MIP* = RE

Isaac Goldbring

University of California, Irvine

ASL North American Annual Meeting
Cornell University
April 7, 2022
1. Nonlocal games

2. A quantum detour

3. $\text{MIP}^* = \text{RE}$

4. A few words about the proof of $\text{MIP}^* = \text{RE}$
Alice and Bob against the world

- Alice and Bob are two cooperating but *noncommunicating* players playing a game against a “referee.”
- They are each asked a question \(x, y \in [k] := \{1, \ldots, k\} \) randomly according to some probability distribution \(\pi \) on \([k] \times [k]\).
- Somehow they return answers \(a, b \in [n] \) respectively.
- There is a function \(D : [k]^2 \times [n]^2 \to \{0, 1\} \), called the decision predicate, which determines if they win this round of the game, that is, they win if and only if \(D(x, y, a, b) = 1 \).
- This describes a nonlocal game \(\mathcal{G} := (\pi, D) \) with \(k \) questions and \(n \) answers.
Alice and Bob against the world

- Alice and Bob are two cooperating but noncommunicating players playing a game against a “referee.”
- They are each asked a question $x, y \in [k] := \{1, \ldots, k\}$ randomly according to some probability distribution π on $[k] \times [k]$.
- Somehow they return answers $a, b \in [n]$ respectively.
- There is a function $D : [k]^2 \times [n]^2 \to \{0, 1\}$, called the decision predicate, which determines if they win this round of the game, that is, they win if and only if $D(x, y, a, b) = 1$.
- This describes a nonlocal game $\mathcal{G} := (\pi, D)$ with k questions and n answers.
Alice and Bob against the world

- Alice and Bob are two cooperating but *noncommunicating* players playing a game against a “referee.”
- They are each asked a question $x, y \in [k] := \{1, \ldots, k\}$ randomly according to some probability distribution π on $[k] \times [k]$.
- *Somehow* they return answers $a, b \in [n]$ respectively.
- There is a function $D : [k]^2 \times [n]^2 \to \{0, 1\}$, called the *decision predicate*, which determines if they win this round of the game, that is, they win if and only if $D(x, y, a, b) = 1$.
- This describes a *nonlocal game* $\mathcal{G} := (\pi, D)$ with k questions and n answers.
Alice and Bob are two cooperating but noncommunicating players playing a game against a “referee.”

They are each asked a question $x, y \in [k] := \{1, \ldots, k\}$ randomly according to some probability distribution π on $[k] \times [k]$.

Somehow they return answers $a, b \in [n]$ respectively.

There is a function $D : [k]^2 \times [n]^2 \to \{0, 1\}$, called the decision predicate, which determines if they win this round of the game, that is, they win if and only if $D(x, y, a, b) = 1$.

This describes a nonlocal game $\mathcal{G} := (\pi, D)$ with k questions and n answers.
Alice and Bob against the world

- Alice and Bob are two cooperating but *noncommunicating* players playing a game against a “referee.”
- They are each asked a question $x, y \in [k] := \{1, \ldots, k\}$ randomly according to some probability distribution π on $[k] \times [k]$.
- *Somehow* they return answers $a, b \in [n]$ respectively.
- There is a function $D : [k]^2 \times [n]^2 \to \{0, 1\}$, called the *decision predicate*, which determines if they win this round of the game, that is, they win if and only if $D(x, y, a, b) = 1$.
- This describes a *nonlocal game* $\mathcal{G} := (\pi, D)$ with k questions and n answers.
Strategies for nonlocal games

- Alice and Bob can meet before the game to decide on a **strategy** for playing \mathcal{G} that they will use before the game.
- For us, a strategy will simply be a matrix $p(a, b| x, y) \in [0, 1]^{k^2n^2}$ describing the conditional probability they respond with answers $(a, b) \in [n]^2$ given that they are asked questions $(x, y) \in [k]^2$.
- Given a strategy p, the **value of the game \mathcal{G} with respect to** p is the quantity

$$
\text{val}(\mathcal{G}, p) := \sum_{(x, y) \in [k]^2} \pi(x, y) \sum_{(a, b) \in [n]^2} p(a, b| x, y) D(a, b, x, y).
$$

- $\text{val}(\mathcal{G}, p)$ measures the expected probability of winning the game if they play according to the strategy p.

Strategies for nonlocal games

- Alice and Bob can meet before the game to decide on a **strategy** for playing \mathcal{G} that they will use before the game.
- For us, a strategy will simply be a matrix $p(a, b | x, y) \in [0, 1]^{k^2n^2}$ describing the conditional probability they respond with answers $(a, b) \in [n]^2$ given that they are asked questions $(x, y) \in [k]^2$.
- Given a strategy p, the **value of the game** \mathcal{G} with respect to p is the quantity

$$\text{val}(\mathcal{G}, p) := \sum_{(x, y) \in [k]^2} \pi(x, y) \sum_{(a, b) \in [n]^2} p(a, b | x, y) D(a, b, x, y).$$

- $\text{val}(\mathcal{G}, p)$ measures the expected probability of winning the game if they play according to the strategy p.
Alice and Bob can meet before the game to decide on a strategy for playing G that they will use before the game.

For us, a strategy will simply be a matrix $p(a, b|x, y) \in [0, 1]^{k^2 n^2}$ describing the conditional probability they respond with answers $(a, b) \in [n]^2$ given that they are asked questions $(x, y) \in [k]^2$.

Given a strategy p, the value of the game G with respect to p is the quantity

$$\text{val}(G, p) := \sum_{(x,y) \in [k]^2} \pi(x, y) \sum_{(a,b) \in [n]^2} p(a, b|x, y) D(a, b, x, y).$$

$\text{val}(G, p)$ measures the expected probability of winning the game if they play according to the strategy p.
Strategies for nonlocal games

- Alice and Bob can meet before the game to decide on a **strategy** for playing \mathcal{G} that they will use before the game.
- For us, a strategy will simply be a matrix $p(a, b|x, y) \in [0, 1]^{k^2 n^2}$ describing the conditional probability they respond with answers $(a, b) \in [n]^2$ given that they are asked questions $(x, y) \in [k]^2$.
- Given a strategy p, the **value of the game** \mathcal{G} with respect to p is the quantity

$$\text{val}(\mathcal{G}, p) := \sum_{(x, y) \in [k]^2} \pi(x, y) \sum_{(a, b) \in [n]^2} p(a, b|x, y)D(a, b, x, y).$$

- $\text{val}(\mathcal{G}, p)$ measures the expected probability of winning the game if they play according to the strategy p.

A **deterministic** strategy is given by a pair of functions $A, B : [k] \to [n]$ such that

$$p(A(x), B(y) \mid x, y) = 1 \text{ for all } (x, y) \in [k]^2.$$

A **classical** (or **local**) strategy is given by a probability space (Ω, μ) together with pairs of functions $A_\omega, B_\omega : [k] \to [n]$ such that

$$p(a, b \mid x, y) = \mu(\{\omega \in \Omega : A_\omega(x) = a \text{ and } B_\omega(y) = b\}).$$

$C_{\text{loc}}(k, n) \subseteq [0, 1]^{k^2n^2}$ denotes the set of classical strategies. It is the convex hull of the set $C_{\text{det}}(k, n)$ of deterministic strategies.

The **classical value** of \mathcal{G} is the quantity

$$\text{val}(\mathcal{G}) := \sup_{p \in C_{\text{loc}}(k, n)} \text{val}(\mathcal{G}, p) = \sup_{p \in C_{\text{det}}(k, n)} \text{val}(\mathcal{G}, p).$$
A **deterministic** strategy is given by a pair of functions $A, B : [k] \to [n]$ such that

$$p(A(x), B(y)|x, y) = 1 \text{ for all } (x, y) \in [k]^2.$$

A **classical** (or **local**) strategy is given by a probability space (Ω, μ) together with pairs of functions $A_\omega, B_\omega : [k] \to [n]$ such that

$$p(a, b|x, y) = \mu(\{\omega \in \Omega : A_\omega(x) = a \text{ and } B_\omega(y) = b\}).$$

$C_{loc}(k, n) \subseteq [0, 1]^{k^2n^2}$ denotes the set of classical strategies. It is the convex hull of the set $C_{det}(k, n)$ of deterministic strategies.

The **classical value** of G is the quantity

$$\text{val}(G) := \sup_{p \in C_{loc}(k, n)} \text{val}(G, p) = \sup_{p \in C_{det}(k, n)} \text{val}(G, p).$$
A deterministic strategy is given by a pair of functions $A, B : [k] \rightarrow [n]$ such that

$$p(A(x), B(y)|x, y) = 1 \text{ for all } (x, y) \in [k]^2.$$

A classical (or local) strategy is given by a probability space (Ω, μ) together with pairs of functions $A_\omega, B_\omega : [k] \rightarrow [n]$ such that

$$p(a, b|x, y) = \mu(\{\omega \in \Omega : A_\omega(x) = a \text{ and } B_\omega(y) = b\}).$$

$C_{\text{loc}}(k, n) \subseteq [0, 1]^{k^2n^2}$ denotes the set of classical strategies. It is the convex hull of the set $C_{\text{det}}(k, n)$ of deterministic strategies.

The classical value of \mathcal{G} is the quantity

$$\text{val}(\mathcal{G}) := \sup_{p \in C_{\text{loc}}(k, n)} \text{val}(\mathcal{G}, p) = \sup_{p \in C_{\text{det}}(k, n)} \text{val}(\mathcal{G}, p).$$
Classical strategies for nonlocal games

- **A deterministic** strategy is given by a pair of functions $A, B : [k] \to [n]$ such that
 \[
p(A(x), B(y)|x, y) = 1 \text{ for all } (x, y) \in [k]^2.
 \]

- **A classical** (or local) strategy is given by a probability space (Ω, μ) together with pairs of functions $A_\omega, B_\omega : [k] \to [n]$ such that
 \[
p(a, b|x, y) = \mu(\{\omega \in \Omega : A_\omega(x) = a \text{ and } B_\omega(y) = b\}).
 \]

- $C_{\text{loc}}(k, n) \subseteq [0, 1]^{k^2n^2}$ denotes the set of classical strategies. It is the convex hull of the set $C_{\text{det}}(k, n)$ of deterministic strategies.

- The **classical value** of \mathcal{G} is the quantity
 \[
 \text{val}(\mathcal{G}) := \sup_{p \in C_{\text{loc}}(k, n)} \text{val}(\mathcal{G}, p) = \sup_{p \in C_{\text{det}}(k, n)} \text{val}(\mathcal{G}, p).
 \]
The CHSH game

The CHSH game (named after Clauser, Horne, Shimony, and Holt) is the game G_{CHSH} with $k = n = 2$ and such that:

- If $x = 1$ or $y = 1$, then Alice and Bob win if and only if their answers agree.
- If $x = y = 2$, then Alice and Bob win if and only if their answers disagree.

By inspecting all deterministic strategies, one sees that

$$\text{val}(G_{\text{CHSH}}) = \frac{3}{4}.$$
1 Nonlocal games

2 A quantum detour

3 \(\text{MIP}^* = \text{RE} \)

4 A few words about the proof of \(\text{MIP}^* = \text{RE} \)
The spin of an electron

- An electron can have one of two spins: “up” or “down.”
- At any given moment, however, it does not have a definite spin and instead is in a **superposition** of the two spins, as represented by the linear combination $\alpha |\text{up}\rangle + \beta |\text{down}\rangle \in \mathbb{C}^2$, where $|\text{up}\rangle$ and $|\text{down}\rangle$ are two orthogonal vectors in \mathbb{C}^2 and $\alpha, \beta \in \mathbb{C}$ are such that $|\alpha|^2 + |\beta|^2 = 1$.
- If it is not disturbed, its state evolves linearly according to the Shrödinger equation.
- However, **when it is measured**, its state randomly and discontinuously jumps to one of the two definite spin states $|\text{up}\rangle$ or $|\text{down}\rangle$ with probabilities $|\alpha|^2$ and $|\beta|^2$ respectively.
The spin of an electron

- An electron can have one of two spins: “up” or “down.”

- At any given moment, however, it does not have a definite spin and instead is in a superposition of the two spins, as represented by the linear combination $\alpha |\text{up}\rangle + \beta |\text{down}\rangle \in \mathbb{C}^2$, where $|\text{up}\rangle$ and $|\text{down}\rangle$ are two orthogonal vectors in \mathbb{C}^2 and $\alpha, \beta \in \mathbb{C}$ are such that $|\alpha|^2 + |\beta|^2 = 1$.

- If it is not disturbed, its state evolves linearly according to the Shrödinger equation.

- However, when it is measured, its state randomly and discontinuously jumps to one of the two definite spin states $|\text{up}\rangle$ or $|\text{down}\rangle$ with probabilities $|\alpha|^2$ and $|\beta|^2$ respectively.
An electron can have one of two spins: "up" or "down."

At any given moment, however, it does not have a definite spin and instead is in a superposition of the two spins, as represented by the linear combination $\alpha |\text{up}\rangle + \beta |\text{down}\rangle \in \mathbb{C}^2$, where $|\text{up}\rangle$ and $|\text{down}\rangle$ are two orthogonal vectors in \mathbb{C}^2 and $\alpha, \beta \in \mathbb{C}$ are such that $|\alpha|^2 + |\beta|^2 = 1$.

If it is not disturbed, its state evolves linearly according to the Shrödinger equation.

However, when it is measured, its state randomly and discontinuously jumps to one of the two definite spin states $|\text{up}\rangle$ or $|\text{down}\rangle$ with probabilities $|\alpha|^2$ and $|\beta|^2$ respectively.
The spin of an electron

- An electron can have one of two spins: “up” or “down.”
- At any given moment, however, it does not have a definite spin and instead is in a **superposition** of the two spins, as represented by the linear combination $\alpha |\text{up}\rangle + \beta |\text{down}\rangle \in \mathbb{C}^2$, where $|\text{up}\rangle$ and $|\text{down}\rangle$ are two orthogonal vectors in \mathbb{C}^2 and $\alpha, \beta \in \mathbb{C}$ are such that $|\alpha|^2 + |\beta|^2 = 1$.
- If it is not disturbed, its state evolves linearly according to the **Shrödinger equation**.
- However, when it is measured, its state randomly and **discontinuously** jumps to one of the two definite spin states $|\text{up}\rangle$ or $|\text{down}\rangle$ with probabilities $|\alpha|^2$ and $|\beta|^2$ respectively.
Recommended summer reading

WHAT IS REAL?

"A thorough, illuminating exploration of the most consequential controversies raging in modern science."
—NEW YORK TIMES BOOK REVIEW

Adam Becker

HELGOLAND

 MAKING SENSE OF THE QUANTUM REVOLUTION

Carlo Rovelli

THE CONCEPTUAL FOUNDATIONS OF QUANTUM MECHANICS

Jeffrey A. Barrett

Isaac Goldbring (UCI)
More summer reading (shameless plug)
General quantum systems

- Associated to a quantum system is its **state space**, which is a complex Hilbert space H.
- The **state** of the system at any given moment is described by a unit vector $\xi \in H$, which evolves linearly until it is measured.
- A **measurement** with n outcomes is a tuple $M_1, \ldots, M_n \in B(H)$ such that, upon measurement, the probability of outcome i occurring is given by $\|M_i\xi\|^2$, in which case the state of the system jumps to $\frac{M_i\xi}{\|M_i\xi\|}$. (**Born rule**)
- For these to determine legitimate probabilities, for all unit vectors $\xi \in H$, one must have

$$1 = \sum_{i=1}^{n} \|M_i\xi\|^2 = \sum_{i=1}^{n} \langle M_i^* M_i \xi, \xi \rangle$$

and thus $\sum_{i=1}^{n} M_i^* M_i = I_H$.
Associated to a quantum system is its **state space**, which is a complex Hilbert space H.

The **state** of the system at any given moment is described by a unit vector $\xi \in H$, which evolves linearly until it is measured.

A **measurement** with n outcomes is a tuple $M_1, \ldots, M_n \in B(H)$ such that, upon measurement, the probability of outcome i occurring is given by $\|M_i \xi\|^2$, in which case the state of the system jumps to $\frac{M_i \xi}{\|M_i \xi\|}$. (**Born rule**)

For these to determine legitimate probabilities, for all unit vectors $\xi \in H$, one must have

$$1 = \sum_{i=1}^{n} \|M_i \xi\|^2 = \sum_{i=1}^{n} \langle M_i^* M_i \xi, \xi \rangle$$

and thus $\sum_{i=1}^{n} M_i^* M_i = I_H$.
Associated to a quantum system is its **state space**, which is a complex Hilbert space H.

The **state** of the system at any given moment is described by a unit vector $\xi \in H$, which evolves linearly until it is measured.

A **measurement** with n outcomes is a tuple $M_1, \ldots, M_n \in B(H)$ such that, upon measurement, the probability of outcome i occurring is given by $\|M_i \xi\|^2$, in which case the state of the system jumps to $\frac{M_i \xi}{\|M_i \xi\|}$. (**Born rule**)

For these to determine legitimate probabilities, for all unit vectors $\xi \in H$, one must have

$$1 = \sum_{i=1}^{n} \|M_i \xi\|^2 = \sum_{i=1}^{n} \langle M_i^* M_i \xi, \xi \rangle$$

and thus $\sum_{i=1}^{n} M_i^* M_i = I_H$.

Isaac Goldbring (UCI)
Associated to a quantum system is its **state space**, which is a complex Hilbert space H.

The **state** of the system at any given moment is described by a unit vector $\xi \in H$, which evolves linearly until it is measured.

A **measurement** with n outcomes is a tuple $M_1, \ldots, M_n \in B(H)$ such that, upon measurement, the probability of outcome i occurring is given by $\|M_i \xi\|^2$, in which case the state of the system jumps to $\frac{M_i \xi}{\|M_i \xi\|}$. (**Born rule**)

For these to determine legitimate probabilities, for all unit vectors $\xi \in H$, one must have

$$1 = \sum_{i=1}^{n} \|M_i \xi\|^2 = \sum_{i=1}^{n} \langle M_i^* M_i \xi, \xi \rangle$$

and thus $\sum_{i=1}^{n} M_i^* M_i = I_H$.

\[\text{Isaac Goldbring (UCI)} \]
POVMs and PVMs

- If one only cares about the statistics of the outcomes of a measurement (like us!), then we can simplify matters by assuming that each measurement operator is positive.

- A POVM (positive operator-valued measure) of length n is a collection A_1, \ldots, A_n of positive operators on H such that $\sum_{i=1}^{n} A_i = I_H$.

- On state ξ, the probability outcome i occurs is given by $\langle A_i \xi, \xi \rangle$.

- If each A_i is actually a projection, we speak of PVMs (projection-valued measures). This is the same as an orthogonal decomposition of H into n orthogonal subspaces.

- The case of the spin of an electron was a PVM corresponding to the one-dimensional subspaces spanned by $|\text{up}\rangle$ and $|\text{down}\rangle$.
POVMs and PVMs

- If one only cares about the statistics of the outcomes of a measurement (like us!), then we can simplify matters by assuming that each measurement operator is **positive**.

- A **POVM** (positive operator-valued measure) of length \(n \) is a collection \(A_1, \ldots, A_n \) of positive operators on \(H \) such that
 \[
 \sum_{i=1}^{n} A_i = I_H.
 \]

- On state \(\xi \), the probability outcome \(i \) occurs is given by \(\langle A_i \xi, \xi \rangle \).

- If each \(A_i \) is actually a **projection**, we speak of **PVMs** (projection-valued measures). This is the same as an orthogonal decomposition of \(H \) into \(n \) orthogonal subspaces.

- The case of the spin of an electron was a PVM corresponding to the one-dimensional subspaces spanned by \(|\text{up}\rangle \) and \(|\text{down}\rangle \).
POVMs and PVMs

- If one only cares about the statistics of the outcomes of a measurement (like us!), then we can simplify matters by assuming that each measurement operator is **positive**.

- A **POVM** (positive operator-valued measure) of length n is a collection A_1, \ldots, A_n of positive operators on H such that $\sum_{i=1}^{n} A_i = I_H$.

- On state ξ, the probability outcome i occurs is given by $\langle A_i\xi, \xi \rangle$.

- If each A_i is actually a **projection**, we speak of **PVMs** (projection-valued measures). This is the same as an orthogonal decomposition of H into n orthogonal subspaces.

- The case of the spin of an electron was a PVM corresponding to the one-dimensional subspaces spanned by $|\text{up}\rangle$ and $|\text{down}\rangle$.
POVMs and PVMs

If one only cares about the statistics of the outcomes of a measurement (like us!), then we can simplify matters by assuming that each measurement operator is **positive**.

A **POVM** (positive operator-valued measure) of length n is a collection A_1, \ldots, A_n of positive operators on H such that $\sum_{i=1}^{n} A_i = I_H$.

On state ξ, the probability outcome i occurs is given by $\langle A_i \xi, \xi \rangle$.

If each A_i is actually a **projection**, we speak of **PVMs** (projection-valued measures). This is the same as an orthogonal decomposition of H into n orthogonal subspaces.

The case of the spin of an electron was a PVM corresponding to the one-dimensional subspaces spanned by $|\text{up}\rangle$ and $|\text{down}\rangle$.

POVMs and PVMs

- If one only cares about the statistics of the outcomes of a measurement (like us!), then we can simplify matters by assuming that each measurement operator is positive.

- A POVM (positive operator-valued measure) of length n is a collection A_1, \ldots, A_n of positive operators on H such that $\sum_{i=1}^{n} A_i = I_H$.

- On state ξ, the probability outcome i occurs is given by $\langle A_i \xi, \xi \rangle$.

- If each A_i is actually a projection, we speak of PVMs (projection-valued measures). This is the same as an orthogonal decomposition of H into n orthogonal subspaces.

- The case of the spin of an electron was a PVM corresponding to the one-dimensional subspaces spanned by $|\text{up}\rangle$ and $|\text{down}\rangle$.
The EPR state

Another axiom of quantum mechanics is that if H_A and H_B are the state spaces for two quantum systems, then the state space for their composite system is given by $H_A \otimes H_B$.

Thus, the state space for two electrons is given by $\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$.

The EPR state is given by $\psi_{\text{EPR}} = \frac{1}{\sqrt{2}} |\text{up}\rangle |\text{up}\rangle + \frac{1}{\sqrt{2}} |\text{down}\rangle |\text{down}\rangle$.

It was used by Einstein, Podolsky, and Rosen in their famous paper arguing that quantum mechanics was incomplete!

The spookiness of entanglement!
Another axiom of quantum mechanics is that if H_A and H_B are the state spaces for two quantum systems, then the state space for their composite system is given by $H_A \otimes H_B$.

Thus, the state space for two electrons is given by $\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$.

The EPR state is given by
\[
\psi_{EPR} = \frac{1}{\sqrt{2}} \left| \text{up} \right\rangle \left\langle \text{up} \right| + \frac{1}{\sqrt{2}} \left| \text{down} \right\rangle \left\langle \text{down} \right|
\]

It was used by Einstein, Podolsky, and Rosen in their famous paper arguing that quantum mechanics was incomplete!

The spookiness of entanglement!
Another axiom of quantum mechanics is that if H_A and H_B are the state spaces for two quantum systems, then the state space for their composite system is given by $H_A \otimes H_B$.

Thus, the state space for two electrons is given by $\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$.

The EPR state is given by $\psi_{\text{EPR}} = \frac{1}{\sqrt{2}} |\text{up}\rangle |\text{up}\rangle + \frac{1}{\sqrt{2}} |\text{down}\rangle |\text{down}\rangle$.

It was used by Einstein, Podolsky, and Rosen in their famous paper arguing that quantum mechanics was incomplete!

The spookiness of entanglement!
Another axiom of quantum mechanics is that if H_A and H_B are the state spaces for two quantum systems, then the state space for their composite system is given by $H_A \otimes H_B$.

Thus, the state space for two electrons is given by $\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$.

The EPR state is given by $\psi_{EPR} = \frac{1}{\sqrt{2}} |\text{up}\rangle |\text{up}\rangle + \frac{1}{\sqrt{2}} |\text{down}\rangle |\text{down}\rangle$.

It was used by Einstein, Podolsky, and Rosen in their famous paper arguing that quantum mechanics was incomplete!

The spookiness of entanglement!
Another axiom of quantum mechanics is that if H_A and H_B are the state spaces for two quantum systems, then the state space for their composite system is given by $H_A \otimes H_B$.

Thus, the state space for two electrons is given by $\mathbb{C}^2 \otimes \mathbb{C}^2 \simeq \mathbb{C}^4$.

The EPR state is given by $\psi_{\text{EPR}} = \frac{1}{\sqrt{2}} |\text{up}\rangle |\text{up}\rangle + \frac{1}{\sqrt{2}} |\text{down}\rangle |\text{down}\rangle$.

It was used by Einstein, Podolsky, and Rosen in their famous paper arguing that quantum mechanics was incomplete!

The spookiness of entanglement!
1. Nonlocal games

2. A quantum detour

3. $\text{MIP}^* = \text{RE}$

4. A few words about the proof of $\text{MIP}^* = \text{RE}$
Quantum strategies for nonlocal games

Consider a game \mathcal{G} with k questions and n answers.

This time, when playing the game, Alice and Bob have quantum systems H_A and H_B and share a state $\xi \in H_A \otimes H_B$.

Upon receiving question $x \in [k]$, Alice will perform a POVM $A^x = (A^x_1, \ldots, A^x_n)$ on her part of ξ to decide which answer to give.

Bob similarly has a POVM $B^y = (B^y_1, \ldots, B^y_n)$ for measuring on his part of ξ.

We then have $p(a, b|x, y) = \langle (A^x_a \otimes B^y_b)\xi, \xi \rangle$.
Consider a game \mathcal{G} with k questions and n answers. This time, when playing the game, Alice and Bob have quantum systems H_A and H_B and share a state $\xi \in H_A \otimes H_B$. Upon receiving question $x \in [k]$, Alice will perform a POVM $A^x = (A^x_1, \ldots, A^x_n)$ on her part of ξ to decide which answer to give. Bob similarly has a POVM $B^y = (B^y_1, \ldots, B^y_n)$ for measuring on his part of ξ. We then have $p(a, b|x, y) = \langle (A^x_a \otimes B^y_b)\xi, \xi \rangle$.
Quantum strategies for nonlocal games

- Consider a game \mathcal{G} with k questions and n answers.
- This time, when playing the game, Alice and Bob have quantum systems H_A and H_B and share a state $\xi \in H_A \otimes H_B$.
- Upon receiving question $x \in [k]$, Alice will perform a POVM $A^x = (A^x_1, \ldots, A^x_n)$ on her part of ξ to decide which answer to give.
- Bob similarly has a POVM $B^y = (B^y_1, \ldots, B^y_n)$ for measuring on his part of ξ.
- We then have $p(a, b|x, y) = \langle (A^x_a \otimes B^y_b)\xi, \xi \rangle$.
Quantum strategies for nonlocal games

Consider a game \(\mathcal{G} \) with \(k \) questions and \(n \) answers. This time, when playing the game, Alice and Bob have quantum systems \(H_A \) and \(H_B \) and share a state \(\xi \in H_A \otimes H_B \). Upon receiving question \(x \in [k] \), Alice will perform a POVM \(A^x = (A^x_1, \ldots, A^x_n) \) on her part of \(\xi \) to decide which answer to give. Bob similarly has a POVM \(B^y = (B^y_1, \ldots, B^y_n) \) for measuring on his part of \(\xi \). We then have \(p(a, b | x, y) = \langle (A^x_a \otimes B^y_b) \xi, \xi \rangle \).
Quantum strategies for nonlocal games

Consider a game \mathcal{G} with k questions and n answers.

This time, when playing the game, Alice and Bob have quantum systems H_A and H_B and share a state $\xi \in H_A \otimes H_B$.

Upon receiving question $x \in [k]$, Alice will perform a POVM $A^x = (A^x_1, \ldots, A^x_n)$ on her part of ξ to decide which answer to give.

Bob similarly has a POVM $B^y = (B^y_1, \ldots, B^y_n)$ for measuring on his part of ξ.

We then have $p(a, b|x, y) = \langle (A^x_a \otimes B^y_b) \xi, \xi \rangle$.
The entangled value of a nonlocal game

- $C_q(k, n)$ denotes the set of strategies for which there are:
 - finite-dimensional Hilbert spaces H_A and H_B,
 - POVMs A^x and B^y on H_A and H_B respectively (one for each $x, y \in [k]$), and
 - a unit vector $\xi \in H_A \otimes H_B$

for which $p(a, b|x, y) = \langle (A^x_a \otimes B^y_b)\xi, \xi \rangle$.

- We also consider $C_{qa}(k, n) := \overline{C_q(k, n)}$.

- If \mathcal{G} is a nonlocal game with k questions and n answers, the entangled value of \mathcal{G} is

 $$\text{val}^*(\mathcal{G}) := \sup_{p \in C_q(k, n)} \text{val}(\mathcal{G}, p) = \sup_{p \in C_{qa}(k, n)} \text{val}(\mathcal{G}, p).$$

- $C_{\text{loc}}(k, n) \subseteq C_q(k, n)$ so $\text{val}(\mathcal{G}) \leq \text{val}^*(\mathcal{G})$.
The entangled value of a nonlocal game

- $C_q(k, n)$ denotes the set of strategies for which there are:
 - finite-dimensional Hilbert spaces H_A and H_B,
 - POVMs A^x and B^y on H_A and H_B respectively (one for each $x, y \in [k]$), and
 - a unit vector $\xi \in H_A \otimes H_B$

 for which $p(a, b|x, y) = \langle (A^x_a \otimes B^y_b)\xi, \xi \rangle$.

- We also consider $C_{qa}(k, n) := \overline{C_q(k, n)}$.

- If \mathcal{G} is a nonlocal game with k questions and n answers, the entangled value of \mathcal{G} is

 $$\text{val}^*(\mathcal{G}) := \sup_{p \in C_q(k, n)} \text{val}(\mathcal{G}, p) = \sup_{p \in C_{qa}(k, n)} \text{val}(\mathcal{G}, p).$$

- $C_{loc}(k, n) \subseteq C_q(k, n)$ so $\text{val}(\mathcal{G}) \leq \text{val}^*(\mathcal{G})$.
The entangled value of a nonlocal game

- $C_q(k, n)$ denotes the set of strategies for which there are:
 - **finite-dimensional** Hilbert spaces H_A and H_B,
 - POVMs A^x and B^y on H_A and H_B respectively (one for each $x, y \in [k]$), and
 - a unit vector $\xi \in H_A \otimes H_B$

 for which $p(a, b|x, y) = \langle (A^x_a \otimes B^y_b)\xi, \xi \rangle$.

- We also consider $C_qa(k, n) := \overline{C_q(k, n)}$.

- If \mathcal{G} is a nonlocal game with k questions and n answers, the entangled value of \mathcal{G} is

 $$\text{val}^*(\mathcal{G}) := \sup_{p \in C_q(k,n)} \text{val}(\mathcal{G}, p) = \sup_{p \in C_qa(k,n)} \text{val}(\mathcal{G}, p).$$

- $C_{\text{loc}}(k, n) \subseteq C_q(k, n)$ so $\text{val}(\mathcal{G}) \leq \text{val}^*(\mathcal{G})$.
The entangled value of a nonlocal game

- $C_q(k, n)$ denotes the set of strategies for which there are:
 - finite-dimensional Hilbert spaces H_A and H_B,
 - POVMs A^x and B^y on H_A and H_B respectively (one for each $x, y \in [k]$), and
 - a unit vector $\xi \in H_A \otimes H_B$

for which $p(a, b | x, y) = \langle (A^x_a \otimes B^y_b)\xi, \xi \rangle$.

- We also consider $C_{qa}(k, n) := \overline{C_q(k, n)}$.

- If \mathcal{G} is a nonlocal game with k questions and n answers, the **entangled value** of \mathcal{G} is

 $$\text{val}^*(\mathcal{G}) := \sup_{p \in C_q(k, n)} \text{val}(\mathcal{G}, p) = \sup_{p \in C_{qa}(k, n)} \text{val}(\mathcal{G}, p).$$

- $C_{loc}(k, n) \subseteq C_q(k, n)$ so $\text{val}(\mathcal{G}) \leq \text{val}^*(\mathcal{G})$.
Recall $\text{val}(\mathcal{G}_{\text{CHSH}}) = \frac{3}{4}$.

However, there is an entangled strategy p, based on the EPR state ψ_{EPR}, such that $\text{val}(\mathcal{G}, p) = \cos^2\left(\frac{\pi}{8}\right) \approx 0.85$ (which equals $\text{val}^*(\mathcal{G}_{\text{CHSH}})$ by a result of Tsirelson).

This inequality showed that EPR were wrong!
How hard is it to compute $\text{val}^*(\mathcal{G})$?

- One can effectively compute *lower bounds* for $\text{val}^*(\mathcal{G})$ uniformly in \mathcal{G}.

- Given some dimension d, you can enumerate a computable sequence of finite nets $N_1^d \subseteq N_2^d \subseteq \cdots$ over all states and POVMs in dimension d with $|N_m^d| = m^{O(d^2)}$ such that for any $p \in C_q(k,n)$ based on a d-dimensional strategy and any m, there is $q \in N_m^d$ with $|\text{val}(\mathcal{G}, p) - \text{val}(\mathcal{G}, q)| < \frac{1}{m}$.

- Set

$$\text{val}^n(\mathcal{G}, p) = \max_{d,m \leq n} \max_{p \in N_m^d} \text{val}(\mathcal{G}, p).$$

- Then $\text{val}^n(\mathcal{G}, p)$ is computable and $\text{val}^n(\mathcal{G}, p) \nearrow \text{val}(\mathcal{G})$.

- Could it be that $\text{val}^*(\mathcal{G})$ is actually uniformly computable in \mathcal{G}?
How hard is it to compute $\text{val}^*(\mathcal{G})$?

- One can effectively compute *lower bounds* for $\text{val}^*(\mathcal{G})$ uniformly in \mathcal{G}:

- Given some dimension d, you can enumerate a computable sequence of finite nets $N_1^d \subseteq N_2^d \subseteq \cdots$ over all states and POVMs in dimension d with $|N_m^d| = m^{O(d^2)}$ such that for any $p \in C_q(k, n)$ based on a d-dimensional strategy and any m, there is $q \in N_m^d$ with $|\text{val}(\mathcal{G}, p) - \text{val}(\mathcal{G}, q)| < \frac{1}{m}$.

- Set

$$\text{val}^n(\mathcal{G}, p) = \max_{d,m \leq n} \max_{p \in N_m^d} \text{val}(\mathcal{G}, p).$$

- Then $\text{val}^n(\mathcal{G}, p)$ is computable and $\text{val}^n(\mathcal{G}, p) \nearrow \text{val}(\mathcal{G})$.

- Could it be that $\text{val}^*(\mathcal{G})$ is actually uniformly computable in \mathcal{G}?
How hard is it to compute $\text{val}^*(\mathcal{G})$?

- One can effectively compute *lower bounds* for $\text{val}^*(\mathcal{G})$ uniformly in \mathcal{G}:

- Given some dimension d, you can enumerate a computable sequence of finite nets $N_1^d \subseteq N_2^d \subseteq \cdots$ over all states and POVMs in dimension d with $|N_m^d| = m^{O(d^2)}$ such that for any $p \in C_q(k, n)$ based on a d-dimensional strategy and any m, there is $q \in N_m^d$ with $|\text{val}(\mathcal{G}, p) - \text{val}(\mathcal{G}, q)| < \frac{1}{m}$.

- Set
 $$\text{val}^n(\mathcal{G}, p) = \max_{d,m \leq n} \max_{p \in N_m^d} \text{val}(\mathcal{G}, p).$$

- Then $\text{val}^n(\mathcal{G}, p)$ is computable and $\text{val}^n(\mathcal{G}, p) \nearrow \text{val}(\mathcal{G})$.

- Could it be that $\text{val}^*(\mathcal{G})$ is actually uniformly computable in \mathcal{G}?
How hard is it to compute $\text{val}^*(\mathcal{G})$?

- One can effectively compute *lower bounds* for $\text{val}^*(\mathcal{G})$ uniformly in \mathcal{G}:
 - Given some dimension d, you can enumerate a computable sequence of finite nets $N_1^d \subseteq N_2^d \subseteq \cdots$ over all states and POVMs in dimension d with $|N_m^d| = m^{O(d^2)}$ such that for any $p \in C_q(k, n)$ based on a d-dimensional strategy and any m, there is $q \in N_m^d$ with $|\text{val}(\mathcal{G}, p) - \text{val}(\mathcal{G}, q)| < \frac{1}{m}$.

- Set

 $$\text{val}^n(\mathcal{G}, p) = \max_{d, m \leq n} \max_{p \in N_m^d} \text{val}(\mathcal{G}, p).$$

- Then $\text{val}^n(\mathcal{G}, p)$ is computable and $\text{val}^n(\mathcal{G}, p) \uparrow \text{val}(\mathcal{G})$.

- Could it be that $\text{val}^*(\mathcal{G})$ is actually uniformly computable in \mathcal{G}?
One can effectively compute lower bounds for $\text{val}^*(\mathcal{G})$ uniformly in \mathcal{G}:

Given some dimension d, you can enumerate a computable sequence of finite nets $N_1^d \subseteq N_2^d \subseteq \cdots$ over all states and POVMs in dimension d with $|N_m^d| = m^{O(d^2)}$ such that for any $p \in C_q(k, n)$ based on a d-dimensional strategy and any m, there is $q \in N_m^d$ with $|\text{val}(\mathcal{G}, p) - \text{val}(\mathcal{G}, q)| < \frac{1}{m}$.

Set

$$\text{val}^n(\mathcal{G}, p) = \max_{d,m \leq n} \max_{p \in N_m^d} \text{val}(\mathcal{G}, p).$$

Then $\text{val}^n(\mathcal{G}, p)$ is computable and $\text{val}^n(\mathcal{G}, p) \nearrow \text{val}(\mathcal{G})$.

Could it be that $\text{val}^*(\mathcal{G})$ is actually uniformly computable in \mathcal{G}?
Theorem (Ji, Natarajan, Vidick, Wright, Yuen (2020))

There is an effective mapping $\mathcal{M} \mapsto \mathcal{G}_\mathcal{M}$ from Turing machines to nonlocal games such that:

- If \mathcal{M} halts, then $\text{val}^*(\mathcal{G}_\mathcal{M}) = 1$.
- If \mathcal{M} does not halt, then $\text{val}^*(\mathcal{G}_\mathcal{M}) \leq \frac{1}{2}$.
1. Nonlocal games

2. A quantum detour

3. MIP* = RE

4. A few words about the proof of MIP* = RE
A **uniform game sequence** (UGS) is an infinite sequence \(\bar{G} := (G_1, G_2, \ldots,) \) of nonlocal games for which there is a single Turing machine \(V \) which computes in time \(\text{poly}(\log n) \):

- The number of questions and answers in \(G_n \).
- A Turing machine which specifies the probability distribution for \(G_n \).
- A Turing machine which specifies the decision predicate for \(G_n \).
Entanglement lower bound for nonlocal games

Definition

Given a nonlocal game \mathcal{G} and $r \in [0, 1]$, we set $\mathcal{E}(\mathcal{G}, r)$ to be the minimum dimension d for which there exists a strategy $p \in C_q$ based on d-dimensional Hilbert spaces so that $\text{val}(\mathcal{G}, p) \geq r$.

Example

1. $\mathcal{E}(\mathcal{G}_{\text{CHSH}}, \frac{3}{4}) = 0$
2. $\mathcal{E}(\mathcal{G}_{\text{CHSH}}, \cos^2(\frac{\pi}{8})) = 2$
3. $\mathcal{E}(\mathcal{G}_{\text{CHSH}}, 1) = \infty$
Entanglement lower bound for nonlocal games

Definition

Given a nonlocal game \mathcal{G} and $r \in [0, 1]$, we set $\mathcal{E}(\mathcal{G}, r)$ to be the minimum dimension d for which there exists a strategy $p \in C_q$ based on d-dimensional Hilbert spaces so that $\text{val}(\mathcal{G}, p) \geq r$.

Example

1. $\mathcal{E}(\mathcal{G}_{\text{CHSH}}, \frac{3}{4}) = 0$
2. $\mathcal{E}(\mathcal{G}_{\text{CHSH}}, \cos^2(\frac{\pi}{8})) = 2$
3. $\mathcal{E}(\mathcal{G}_{\text{CHSH}}, 1) = \infty$
Theorem

There exists an algorithm C such that upon input a Turing machine V describing a UGS \mathcal{G} with each \mathcal{G}_n of “complexity” at most $O(n^2)$ outputs a Turing machine V' describing a UGS \mathcal{G}' of polynomial-time computable games such that:

- If $\text{val}^*(\mathcal{G}_n) = 1$, then $\text{val}^*(\mathcal{G}'_n) = 1$.
- $\varepsilon(\mathcal{G}'_n, \frac{1}{2}) \geq \max\{\varepsilon(\mathcal{G}_n, \frac{1}{2}), n\}$.
- The time complexity of \mathcal{G}'_n is $\text{poly}(\log n)$.
Compression theorem for nonlocal games

Theorem

There exists an algorithm C such that upon input a Turing machine V describing a UGS \mathcal{G} with each \mathcal{G}_n of “complexity” at most $O(n^2)$ outputs a Turing machine V' describing a UGS \mathcal{G}' of polynomial-time computable games such that:

- If $\text{val}^*(\mathcal{G}_n) = 1$, then $\text{val}^*(\mathcal{G}'_n) = 1$.
- $\mathcal{E}(\mathcal{G}'_n, \frac{1}{2}) \geq \max\{\mathcal{E}(\mathcal{G}_n, \frac{1}{2}), n\}$.
- The time complexity of \mathcal{G}'_n is $\text{poly}(\log n)$.
A few words about the proof of $\text{MIP}^* = \text{RE}$

Compression theorem for nonlocal games

Theorem

There exists an algorithm C such that upon input a Turing machine V describing a UGS \mathcal{G} with each \mathcal{G}_n of “complexity” at most $O(n^2)$ outputs a Turing machine V' describing a UGS \mathcal{G}' of polynomial-time computable games such that:

- If $\text{val}^*(\mathcal{G}_n) = 1$, then $\text{val}^*(\mathcal{G}'_n) = 1$.
- $\mathcal{E}(\mathcal{G}'_n, \frac{1}{2}) \geq \max\{\mathcal{E}(\mathcal{G}_n, \frac{1}{2}), n\}$.
- The time complexity of \mathcal{G}'_n is $\text{poly}(\log n)$.
Theorem

There exists an algorithm C such that upon input a Turing machine V describing a UGS \mathcal{G} with each \mathcal{G}_n of “complexity” at most $O(n^2)$ outputs a Turing machine V' describing a UGS \mathcal{G}' of polynomial-time computable games such that:

- If $\text{val}^*(\mathcal{G}_n) = 1$, then $\text{val}^*(\mathcal{G}'_n) = 1$.
- $\mathcal{E}(\mathcal{G}'_n, \frac{1}{2}) \geq \max\{\mathcal{E}(\mathcal{G}_n, \frac{1}{2}), n\}$.
- The time complexity of \mathcal{G}'_n is $\text{poly}(\log n)$.
Given \mathcal{M}, we define a Turing machine $V^\mathcal{M}$ which computes a UGS $\bar{\mathcal{G}}^\mathcal{M} = (\mathcal{G}_1, \mathcal{G}_2, \ldots)$.

Here is how \mathcal{G}_n looks:

- Run \mathcal{M} on the empty input for n time steps. If \mathcal{M} halts, then victory!
- If not, run C on $V^\mathcal{M}$ to get $V' := (V^\mathcal{M})'$ which computes the UGS $\bar{\mathcal{G}}'$.
- Then play \mathcal{G}'_{n+1}.

This is self-referential, but we are used to that :)

The compression algorithm is indeed applicable (check execution times of the various steps...)

Define $\mathcal{G}_{\mathcal{M}} := \mathcal{G}_1$.

Why does this work?
Given \mathcal{M}, we define a Turing machine $V^\mathcal{M}$ which computes a UGS $\tilde{G}^\mathcal{M} = (\mathcal{G}_1, \mathcal{G}_2, \ldots)$.

Here is how \mathcal{G}_n looks:

- Run \mathcal{M} on the empty input for n time steps. If \mathcal{M} halts, then victory!
- If not, run C on $V^\mathcal{M}$ to get $V' := (V^\mathcal{M})'$ which computes the UGS \tilde{G}'.
- Then play \mathcal{G}_{n+1}.

This is self-referential, but we are used to that :)

The compression algorithm is indeed applicable (check execution times of the various steps...)

Define $\mathcal{G}_\mathcal{M} := \mathcal{G}_1$.

Why does this work?
Given \mathcal{M}, we define a Turing machine $V^\mathcal{M}$ which computes a UGS $\tilde{G}^\mathcal{M} = (\mathcal{G}_1, \mathcal{G}_2, \ldots)$.

Here is how \mathcal{G}_n looks:

- Run \mathcal{M} on the empty input for n time steps. If \mathcal{M} halts, then victory!
- If not, run C on $V^\mathcal{M}$ to get $V' := (V^\mathcal{M})'$ which computes the UGS \tilde{G}'.
- Then play \mathcal{G}'_{n+1}.

This is self-referential, but we are used to that :)

The compression algorithm is indeed applicable (check execution times of the various steps...)

Define $\mathcal{G}_\mathcal{M} := \mathcal{G}_1$.

Why does this work?
MIP* = RE from Compression: Part I

- Given \mathcal{M}, we define a Turing machine V^M which computes a UGS $\tilde{G}^M = (G_1, G_2, \ldots)$.

- Here is how G_n looks:
 - Run \mathcal{M} on the empty input for n time steps. If \mathcal{M} halts, then victory!
 - If not, run C on V^M to get $V' := (V^M)'$ which computes the UGS \tilde{G}'.
 - Then play G'_{n+1}.

- This is self-referential, but we are used to that :)

- The compression algorithm is indeed applicable (check execution times of the various steps...)

- Define $G_M := G_1$.

- Why does this work?
Given \mathcal{M}, we define a Turing machine $V^\mathcal{M}$ which computes a UGS $\tilde{\mathcal{G}}^\mathcal{M} = (\mathcal{G}_1, \mathcal{G}_2, \ldots)$.

Here is how \mathcal{G}_n looks:

- Run \mathcal{M} on the empty input for n time steps. If \mathcal{M} halts, then victory!
- If not, run C on $V^\mathcal{M}$ to get $V' := (V^\mathcal{M})'$ which computes the UGS $\tilde{\mathcal{G}}'$.
- Then play \mathcal{G}_{n+1}'.

This is self-referential, but we are used to that :)

The compression algorithm is indeed applicable (check execution times of the various steps...)

Define $\mathcal{G}_\mathcal{M} := \mathcal{G}_1$.

Why does this work?
MIP\(^*\) = RE from Compression: Part I

- Given \(M \), we define a Turing machine \(V^M \) which computes a UGS \(\tilde{G}^M = (G_1, G_2, \ldots) \).
- Here is how \(G_n \) looks:
 - Run \(M \) on the empty input for \(n \) time steps. If \(M \) halts, then victory!
 - If not, run \(C \) on \(V^M \) to get \(V' := (V^M)' \) which computes the UGS \(\tilde{G}' \).
 - Then play \(G'_{n+1} \).
- This is self-referential, but we are used to that :)
- The compression algorithm is indeed applicable (check execution times of the various steps...)
- Define \(G_M := G_1 \).
- Why does this work?
MIP* = RE from Compression: Part II

- **Case 1:** \mathcal{M} halts, say in T steps.
 - Then $\text{val}^*(\mathcal{G}_n) = 1$ for all $n \geq T$.
 - What about $n < T$?
 - For $n < T$, $\text{val}^*(\mathcal{G}_n) = \text{val}^*(\mathcal{G}'_{n+1})$.
 - So $\text{val}^*(\mathcal{G}_{T-1}) = \text{val}^*(\mathcal{G}'_T) = 1$ since $\text{val}^*(\mathcal{G}_T) = 1$ (preservation of perfect completeness).
 - By induction, we get that $\text{val}^*(\mathcal{G}_M) = \text{val}^*(\mathcal{G}_1) = 1$.
Case 1: \mathcal{M} halts, say in T steps.
Then $\text{val}^*(\mathcal{G}_n) = 1$ for all $n \geq T$.

What about $n < T$?
For $n < T$, $\text{val}^*(\mathcal{G}_n) = \text{val}^*(\mathcal{G}_{n+1})$.
So $\text{val}^*(\mathcal{G}_{T-1}) = \text{val}^*(\mathcal{G}'_T) = 1$ since $\text{val}^*(\mathcal{G}_T) = 1$ (preservation of perfect completeness).
By induction, we get that $\text{val}^*(\mathcal{G}_M) = \text{val}^*(\mathcal{G}_1) = 1$.
Case 1: \mathcal{M} halts, say in T steps.

Then $\text{val}^*(\mathcal{G}_n) = 1$ for all $n \geq T$.

What about $n < T$?

For $n < T$, $\text{val}^*(\mathcal{G}_n) = \text{val}^*(\mathcal{G}'_{n+1})$.

So $\text{val}^*(\mathcal{G}_{T-1}) = \text{val}^*(\mathcal{G}'_T) = 1$ since $\text{val}^*(\mathcal{G}_T) = 1$ (preservation of perfect completeness).

By induction, we get that $\text{val}^*(\mathcal{G}_M) = \text{val}^*(\mathcal{G}_1) = 1$.

Case 1: \mathcal{M} halts, say in T steps.

Then $\text{val}^*(\mathcal{G}_n) = 1$ for all $n \geq T$.

What about $n < T$?

For $n < T$, $\text{val}^*(\mathcal{G}_n) = \text{val}^*(\mathcal{G}'_{n+1})$.

So $\text{val}^*(\mathcal{G}_{T-1}) = \text{val}^*(\mathcal{G}'_T) = 1$ since $\text{val}^*(\mathcal{G}_T) = 1$ (preservation of perfect completeness).

By induction, we get that $\text{val}^*(\mathcal{G}_M) = \text{val}^*(\mathcal{G}_1) = 1$.
Case 1: \(\mathcal{M} \) halts, say in \(T \) steps.
- Then \(\text{val}^*(\mathcal{G}_n) = 1 \) for all \(n \geq T \).
- What about \(n < T \)?
- For \(n < T \), \(\text{val}^*(\mathcal{G}_n) = \text{val}^*(\mathcal{G}'_{n+1}) \).
- So \(\text{val}^*(\mathcal{G}_{T-1}) = \text{val}^*(\mathcal{G}'_T) = 1 \) since \(\text{val}^*(\mathcal{G}_T) = 1 \) (preservation of perfect completeness).
- By induction, we get that \(\text{val}^*(\mathcal{G}_M) = \text{val}^*(\mathcal{G}_1) = 1 \).
MIP* = RE from Compression: Part II

- Case 1: \(\mathcal{M} \) halts, say in \(T \) steps.
- Then \(\text{val}^*(\mathcal{G}_n) = 1 \) for all \(n \geq T \).
- What about \(n < T \)?
 - For \(n < T \), \(\text{val}^*(\mathcal{G}_n) = \text{val}^*(\mathcal{G}_{n+1}) \).
 - So \(\text{val}^*(\mathcal{G}_{T-1}) = \text{val}^*(\mathcal{G}'_T) = 1 \) since \(\text{val}^*(\mathcal{G}_T) = 1 \) (preservation of perfect completeness).
 - By induction, we get that \(\text{val}^*(\mathcal{G}_M) = \text{val}^*(\mathcal{G}_1) = 1 \).
Now suppose that M does not halt.

Then \(\text{val}^*(\mathcal{G}_n) = \text{val}^*(\mathcal{G}'_{n+1}) \) and \(\mathcal{E}(\mathcal{G}_n, r) = \mathcal{E}(\mathcal{G}'_{n+1}, r) \) for all \(n \in \mathbb{N} \) and \(r \in [0, 1] \).

\[
\mathcal{E}(\mathcal{G}'_{n+1}, \frac{1}{2}) \geq \mathcal{E}(\mathcal{G}_{n+1}, \frac{1}{2}) = \mathcal{E}(\mathcal{G}'_{n+2}, \frac{1}{2}) \geq \mathcal{E}(\mathcal{G}_{n+2}, \frac{1}{2}) \ldots
\]

\[
\therefore \mathcal{E}(\mathcal{G}_n, \frac{1}{2}) \geq \mathcal{E}(\mathcal{G}'_m, \frac{1}{2}) \text{ for all } m > n.
\]

OTOH \(\mathcal{E}(\mathcal{G}'_m, \frac{1}{2}) \geq m \) for all \(m \in \mathbb{N} \).

Therefore \(\mathcal{E}(\mathcal{G}_n, \frac{1}{2}) = \infty \) for all \(n \in \mathbb{N} \) and thus

\[
\text{val}^*(\mathcal{G}_M) = \text{val}^*(\mathcal{G}_1) < \frac{1}{2}.
\]
Now suppose that \mathcal{M} does not halt.

Then $\text{val}^*(\mathcal{G}_n) = \text{val}^*(\mathcal{G}_{n+1})$ and $\mathcal{E}(\mathcal{G}_n, r) = \mathcal{E}(\mathcal{G}_{n+1}, r)$ for all $n \in \mathbb{N}$ and $r \in [0, 1]$.

- $\mathcal{E}(\mathcal{G}_{n+1}, \frac{1}{2}) \geq \mathcal{E}(\mathcal{G}_{n+1}, \frac{1}{2}) = \mathcal{E}(\mathcal{G}_{n+2}, \frac{1}{2}) \geq \mathcal{E}(\mathcal{G}_{n+2}, \frac{1}{2}) \cdots$

- $\therefore \mathcal{E}(\mathcal{G}_n, \frac{1}{2}) \geq \mathcal{E}(\mathcal{G}_m, \frac{1}{2})$ for all $m > n$.

OTOH $\mathcal{E}(\mathcal{G}_m, \frac{1}{2}) \geq m$ for all $m \in \mathbb{N}$.

Therefore $\mathcal{E}(\mathcal{G}_n, \frac{1}{2}) = \infty$ for all $n \in \mathbb{N}$ and thus

$$\text{val}^*(\mathcal{G}_M) = \text{val}^*(\mathcal{G}_1) < \frac{1}{2}.$$
Now suppose that \mathcal{M} does not halt.

Then $\text{val}^*(\mathcal{G}_n) = \text{val}^*(\mathcal{G}'_{n+1})$ and $\mathcal{E}(\mathcal{G}_n, r) = \mathcal{E}(\mathcal{G}'_{n+1}, r)$ for all $n \in \mathbb{N}$ and $r \in [0, 1]$.

$\mathcal{E}(\mathcal{G}'_{n+1}, \frac{1}{2}) \geq \mathcal{E}(\mathcal{G}_{n+1}, \frac{1}{2}) = \mathcal{E}(\mathcal{G}'_{n+2}, \frac{1}{2}) \geq \mathcal{E}(\mathcal{G}_{n+2}, \frac{1}{2}) \cdots$

$\therefore \mathcal{E}(\mathcal{G}_n, \frac{1}{2}) \geq \mathcal{E}(\mathcal{G}'_m, \frac{1}{2})$ for all $m > n$.

OTOH $\mathcal{E}(\mathcal{G}'_m, \frac{1}{2}) \geq m$ for all $m \in \mathbb{N}$.

Therefore $\mathcal{E}(\mathcal{G}_n, \frac{1}{2}) = \infty$ for all $n \in \mathbb{N}$ and thus

$$\text{val}^*(\mathcal{G}_M) = \text{val}^*(\mathcal{G}_1) < \frac{1}{2}. $$
MIP* = RE from Compression: Part III

- Now suppose that M does not halt.
- Then $\text{val}^*(G_n) = \text{val}^*(G_{n+1}')$ and $\mathcal{E}(G_n, r) = \mathcal{E}(G_{n+1}', r)$ for all $n \in \mathbb{N}$ and $r \in [0, 1]$.
- $\mathcal{E}(G_{n+1}', 1/2) \geq \mathcal{E}(G_{n+1}, 1/2) = \mathcal{E}(G_{n+2}', 1/2) \geq \mathcal{E}(G_{n+2}, 1/2) \cdots$
- $\therefore \mathcal{E}(G_n, 1/2) \geq \mathcal{E}(G_m', 1/2)$ for all $m > n$.
- OTOH $\mathcal{E}(G_m', 1/2) \geq m$ for all $m \in \mathbb{N}$.
- Therefore $\mathcal{E}(G_n, 1/2) = \infty$ for all $n \in \mathbb{N}$ and thus

$$\text{val}^*(G_M) = \text{val}^*(G_1) < \frac{1}{2}.$$

Isaac Goldbring (UCI)
Now suppose that M does not halt.

Then $val^*(G_n) = val^*(G_{n+1})$ and $E(G_n, r) = E(G_{n+1}, r)$ for all $n \in \mathbb{N}$ and $r \in [0, 1]$.

$E(G_{n+1}, \frac{1}{2}) \geq E(G_{n+1}, \frac{1}{2}) = E(G_{n+2}, \frac{1}{2}) \geq E(G_{n+2}, \frac{1}{2}) \cdots$

$\therefore E(G_n, \frac{1}{2}) \geq E(G_m, \frac{1}{2})$ for all $m > n$.

OTOH $E(G_m, \frac{1}{2}) \geq m$ for all $m \in \mathbb{N}$.

Therefore $E(G_n, \frac{1}{2}) = \infty$ for all $n \in \mathbb{N}$ and thus

$$val^*(G_M) = val^*(G_1) < \frac{1}{2}.$$
Now suppose that M does not halt.

Then $val^*(\mathcal{G}_n) = val^*(\mathcal{G}'_{n+1})$ and $\mathcal{E}(\mathcal{G}_n, r) = \mathcal{E}(\mathcal{G}'_{n+1}, r)$ for all $n \in \mathbb{N}$ and $r \in [0, 1]$.

$\mathcal{E}(\mathcal{G}'_{n+1}, \frac{1}{2}) \geq \mathcal{E}(\mathcal{G}_{n+1}, \frac{1}{2}) = \mathcal{E}(\mathcal{G}'_{n+2}, \frac{1}{2}) \geq \mathcal{E}(\mathcal{G}_{n+2}, \frac{1}{2}) \cdots$

$\therefore \mathcal{E}(\mathcal{G}_n, \frac{1}{2}) \geq \mathcal{E}(\mathcal{G}_m, \frac{1}{2})$ for all $m > n$.

OTOH $\mathcal{E}(\mathcal{G}'_m, \frac{1}{2}) \geq m$ for all $m \in \mathbb{N}$.

Therefore $\mathcal{E}(\mathcal{G}_n, \frac{1}{2}) = \infty$ for all $n \in \mathbb{N}$ and thus

$$val^*(\mathcal{G}_M) = val^*(\mathcal{G}_1) < \frac{1}{2}. $$
Hand-waving about the proof of the Compression Theorem

- **Question reduction**
 - Get the players to sample questions for themselves.
 - Uses *rigidity of nonlocal games* and the *Heisenberg uncertainty principle*.
 - Brings the sampler complexity down from $\text{poly}(n)$ to $\text{poly}(\log n)$.

- **Answer reduction**
 - The players must now also compute the decision predicate $D_n(x, y, a, b)$ for themselves.
 - They must include a *succinct proof* that they computed D_n correctly.
 - Uses *probabilistically checkable proofs* (PCP).
 - Brings the decider complexity down to $\text{poly}(\log n)$.
Hand-waving about the proof of the Compression Theorem

- **Question reduction**
 - Get the players to sample questions for themselves.
 - Uses *rigidity of nonlocal games* and the *Heisenberg uncertainty principle*.
 - Brings the sampler complexity down from $\text{poly}(n)$ to $\text{poly}(\log n)$.

- **Answer reduction**
 - The players must now also compute the decision predicate $D_n(x, y, a, b)$ for themselves.
 - They must include a *succinct proof* that they computed D_n correctly.
 - Uses *probabilistically checkable proofs* (PCP).
 - Brings the decider complexity down to $\text{poly}(\log n)$.