu_n \xrightarrow[n \rightarrow \mathcal{U}]{}^{wk^*} \mu$.

Back to Ultraproduct Spaces, II

Let

$$\mathcal{L}_{\mathcal{U}}(G \curvearrowright X) = \{\mathcal{E}((\mu_n)_n) : \mu_n \text{ supported on topological microstates.}\}$$

Back to Ultraproduct Spaces, II

Let

$$\mathcal{L}_{\mathcal{U}}(G \curvearrowright X) = \{\mathcal{E}((\mu_n)_n) : \mu_n \text{ supported on topological microstates.}\}$$

Then $\mathcal{L}_{\mathcal{U}}(G \curvearrowright X) \subseteq \text{Meas}(\mathcal{Z}_{\mathcal{U}}, u_{\mathcal{U}})$.

Back to Ultraproduct Spaces, II

Let

$$\mathcal{L}_{\mathcal{U}}(G \curvearrowright X) = \{\mathcal{E}((\mu_n)_n) : \mu_n \text{ supported on topological microstates.}\}$$

Then $\mathcal{L}_{\mathcal{U}}(G \curvearrowright X) \subseteq \text{Meas}(Z_{\mathcal{U}}, u_{\mathcal{U}})$.

- $\mathcal{L}_{\mathcal{U}}$ is closed (in the topology of convergence in measure),

Back to Ultraproduct Spaces, II

Let

$$\mathcal{L}_{\mathcal{U}}(G \curvearrowright X) = \{\mathcal{E}((\mu_n)_n) : \mu_n \text{ supported on topological microstates.}\}$$

Then $\mathcal{L}_{\mathcal{U}}(G \curvearrowright X) \subseteq \text{Meas}(Z_{\mathcal{U}}, u_{\mathcal{U}})$.

- $\mathcal{L}_{\mathcal{U}}$ is closed (in the topology of convergence in measure),
- $\mathcal{L}_{\mathcal{U}}$ is closed under pointwise convolution,

Back to Ultraproduct Spaces, II

Let

$$\mathcal{L}_{\mathcal{U}}(G \curvearrowright X) = \{\mathcal{E}((\mu_n)_n) : \mu_n \text{ supported on topological microstates.}\}$$

Then $\mathcal{L}_{\mathcal{U}}(G \curvearrowright X) \subseteq \text{Meas}(Z_{\mathcal{U}}, u_{\mathcal{U}})$.

- $\mathcal{L}_{\mathcal{U}}$ is closed (in the topology of convergence in measure),
- $\mathcal{L}_{\mathcal{U}}$ is closed under pointwise convolution,
- $\mathcal{L}_{\mathcal{U}}$ is closed under pointwise $*$:

Back to Ultraproduct Spaces, II

Let

$$\mathcal{L}_{\mathcal{U}}(G \curvearrowright X) = \{\mathcal{E}((\mu_n)_n) : \mu_n \text{ supported on topological microstates.}\}$$

Then $\mathcal{L}_{\mathcal{U}}(G \curvearrowright X) \subseteq \text{Meas}(Z_{\mathcal{U}}, u_{\mathcal{U}})$.

- $\mathcal{L}_{\mathcal{U}}$ is closed (in the topology of convergence in measure),
- $\mathcal{L}_{\mathcal{U}}$ is closed under pointwise convolution,
- $\mathcal{L}_{\mathcal{U}}$ is closed under pointwise $*$: $\mu^*(E) = \mu(E^{-1})$.

Back to Ultraproduct Spaces, II

Let

$$\mathcal{L}_{\mathcal{U}}(G \curvearrowright X) = \{\mathcal{E}((\mu_n)_n) : \mu_n \text{ supported on topological microstates.}\}$$

Then $\mathcal{L}_{\mathcal{U}}(G \curvearrowright X) \subseteq \text{Meas}(Z_{\mathcal{U}}, u_{\mathcal{U}})$.

- $\mathcal{L}_{\mathcal{U}}$ is closed (in the topology of convergence in measure),
- $\mathcal{L}_{\mathcal{U}}$ is closed under pointwise convolution,
- $\mathcal{L}_{\mathcal{U}}$ is closed under pointwise $*$: $\mu^*(E) = \mu(E^{-1})$.
- $\mathcal{L}_{\mathcal{U}}$ is closed under pointwise convex combinations.

Back to Ultraproduct Spaces, II

Let

$$\mathcal{L}_{\mathcal{U}}(G \curvearrowright X) = \{\mathcal{E}((\mu_n)_n) : \mu_n \text{ supported on topological microstates.}\}$$

Then $\mathcal{L}_{\mathcal{U}}(G \curvearrowright X) \subseteq \text{Meas}(Z_{\mathcal{U}}, u_{\mathcal{U}})$.

- $\mathcal{L}_{\mathcal{U}}$ is closed (in the topology of convergence in measure),
- $\mathcal{L}_{\mathcal{U}}$ is closed under pointwise convolution,
- $\mathcal{L}_{\mathcal{U}}$ is closed under pointwise $*$: $\mu^*(E) = \mu(E^{-1})$.
- $\mathcal{L}_{\mathcal{U}}$ is closed under pointwise convex combinations.

Proofs are easy: Łos's theorem!

A subgroup version

Let $Y \in \text{Meas}(Z_{\mathcal{U}}, \text{Sub}(X))$. We define $m_Y \in \text{Meas}(Z_{\mathcal{U}}, \text{Prob}(X))$ by $m_Y(z) = m_{Y(z)}$.

A subgroup version

Let $Y \in \text{Meas}(Z_{\mathcal{U}}, \text{Sub}(X))$. We define $m_Y \in \text{Meas}(Z_{\mathcal{U}}, \text{Prob}(X))$ by $m_Y(z) = m_{Y(z)}$.

The space $\mathcal{L}_{\mathcal{U}}$ has algebraic/topological structure. $\mathcal{S}_{\mathcal{U}}$ has order/topological structure given by pointwise a.e. containment.

A subgroup version

Let $Y \in \text{Meas}(Z_{\mathcal{U}}, \text{Sub}(X))$. We define $m_Y \in \text{Meas}(Z_{\mathcal{U}}, \text{Prob}(X))$ by $m_Y(z) = m_{Y(z)}$.

The space $\mathcal{L}_{\mathcal{U}}$ has algebraic/topological structure. $\mathcal{S}_{\mathcal{U}}$ has order/topological structure given by pointwise a.e. containment.

Say that $Y \in \text{Meas}(Z_{\mathcal{U}}, \text{Sub}(X))$ *absorbs all topological microstates* if for every measurable, G -equivariant $\Theta: Z_{\mathcal{U}} \rightarrow X$ we have $\Theta(z) \in Y(z)$ a.e. z .

The Big Theorem

Theorem

- Given $\mu \in \mathcal{L}_{\mathcal{U}}$, $\langle \text{supp } \mu(z) \rangle \in \mathcal{S}_{\mu}$,

The Big Theorem

Theorem

- Given $\mu \in \mathcal{L}_{\mathcal{U}}$, $\langle \text{supp } \mu(z) \rangle \in \mathcal{S}_{\mu}$,
- Given $Y_1, Y_2 \in \mathcal{S}_{\mathcal{U}}$, set $(Y_1 \vee Y_2)(z) = \overline{\langle Y_1(z), Y_2(z) \rangle}$. The $Y_1 \vee Y_2 \in \mathcal{S}_{\mathcal{U}}$.

The Big Theorem

Theorem

- Given $\mu \in \mathcal{L}_{\mathcal{U}}$, $\langle \text{supp } \mu(z) \rangle \in \mathcal{S}_{\mu}$,
- Given $Y_1, Y_2 \in \mathcal{S}_{\mathcal{U}}$, set $(Y_1 \vee Y_2)(z) = \overline{\langle Y_1(z), Y_2(z) \rangle}$. The $Y_1 \vee Y_2 \in \mathcal{S}_{\mathcal{U}}$.
- $\mathcal{S}_{\mathcal{U}}$ is a complete join lattice.

The Big Theorem

Theorem

- Given $\mu \in \mathcal{L}_{\mathcal{U}}$, $\langle \text{supp } \mu(z) \rangle \in \mathcal{S}_{\mu}$,
- Given $Y_1, Y_2 \in \mathcal{S}_{\mathcal{U}}$, set $(Y_1 \vee Y_2)(z) = \overline{\langle Y_1(z), Y_2(z) \rangle}$. The $Y_1 \vee Y_2 \in \mathcal{S}_{\mathcal{U}}$.
- $\mathcal{S}_{\mathcal{U}}$ is a complete join lattice.
- The maximal element of $\mathcal{S}_{\mathcal{U}}$ is the minimal element of $\text{Meas}(Z_{\mathcal{U}}, \text{Sub}(X))$ which absorbs all topological microstates.

Comments on the proof

Nontrivial functional analysis enters into the proof that $\mathcal{S}_{\mathcal{U}}$ is a complete join lattice.

Comments on the proof

Nontrivial functional analysis enters into the proof that $\mathcal{S}_{\mathcal{U}}$ is a complete join lattice.

Analogous problem: show $\text{Meas}([0, 1], [0, 1])$ is a complete join lattice.

Comments on the proof

Nontrivial functional analysis enters into the proof that $\mathcal{S}_{\mathcal{U}}$ is a complete join lattice.

Analogous problem: show $\text{Meas}([0, 1], [0, 1])$ is a complete join lattice.

The proof of the first two parts use:

Comments on the proof

Nontrivial functional analysis enters into the proof that $\mathcal{S}_{\mathcal{U}}$ is a complete join lattice.

Analogous problem: show $\text{Meas}([0, 1], [0, 1])$ is a complete join lattice.

The proof of the first two parts use:

$$m_{\overline{\langle \text{supp}(\mu) \rangle}} = \lim_{n \rightarrow \infty} \left[\left(\frac{1}{2} \delta_1 + \mu \right)^* * \left(\frac{1}{2} \delta_1 + \mu \right) \right]^{*n},$$

Comments on the proof

Nontrivial functional analysis enters into the proof that $\mathcal{S}_{\mathcal{U}}$ is a complete join lattice.

Analogous problem: show $\text{Meas}([0, 1], [0, 1])$ is a complete join lattice.

The proof of the first two parts use:

$$m_{\overline{\langle \text{supp}(\mu) \rangle}} = \lim_{n \rightarrow \infty} \left[\left(\frac{1}{2} \delta_1 + \mu \right)^* * \left(\frac{1}{2} \delta_1 + \mu \right) \right]^{*n},$$

$$m_{Y_1 \vee Y_2} = \lim_{n \rightarrow \infty} (m_{Y_1} * m_{Y_2} * m_{Y_1})^{*n}.$$

Comments on the proof

Nontrivial functional analysis enters into the proof that $\mathcal{S}_{\mathcal{U}}$ is a complete join lattice.

Analogous problem: show $\text{Meas}([0, 1], [0, 1])$ is a complete join lattice.

The proof of the first two parts use:

$$m_{\overline{\langle \text{supp}(\mu) \rangle}} = \lim_{n \rightarrow \infty} \left[\left(\frac{1}{2} \delta_1 + \mu \right)^* * \left(\frac{1}{2} \delta_1 + \mu \right) \right]^{*n},$$

$$m_{Y_1 \vee Y_2} = \lim_{n \rightarrow \infty} (m_{Y_1} * m_{Y_2} * m_{Y_1})^{*n}.$$

These are proved by noncommutative Fourier analysis (the Peter-Weyl theorem + the finite-dimensional spectral theorem).

Comments on the difficult part

We use the left regular representation $\lambda: X \rightarrow \mathcal{U}(L^2(X))$ given by $(\lambda(x)\xi)(y) = \xi(x^{-1}y)$.

Comments on the difficult part

We use the left regular representation $\lambda: X \rightarrow \mathcal{U}(L^2(X))$ given by $(\lambda(x)\xi)(y) = \xi(x^{-1}y)$. This induces $\lambda: \text{Prob}(X) \rightarrow B(L^2(X))$ by

Comments on the difficult part

We use the left regular representation $\lambda: X \rightarrow \mathcal{U}(L^2(X))$ given by $(\lambda(x)\xi)(y) = \xi(x^{-1}y)$. This induces $\lambda: \text{Prob}(X) \rightarrow B(L^2(X))$ by

$$\langle \lambda(\mu)\xi, \eta \rangle = \int_X \langle \lambda(x)\xi, \eta \rangle d\mu(x).$$

Comments on the difficult part

We use the left regular representation $\lambda: X \rightarrow \mathcal{U}(L^2(X))$ given by $(\lambda(x)\xi)(y) = \xi(x^{-1}y)$. This induces $\lambda: \text{Prob}(X) \rightarrow B(L^2(X))$ by

$$\langle \lambda(\mu)\xi, \eta \rangle = \int_X \langle \lambda(x)\xi, \eta \rangle d\mu(x).$$

Composing with λ gives us a map $\lambda_* \mathcal{L}_{\mathcal{U}} \rightarrow \text{Meas}(\mathcal{Z}_{\mathcal{U}}, \lambda(\text{Prob}(X)))$.

Comments on the difficult part

We use the left regular representation $\lambda: X \rightarrow \mathcal{U}(L^2(X))$ given by $(\lambda(x)\xi)(y) = \xi(x^{-1}y)$. This induces $\lambda: \text{Prob}(X) \rightarrow B(L^2(X))$ by

$$\langle \lambda(\mu)\xi, \eta \rangle = \int_X \langle \lambda(x)\xi, \eta \rangle d\mu(x).$$

Composing with λ gives us a map

$\lambda_* \mathcal{L}_{\mathcal{U}} \rightarrow \text{Meas}(Z_{\mathcal{U}}, \lambda(\text{Prob}(X)))$. For $\mu \in \mathcal{L}_{\mathcal{U}}$, $\lambda_*(\mu)$ is a projection valued function if and only if $\mu = m_Y$ for some $Y \in \mathcal{S}_{\mathcal{U}}$.

Comments on the difficult part

We use the left regular representation $\lambda: X \rightarrow \mathcal{U}(L^2(X))$ given by $(\lambda(x)\xi)(y) = \xi(x^{-1}y)$. This induces $\lambda: \text{Prob}(X) \rightarrow B(L^2(X))$ by

$$\langle \lambda(\mu)\xi, \eta \rangle = \int_X \langle \lambda(x)\xi, \eta \rangle d\mu(x).$$

Composing with λ gives us a map

$\lambda_* \mathcal{L}_{\mathcal{U}} \rightarrow \text{Meas}(Z_{\mathcal{U}}, \lambda(\text{Prob}(X)))$. For $\mu \in \mathcal{L}_{\mathcal{U}}$, $\lambda_*(\mu)$ is a projection valued function if and only if $\mu = m_Y$ for some $Y \in \mathcal{S}_{\mathcal{U}}$.

We may also view $\text{Meas}(Z_{\mathcal{U}}, B(L^2(X))) \subseteq B(L^2(Z_{\mathcal{U}} \times X))$.

Comments on the difficult part, part II

Now use that projections in $B(L^2(Z_{\mathcal{U}} \times X))$ form a complete lattice.

Comments on the difficult part, part II

Now use that projections in $B(L^2(Z_{\mathcal{U}} \times X))$ form a complete lattice. And that the join is a strong operator topology limit.

Comments on the difficult part, part II

Now use that projections in $B(L^2(Z_{\mathcal{U}} \times X))$ form a complete lattice. And that the join is a strong operator topology limit.

This necessitates showing that $\lambda_*(\mathcal{L}_{\mathcal{U}})$ is strong operator topology closed.

Comments on the difficult part, part II

Now use that projections in $B(L^2(Z_{\mathcal{U}} \times X))$ form a complete lattice. And that the join is a strong operator topology limit.

This necessitates showing that $\lambda_*(\mathcal{L}_{\mathcal{U}})$ is strong operator topology closed. This follows from a continuous Łos's theorem.

Applications

Special case: Let G' be the centralizer of G in $\prod_{n \rightarrow \mathcal{U}} (S_n, d_H)$.

Applications

Special case: Let G' be the centralizer of G in $\prod_{n \rightarrow \mathcal{U}}(S_n, d_H)$.
Assume $G' \curvearrowright (Z_{\mathcal{U}}, u_{\mathcal{U}})$ is ergodic.

Applications

Special case: Let G' be the centralizer of G in $\prod_{n \rightarrow \mathcal{U}} (S_n, d_H)$.
Assume $G' \curvearrowright (Z_{\mathcal{U}}, u_{\mathcal{U}})$ is ergodic.

This happens if G is residually finite.

Applications

Special case: Let G' be the centralizer of G in $\prod_{n \rightarrow \mathcal{U}} (S_n, d_H)$.
Assume $G' \curvearrowright (Z_{\mathcal{U}}, u_{\mathcal{U}})$ is ergodic.

This happens if G is residually finite. In this case the maximal element of $\mathcal{S}_{\mathcal{U}}$ is a G -invariant closed subgroup of X .

Applications

Special case: Let G' be the centralizer of G in $\prod_{n \rightarrow \mathcal{U}} (S_n, d_H)$.
Assume $G' \curvearrowright (Z_{\mathcal{U}}, u_{\mathcal{U}})$ is ergodic.

This happens if G is residually finite. In this case the maximal element of $\mathcal{S}_{\mathcal{U}}$ is a G -invariant closed subgroup of X .

Theorem

If G is residually finite, $G \curvearrowright (X, m_X)$ is ergodic, and there is a factor map $(Z_{\mathcal{U}}, u_{\mathcal{U}}) \rightarrow (X, m_X)$, then $h_{\text{top}}(G \curvearrowright X) = h_{m_X}(G \curvearrowright X)$.

More applications

Theorem

If G is residually finite, and $G \curvearrowright X$ is topologically cpe, then $h_{\text{top}}(G \curvearrowright X) = h_{m_X}(G \curvearrowright X)$, further $G \curvearrowright (X, m_X)$ is measure cpe.

More applications

Theorem

If G is residually finite, and $G \curvearrowright X$ is topologically cpe, then $h_{\text{top}}(G \curvearrowright X) = h_{m_X}(G \curvearrowright X)$, further $G \curvearrowright (X, m_X)$ is measure cpe.

There is also a way to make sense of $h_{m_X}^{lw^*}(G \curvearrowright X)$.

More applications

Theorem

If G is residually finite, and $G \curvearrowright X$ is topologically cpe, then $h_{\text{top}}(G \curvearrowright X) = h_{m_X}(G \curvearrowright X)$, further $G \curvearrowright (X, m_X)$ is measure cpe.

There is also a way to make sense of $h_{m_X}^{lw^*}(G \curvearrowright X)$.

Theorem

Suppose G is residually finite. If Y is the maximal element of $\mathcal{S}_{\mathcal{U}}$, then $h_{\text{top}}(G \curvearrowright X) = h_{\text{top}}(G \curvearrowright Y) = h_{m_Y}^{lw^}(G \curvearrowright Y)$.*

More applications

Theorem

If G is residually finite, and $G \curvearrowright X$ is topologically cpe, then $h_{\text{top}}(G \curvearrowright X) = h_{m_X}(G \curvearrowright X)$, further $G \curvearrowright (X, m_X)$ is measure cpe.

There is also a way to make sense of $h_{m_X}^{lw^*}(G \curvearrowright X)$.

Theorem

Suppose G is residually finite. If Y is the maximal element of $\mathcal{S}_{\mathcal{U}}$, then $h_{\text{top}}(G \curvearrowright X) = h_{\text{top}}(G \curvearrowright Y) = h_{m_Y}^{lw^}(G \curvearrowright Y)$.*

Can say the same in the general case, but need to make sense of $h_{m_Y}^{lw^*}(G \curvearrowright Y)$ for $Y \in \text{Meas}(\mathcal{Z}_{\mathcal{U}}, \text{Sub}(X))$.

More applications

Theorem

If G is residually finite, and $G \curvearrowright X$ is topologically cpe, then $h_{\text{top}}(G \curvearrowright X) = h_{m_X}(G \curvearrowright X)$, further $G \curvearrowright (X, m_X)$ is measure cpe.

There is also a way to make sense of $h_{m_X}^{lw^*}(G \curvearrowright X)$.

Theorem

Suppose G is residually finite. If Y is the maximal element of $\mathcal{S}_{\mathcal{U}}$, then $h_{\text{top}}(G \curvearrowright X) = h_{\text{top}}(G \curvearrowright Y) = h_{m_Y}^{lw^}(G \curvearrowright Y)$.*

Can say the same in the general case, but need to make sense of $h_{m_Y}^{lw^*}(G \curvearrowright Y)$ for $Y \in \text{Meas}(Z_{\mathcal{U}}, \text{Sub}(X))$. This also leads naturally to G -invariant random subgroups of X .

Closing Remarks

- The proofs are a combination of ultrafilter analysis, functional analysis, and ergodic theory.

Closing Remarks

- The proofs are a combination of ultrafilter analysis, functional analysis, and ergodic theory.
- Ultrafilter methods are now standard and well-accepted in functional analysis.

Closing Remarks

- The proofs are a combination of ultrafilter analysis, functional analysis, and ergodic theory.
- Ultrafilter methods are now standard and well-accepted in functional analysis.
- Ergodic theorists tend to think of their subject as "combinatorics plus ε " and are heavily influenced by the legacy of Halmos (see: "A nonstandard analysis of Paul Halmos.")

Closing Remarks

- The proofs are a combination of ultrafilter analysis, functional analysis, and ergodic theory.
- Ultrafilter methods are now standard and well-accepted in functional analysis.
- Ergodic theorists tend to think of their subject as "combinatorics plus ε " and are heavily influenced by the legacy of Halmos (see: "A nonstandard analysis of Paul Halmos.")
- Because of this, these techniques are a fair bit out of the norm in the ergodic theory community.

Thanks for paying attention!