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Overview

The main goal of this talk will be to explain how ultraproduct
analysis naturally occurs in the context of ergodic theory of actions
on compact groups.

Discussion of algebraic actions.
Sofic groups.
Discussion of entropy.
The appearance of the Loeb measure space.
Order lattices associated to the Loeb measure space.
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Algebraic Actions

Let G be a countable, discrete, group. An algebraic action of G is
an action G y X by automorphism of a compact, metrizable
group X .

This is measure-preserving, if we give G the Haar measure, mX .

View this as either part of topological dynamics or as a probability
measure-preserving action.

For certain groups, we have the notion of (topological or
measure-theoretic) entropy of these actions. Which groups?
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Sofic Groups

For n ∈ N, define dH on Sn by

dH(σ, τ) = 1
n |{j : σ(j) 6= τ(j)}|.

Fix a free ultrafilter U on N. Set

(S, dH) =
∏

n→U
(Sn, dH) :=

∏
n Sn

{(σn)n : limn→U dH(σn, id)} .

A group G is sofic if there is a homomorphism σ : G → S so that
dH ◦ (σ × σ) is the discrete metric.Write σ(g) = (σn(g))n→U , we
call (σn)n a sofic approximation.
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Examples

Z,

Amenable groups,
Residually finite groups,
Linear groups,
Closed under direct products, free products with
amalgamation over amenable groups, (Paunescu,
Dykema-Kerr-Pichot, Popa) and wreath products (H-Sale).
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Sofic Entropy

Consider the Loeb measure space (ZU , uU ) =
∏

n→U ([n], un).

So
ZU as a set is

∏
n[n] modulo the relation (jn)n = (kn)n if jn = kn

along U , and

uU ((An)n) = lim
n→U

|An|
n , An ⊆ [n].

σn naturally induces a pmp action G y (ZU , uU ).

Given another pmp action G y (X , µ) the sofic entropy of
G y (X , µ) measure “how many" factor maps (ZU , uU )→ (X , µ).
If X is compact, and G y X , then the topological entropy of
G y X measures “how many" Borel equivariant maps ZU → X
there are. (Due to Bowen, Kerr-Li).
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Let G y X be an algebraic action with G sofic.

Question: When is htop (G y X ) = hmX (G y X )?

Deninger: always true if G is amenable.
H: True if G y (X ,mX ) ergodic and under a “local wk∗"
convergence assumption.

Previous results: Berg, Lind-Schmidt, Bowen + Kerr-Li, Bowen-Li,
Gaboriau-Seward.
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Local wk∗-convergence
Wk*-topology on Prob(X ) : µn → µ if

∫
f dµn →

∫
f dµ for all

f ∈ C(X ).

Fix µn ∈ Prob(Xn). Say that µn is supported on topological
microstates if

µn × un({(x , j) : ρ(x(σn(g)(j)), gx(j)) < ε})→ 1

for all ε > 0.

Consider the marginals µn,j for 1 ≤ j ≤ n:∫
X
f (x) dµn,j =

∫
Xn

f (x(j)) dµn,j(x).

Say µn →lw∗
n→U µ if µn is supported on topological microstates and:

for all f ∈ C(X ), for all ε > 0

lim
n→U

1
n

∣∣∣∣{j :
∣∣∣∣∫ f dµn,j −

∫
f dµ

∣∣∣∣ < ε

}∣∣∣∣ = 1.
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Relation to Entropy

Theorem
If G y (X ,mX ) is ergodic, and there exists µn →lw∗ mX , then

htop (G y X ) = hmX (G y X ).

Ideas:
1
n
∑

j µn,j → mX wk*
A “random" φn ∈ Xn will give a factor map

(ZU , uU )→ (X ,mX ),

by extremality of mX . Because
∫
θ∗(un) dµn(x) ≈ mX

Convolve µn to make it have “better separation properties."
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Good news/Bad news

Good news: In every case we can actually compute the
measure entropy, we can show that the existence of an lw∗
converging sequence.

Bad news: the construction of such a sequence, as well as the
fact that it lw∗ converges can be very technical.
Hard analysis proofs. We’d like soft analysis proofs.
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Finally, back to ultraproduct spaces.

Want to do, but can’t: Take any sequence µn ∈ Prob(Xn) and a
produce a local wk∗-limit µ ∈ ProbG(X ) (along U).

Instead: Fix µn ∈ Prob(Xn).Consider the marginals as a map
[n]→ Prob(X ). Passing to the ultraproduct get a map:

E((µn)n) : ZU → Prob(X ).

For µ ∈ Prob(X ), E((µn)n) = µ if and only if µn →lw∗
n→U µ.
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Back to Ultraproduct Spaces, II

Let

LU (G y X ) = {E((µn)n) : µn supported on topological microstates.}

Then LU (G y X ) ⊆ Meas(ZU , uU ).
LU is closed (in the topology of convergence in measure),
LU is closed under pointwise convolution,
LU is closed under pointwise ∗: µ∗(E ) = µ(E−1).
LU is closed under pointwise convex combinations.

Proofs are easy: Łos’s theorem!
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A subgroup version

Let Y ∈ Meas(ZU ,Sub(X )). We define mY ∈ Meas(ZU ,Prob(X ))
by mY (z) = mY (z).

The space LU has algebraic/topological structure. SU has
order/topological structure given by pointwise a.e. containment.

Say that Y ∈ Meas(ZU , Sub(X )) absorbs all topological
microstates if for every measurable, G-equivariant Θ: ZU → X we
have Θ(z) ∈ Y (z) a.e. z .
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The Big Theorem

Theorem
Given µ ∈ LU , 〈suppµ(z)〉 ∈ Sµ,

Given Y1,Y2 ∈ SU , set (Y1 ∨ Y2)(z) = 〈Y1(z),Y2(z)〉. The
Y1 ∨ Y2 ∈ SU .
SU is a complete join lattice.
The maximal element of SU is the minimal element of
Meas(ZU ,Sub(X )) which absorbs all topological microstates.
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Comments on the proof

Nontrivial functional analysis enters into the proof that SU is a
complete join lattice.

Analogous problem: show Meas([0, 1], [0, 1]) is a complete join
lattice.

The proof of the first two parts use:

m〈supp(µ)〉 = lim
n→∞

[
(1
2δ1 + µ

)∗
∗
(1
2δ1 + µ

)
]∗n,

mY1∨Y2 = lim
n→∞

(mY1 ∗mY2 ∗mY1)∗n.

These are proved by noncommutative Fourier analysis (the
Peter-Weyl theorem+ the finite-dimensional spectral theorem).
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Comments on the difficult part

We use the left regular representation λ : X → U(L2(X )) given by
(λ(x)ξ)(y) = ξ(x−1y).

This induces λ : Prob(X )→ B(L2(X )) by

〈λ(µ)ξ, η〉 =
∫

X
〈λ(x)ξ, η〉 dµ(x).

Composing with λ gives us a map
λ∗LU → Meas(ZU , λ(Prob(X ))). For µ ∈ LU , λ∗(µ) is a projection
valued function if and only if µ = mY for some Y ∈ SU .

We may also view Meas(ZU ,B(L2(X ))) ⊆ B(L2(ZU × X )).
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Comments on the difficult part, part II

Now use that projections in B(L2(ZU × X )) form a complete
lattice.

And that the join is a strong operator topology limit.

This necessitates showing that λ∗(LU ) is strong operator topology
closed. This follows from a continuous Łos’s theorem.
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Applications

Special case: Let G ′ be the centralizer of G in
∏

n→U (Sn, dH).

Assume G ′ y (ZU , uU ) is ergodic.

This happens if G is residually finite. In this case the maximal
element of SU is a G-invariant closed subgroup of X .

Theorem
If G is residually finite, G y (X ,mX ) is ergodic, and there is a
factor map (ZU , uU )→ (X ,mX ), then
htop(G y X ) = hmX (G y X ).
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More applications

Theorem
If G is residually finite, and G y X is topologically cpe, then
htop(G y X ) = hmX (G y X ), further G y (X ,mX ) is measure
cpe.

There is also a way to make sense of hlw∗
mX (G y X ).

Theorem
Suppose G is residually finite. If Y is the maximal element of SU ,
then htop(G y X ) = htop(G y Y ) = hlw∗

mY (G y Y ).

Can say the same in the general case, but need to make sense of
hlw∗

mY (G y Y ) for Y ∈ Meas(ZU ,Sub(X )). This also leads naturally
to G-invariant random subgroups of X .
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Closing Remarks

The proofs are a combination of ultrafilter analysis, functional
analysis, and ergodic theory.

Ultrafilter methods are now standard and well-accepted in
functional analysis.
Ergodic theorists tend to think of their subject as
“combinatorics plus ε" and are heavily influenced by the legacy
of Halmos (see: “A nonstandard analysis of Paul Halmos.")
Because of this, these techniques are a fair bit out of the
norm in the ergodic theory community.
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Thanks for paying attention!
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