AMS Sectional Meeting at University of Hawaii: Special Session on
Applications of Ultrafilters and Nonstandard Methods

Local weak*-Convergence, algebraic actions, and

a max-min principle.

Ben Hayes
University of Virginia

March 22, 2019



The main goal of this talk will be to explain how ultraproduct
analysis naturally occurs in the context of ergodic theory of actions
on compact groups.



The main goal of this talk will be to explain how ultraproduct
analysis naturally occurs in the context of ergodic theory of actions
on compact groups.

@ Discussion of algebraic actions.



The main goal of this talk will be to explain how ultraproduct
analysis naturally occurs in the context of ergodic theory of actions
on compact groups.

@ Discussion of algebraic actions.

@ Sofic groups.



The main goal of this talk will be to explain how ultraproduct
analysis naturally occurs in the context of ergodic theory of actions
on compact groups.

@ Discussion of algebraic actions.
@ Sofic groups.

@ Discussion of entropy.



The main goal of this talk will be to explain how ultraproduct
analysis naturally occurs in the context of ergodic theory of actions

on compact groups.
@ Discussion of algebraic actions.
@ Sofic groups.
@ Discussion of entropy.
°

The appearance of the Loeb measure space.



The main goal of this talk will be to explain how ultraproduct
analysis naturally occurs in the context of ergodic theory of actions
on compact groups.

Discussion of algebraic actions.

Sofic groups.

°
°

@ Discussion of entropy.

@ The appearance of the Loeb measure space.
°

Order lattices associated to the Loeb measure space.



Algebraic Actions

Let G be a countable, discrete, group. An algebraic action of G is
an action G ~ X by automorphism of a compact, metrizable
group X.



Algebraic Actions

Let G be a countable, discrete, group. An algebraic action of G is
an action G ~ X by automorphism of a compact, metrizable
group X.

This is measure-preserving, if we give G the Haar measure, my.



Algebraic Actions

Let G be a countable, discrete, group. An algebraic action of G is
an action G ~ X by automorphism of a compact, metrizable
group X.

This is measure-preserving, if we give G the Haar measure, my.

View this as either part of topological dynamics or as a probability
measure-preserving action.



Algebraic Actions

Let G be a countable, discrete, group. An algebraic action of G is
an action G ~ X by automorphism of a compact, metrizable
group X.

This is measure-preserving, if we give G the Haar measure, my.

View this as either part of topological dynamics or as a probability
measure-preserving action.

For certain groups, we have the notion of (topological or
measure-theoretic) entropy of these actions.



Algebraic Actions

Let G be a countable, discrete, group. An algebraic action of G is
an action G ~ X by automorphism of a compact, metrizable
group X.

This is measure-preserving, if we give G the Haar measure, my.

View this as either part of topological dynamics or as a probability
measure-preserving action.

For certain groups, we have the notion of (topological or
measure-theoretic) entropy of these actions. Which groups?
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For n € N, define dy on S, by

1 . . .
d(o,7) = [{j + o () # 7))},
Fix a free ultrafilter &/ on N. Set

I1n Sn
{(cn)n : limpoy dy(on,id)}

(S,dn) = [] (Snrdn) :=

n—U

A group G is sofic if there is a homomorphism o: G — S so that
dy o (o x o) is the discrete metric.Write 0(g) = (on(g))n—u, we
call (o)n a sofic approximation.
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Z,
Amenable groups,
Residually finite groups,

Linear groups,

Closed under direct products, free products with
amalgamation over amenable groups, (Paunescu,
Dykema-Kerr-Pichot, Popa) and wreath products (H-Sale).
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Sofic Entropy

Consider the Loeb measure space (Z, uy) = [1,_([n], un). So
Zy as a set is [[,[n] modulo the relation (ju)n = (kn)n if jn = kn
along U, and

An
| |, An C [n].
n

uy((An)n) = lim

n—U

o naturally induces a pmp action G ~ (Zy, uy).

Given another pmp action G ~ (X, ) the sofic entropy of

G ~ (X, 1) measure “how many" factor maps (Zy, uy) — (X, ).
If X is compact, and G ~ X, then the topological entropy of

G ~ X measures “how many" Borel equivariant maps Z; — X
there are. (Due to Bowen, Kerr-Li).
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Let G ~ X be an algebraic action with G sofic.

Question: When is hiop (G ~ X) = hm, (G ~ X)?

@ Deninger: always true if G is amenable.

@ H: True if G ~ (X, mx) ergodic and under a “local wk*"
convergence assumption.

Previous results: Berg, Lind-Schmidt, Bowen + Kerr-Li, Bowen-Li,
Gaboriau-Seward.
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Local wkx-convergence

Wk*-topology on Prob(X) : pp — p if [ fdun, — [ fdp for all
f e C(X).

Fix pu, € Prob(X"™). Say that p, is supported on topological
microstates if

pn X un({(x,))  p(x(an(g)(f)), x(J)) < €}) = 1

for all e > 0.

Consider the marginals ju,; for 1 < j < n:
[ FO duny = [ #x()) dins0).
X Xn

Say pn — ,Hu w if pp is supported on topological microstates and:
for all f € C(X), foralle >0

{ ’/fdu,w /fdu’ <€}

=1
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Relation to Entropy

Iw*

If G ~ (X, mx) is ergodic, and there exists p, =" my, then

heop (G A X) = hm (G A~ X).

Ideas:
° %ZJ fnj — mx wk*
@ A “random" ¢, € X" will give a factor map

(Zu, Uu) — (X, mx),

by extremality of mx. Because [ 6. (un) dpn(x) =~ mx

@ Convolve i, to make it have “better separation properties."
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Good news/Bad news

@ Good news: In every case we can actually compute the
measure entropy, we can show that the existence of an /wx
converging sequence.

@ Bad news: the construction of such a sequence, as well as the
fact that it Iw* converges can be very technical.

@ Hard analysis proofs. We'd like soft analysis proofs.
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Finally, back to ultraproduct spaces.

Want to do, but can't: Take any sequence u, € Prob(X") and a
produce a local wk*-limit . € Probg(X) (along ).

Instead: Fix p, € Prob(X").Consider the marginals as a map
[n] — Prob(X). Passing to the ultraproduct get a map:

E(pn)n) : Zu — Prob(X).

For ju € Prob(X), £((n)n) = p if and only if p, —>£7W—*>u H-
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Back to Ultraproduct Spaces, Il

Let
Ly/(G ~ X) ={E((tn)n) : ptn supported on topological microstates. }

Then L1/(G ~ X) C Meas(Zy, uy).
@ Ly is closed (in the topology of convergence in measure),
@ Ly is closed under pointwise convolution,
@ Ly is closed under pointwise *: p*(E) = u(E~1).
@ L, is closed under pointwise convex combinations.

Proofs are easy: tos's theorem!
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A subgroup version

Let Y € Meas(Zy, Sub(X)). We define my € Meas(Zy, Prob(X))
by my(z) = my(y).

The space £y has algebraic/topological structure. S has
order/topological structure given by pointwise a.e. containment.

Say that Y € Meas(Zy, Sub(X)) absorbs all topological
microstates if for every measurable, G-equivariant ©: Z; — X we
have ©(z) € Y(z) ae. z.
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The Big Theorem

o Given i € Ly, (suppu(z)) € Sy,

e Given Y1, Y2 € Sy, set (Y1V Y2)(z) = (Yi(2), Y2(2)). The
Y1V Y € Sy.

@ Sy is a complete join lattice.

@ The maximal element of Sy, is the minimal element of
Meas(Z, Sub(X)) which absorbs all topological microstates.
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Comments on the proof

Nontrivial functional analysis enters into the proof that Sy is a
complete join lattice.

Analogous problem: show Meas([0, 1], [0,1]) is a complete join
lattice.

The proof of the first two parts use:
i 15 * 16 n
e (T B ST
myl\/YQ = nli—:go(myl * my2 * myl)*n'

These are proved by noncommutative Fourier analysis (the
Peter-Weyl theorem+ the finite-dimensional spectral theorem).
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Comments on the difficult part

We use the left regular representation A: X — U(L?(X)) given by
(A(X)E)(y) = &(xty). This induces A: Prob(X) — B(L?(X)) by

Nwem) = [ (AEm) di).

Composing with A gives us a map
ALy — Meas(Zy, A(Prob(X))). For pn € Ly, A() is a projection
valued function if and only if © = my for some Y € Sy.

We may also view Meas(Zy, B(L?(X))) C B(L?(Zy x X)).
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Comments on the difficult part, part Il

Now use that projections in B(L?(Zy x X)) form a complete
lattice. And that the join is a strong operator topology limit.

This necessitates showing that A.(Ly) is strong operator topology
closed. This follows from a continuous tos's theorem.
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Applications

Special case: Let G’ be the centralizer of G in [],_;/(Sn, dn).
Assume G' ~ (Zy, uy) is ergodic.

This happens if G is residually finite. In this case the maximal
element of Sy is a G-invariant closed subgroup of X.

If G is residually finite, G ~ (X, mx) is ergodic, and there is a
factor map (Zy, uy) — (X, mx), then
htop(G ™~ X) = hmy (G ~ X).
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More applications

If G is residually finite, and G ~ X is topologically cpe, then
htop(G ™~ X) = hmy (G ~ X)), further G ~ (X, mx) is measure
cpe.

There is also a way to make sense of h,’;’,";(G ~ X).

Suppose G is residually finite. If Y is the maximal element of Sy,
then hiop(G ~ X) = heop(G ~ Y) = hY(G A~ Y).

Can say the same in the general case, but need to make sense of
hm’:(G " Y) for Y € Meas(Z, Sub(X)). This also leads naturally
to G-invariant random subgroups of X.
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Closing Remarks

@ The proofs are a combination of ultrafilter analysis, functional
analysis, and ergodic theory.

@ Ultrafilter methods are now standard and well-accepted in
functional analysis.

o Ergodic theorists tend to think of their subject as
“combinatorics plus " and are heavily influenced by the legacy
of Halmos (see: “A nonstandard analysis of Paul Halmos.")

@ Because of this, these techniques are a fair bit out of the
norm in the ergodic theory community.



Thanks for paying attention!



