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Partition regularity of polynomials/equations

In this talk, we will repeatedly talk about the following property:

Definition

Let P(x1,...,2p) € Z|x1,...,2,]. We say that the equation
P(z1,...,2,) =0 is (weakly) partition reqular (PR) on N if it has a
monochromatic solution in every finite coloring of N, i.e.
VEkeN,VYN=Aj u---U A Ji <k Jxq,...,2, € A; s.t.
P(z1,...,2,) =0.

Example
Trivially, for every n € N, the polynomial x — n is PR.
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Rado’s theorem

Theorem (Schur)
The polynomial v +y — z 1s PR. J
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Theorem (Schur)
The polynomial v +y — z 1s PR. J

Theorem (Rado)

A linear Diophantine equation with no constant term
1Ty + -+ cepzy =0

18 PR on N if and only if the following condition is satisfied:

o “There exists a nonempty set J < {1,...,n} such that 3 ;c;c; =0.”
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Nonlinear results/1

Theorem (Multiplicative Rado)

n

A nonlinear Diophantine equation || ;' =1 is PR on N if and only if
i—1

the following condition is satisfied:
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Theorem (Lefmann)

Let k € N. A Diophantine equation of the form Clxi/k + - Cnxrl/k =0

18 PR on N if and only if the following condition is satisfied:

o “There erists a nonempty set J < {1,...,n} such that 3} ;c;c; =0.”
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Nonlinear results,/2

Theorem (Bergelson, Furstenberg, McCutcheon)

Let P(z) € Z|z] be such that P(0) = 0. Then the equation v —y = P(z)
is PR.
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Nonlinear results,/2

Theorem (Bergelson, Furstenberg, McCutcheon)

Let P(z) € Z|z] be such that P(0) = 0. Then the equation v —y = P(z)
is PR.

Idea: use ergodic methods (recurrence sets).

Theorem (Csikvari, Gyarmati and Sarkézy)

2

The equation x +y = 2 is not partition regular.

They asked the following question: is z + y = tz PR?

In 2010, by using algebraic properties of ultrafilters in SN, Bergelson
solved the problem in the positive.
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Noulinear results/3

Independently, Hindman proved a more general version of Bergelson’s
result:
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All Diophantine equations of the form > x; = [[i~, y; are PR. J

Idea: use the algebra of SN, in particular the existence of a ultrafilter U
such that every set A € U is additively and multiplicatively IP.

Theorem (Luperi Baglini)

Let n,m > 0. For every choice of sets F; € {1,...,m}, the equation
D @ xi(HjeFi yj) = 0 is partition regular whenever ) . ;c; =0 for
some nonempty J < {1,...,m}. (It is agreed that [ [,y = 1.)
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Noulinear results/3

Independently, Hindman proved a more general version of Bergelson’s
result:

Theorem (Hindman)
All Diophantine equations of the form > x; = [[i~, y; are PR. J

Idea: use the algebra of SN, in particular the existence of a ultrafilter U
such that every set A € U is additively and multiplicatively IP.

Theorem (Luperi Baglini)

Let n,m > 0. For every choice of sets F; € {1,...,m}, the equation
D @ xi(HjeFi yj) = 0 is partition regular whenever ) . ;c; =0 for
some nonempty J < {1,...,m}. (It is agreed that [ [,y = 1.)

Idea: use the existence of a multiplicatively idempotent ultrafilter U
with good linear properties; study the ultrafilter using nonstandard
analysis.
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Nonlinear results/4

Theorem (Di Nasso, Riggio)

Let k,n,m € N be such that k ¢ {n,m}. Then the equation
™ 4+ y" = 2* is not PR.
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Nonlinear results/4

Theorem (Di Nasso, Riggio)

Let k,n,m € N be such that k ¢ {n,m}. Then the equation
™ 4+ y" = 2* is not PR.

Idea: use nonstandard analysis, write numbers in base p for a
sufficiently large prime number p.

Theorem (Moreira)
Let 3" 1 ¢; = 0. Then Y- c;z? =y is PR.

Idea: use ergodic methods involving the set of affinities {z — ax + b};
alternatively, use an embeddability property of piecewise syndetic sets
w.r.t. arithmetic progressions.
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Partition regularity as a ultrafilters problem

BN turns out to be a natural setting where to study PR problems
because of the following characterization (which is given here for
equations, but holds in a way more general fashion):
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Partition regularity as a ultrafilters problem

BN turns out to be a natural setting where to study PR problems
because of the following characterization (which is given here for
equations, but holds in a way more general fashion):

Proposition

A Diophantine equation P (z1,...,x,) = 0 is PR if and only if there
exists U € BN such that for every A € U there exists ai,...,a, € A with
P(ai,...,a,) =0.

In this case, we say that U witnesses the PR of the equation (notation:
UkEPla,...,ay) =0).
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Banach density and IP-sets

Definition

Let A € N. The upper Banach density of A is
BD(A) = limy,—, 1 o SUP,en w

We let A = {U/ € BN | BD(A) > 0 VA e U}.
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Banach density and IP-sets

Definition

Let A € N. The upper Banach density of A is

BD(A) = hmn—>+oo SUPmeN %

We let A = {U/ € BN | BD(A) > 0 VA e U}.

Definition
Let G = (g;)ien be an increasing sequence of natural numbers. The

IP-set generated by G is the set of finite sums

k

FS(G) = FS(gi)ien = {2 i

j=1

i1<i2<---<ik}.

A set A = N is called IP-large if it contains an IP-set. Multiplicative
IP-sets and multiplicative IP-large sets are defined similarly.
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Special ultrafilters

Various classes of ultrafilters are important in this field, the "best"
being combinatorially rich ultrafilters:

Definition

U is combinatorially rich if U e M n A n K(®) and U ©OU = U, where
M={VepN|VAeV A is central in (N, +)}.
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Special ultrafilters

Various classes of ultrafilters are important in this field, the "best"
being combinatorially rich ultrafilters:
Definition

U is combinatorially rich if U e M n A n K(®) and U ©OU = U, where
M={VepN|VAeV A is central in (N, +)}.

Notice that if ¢/ is combinatorially rich and A € U then:
e A is central in (N, +4), in particular it is IP;

e A is also multiplicatively IP;

e A contains solutions to all homogeneous PR equations (we will
show this later), in particular to all linear equations;

BD(A) > 0.

Lorenzo Luperi Baglini University of Vienna 23 March 2019 10 / 32



A surprisingly simple key Lemma

Lemma

Let U be a common witness of the equations Py (x1,...,2,) =0 and
P2(y17"'7ym) = [,
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A surprisingly simple key Lemma

Lemma

Let U be a common witness of the equations Py (x1,...,2,) =0 and
Py (y1,...,ym) =0. Then U is also a PR-witness of the system:

Py (x1,...,2,) = 0;
PQ(yla"'7ym) :0;
1 = Y1.

Proof.

Let A € U be fixed. Let

A = {a€eAlJag,...,ap € Ast. Pi(a,ag,...,a,) =0},

Ay = {b€A|E|b2,...,bm€AS.t. Pg(b,bg,...,bm)ZO}.

Notice that Aj, Ag € U, as otherwise = (U = P, = 0). Take A1 n As.
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Some examples

Example
Take U = u—v = t2.
Then U witnesses also of the PR of the system

u —y = a%
U2_2=t2;
y=1.

It is readily seen that this is equivalent to the PR of the configuration

{z,y, 2,y + % 2z +y?} (which had already been proven by ergodic
methods).
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Homogeneous equations

Theorem
Let P (x1,...,2,) be a homogeneous PR polynomial.
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Homogeneous equations
Theorem

LetP(xl,...

,Zn) be a homogeneous PR polynomial. Then the set of its
PR-witnesses

QUP:{L{E/BI\I|L{):P(xla"':w’n):O}

18 a closed multiplicative two sided ideal.
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Homogeneous equations

Theorem

Let P (x1,...,xy) be a homogeneous PR polynomial. Then the set of its
PR-witnesses

mp:{UEIBN|u):P({IJ1,...,$n):O}

18 a closed multiplicative two sided ideal.

Proof.

(Nonstandard) Let U € Wp. Let ay,...,an € u(ld) be such that
*P(aq,...,an) =0.
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Homogeneous equations

Theorem

Let P (x1,...,xy) be a homogeneous PR polynomial. Then the set of its
PR-witnesses

mPZ{UEIBN|u):P({IJ1,...,IEn):O}

18 a closed multiplicative two sided ideal.

Proof.

(Nonstandard) Let U € Wp. Let ay,...,an € u(ld) be such that
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and P(aq-*B,...,an-*B) = 0.
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Homogeneous equations

Theorem

Let P (x1,...,xy) be a homogeneous PR polynomial. Then the set of its
PR-witnesses

mP:{UEIBN|u):P({IJ1,...,IL'n):O}

18 a closed multiplicative two sided ideal.

Proof.

(Nonstandard) Let U € Wp. Let ay,...,an € u(ld) be such that
*P(ag,...,an) =0. Let B€ p(V). Then ag-*B,...,an-*B € uUOV),
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Homogeneous equations

Theorem

Let P (x1,...,xy) be a homogeneous PR polynomial. Then the set of its
PR-witnesses

QI]P:{UEIBN|U):P({IJ1,...,IE”):O}

18 a closed multiplicative two sided ideal.

Proof.

(Nonstandard) Let U € Wp. Let ay,...,an € u(ld) be such that
*P(ag,...,an) =0. Let B€ p(V). Then ag-*B,...,an-*B € uUOV),
and P(aq-*B,...,a,-*B) =0. Hence U ®V € Wp. Ol

v

Corollary
Let P(x1,...,xz,) be a homogeneous PR polynomial. Then

Uk P(x1,...,2,) =0 for every U € K(BN, ®).
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The first generalization result

Theorem

Let ¢ (1 — x2) = P(y1,-..,yx) be a Diophantine equation where the
polynomial P has no constant term and ¢ # 0. If the set A € N is
IP-large and has positive Banach density then there exist &1, € A and
mutually distinct n,...,nx € A such that c (&1 — &) = P(n1, ..., Mk).
Moreover, if k = 1 then one can take & # &o.
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The first generalization result

Theorem

Let ¢ (1 — x2) = P(y1,-..,yx) be a Diophantine equation where the
polynomial P has no constant term and ¢ # 0. If the set A € N is
IP-large and has positive Banach density then there exist &1, € A and
mutually distinct n,...,nx € A such that c (&1 — &) = P(n1, ..., Mk).
Moreover, if k = 1 then one can take & # &o.

Definition

A polynomial with integer coefficients is called a Rado polynomial if it
can be written in the form

c1x1 + o+ cnn + Plyr, .- o, yk)

where n = 2, P has no constant term, and there exists a nonempty

subset J < {1,...,n} such that },;c;c; = 0.
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Generalized Rado

Theorem

Let

R(xla--'axrwylv"'?yk) :Clxl+---+Cnxn+P(y1’"'7yk)

be a Rado polynomial. Then every ultrafilter U € K(®) nI(®) n A is a
PR-witness of R(x1,...,Tn,y1,---,Yk) = 0.
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Generalized Rado

Theorem

Let

R(xlu"wxn?yl)"'?yk) :Clxl+-~+Cn37n+P(y1,---,yk)

be a Rado polynomial. Then every ultrafilter U € K(®) nI(®) n A is a
PR-witness of R(x1,...,Tn,y1,---,Yk) = 0.

Proof.

Consider the following system:

c1z + coxy + ... + cpxy = 0;

ci(w—x1) = P(y1,- -, Yk);
Z = W.
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Main positive result/1
Theorem

Let § be the family of polynomials whose PR on N is witnessed by at
least an ultrafilter U € I(®) N K(®) n (@) n A. Then § includes:
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e Fwery polynomial of the form
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Let § be the family of polynomials whose PR on N is witnessed by at

least an ultrafilter U € I(®) N K(®) n (@) n A. Then § includes:
o Fvery Rado polynomial;

e Fwery polynomial of the form
n
2 Ci Ty (H yj)
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o Fuvery polynomial
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=1
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Main positive result/2

Theorem
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Main positive result/2

Theorem

o Fuvery polynomial

k
P(%?Jl;--w?ﬂc) = x_Hy?i;
i=1

whenever the exponents a; € Z satisfy > ;1 a; = 1.

Moreover, the family § satisfies the following closure properties:

(i) If P(z,y1,--.,yk) €S and z — g(x1,...,2,) €T, then
P(g(xlw"al‘n)?ylv"'?yk) ES':.

Lorenzo Luperi Baglini University of Vienna 23 March 2019 17 / 32



Main positive result/2

Theorem

o Fuvery polynomial

k
P(%?Jl;--w?ﬂc) = m_Hygia
i=1

whenever the exponents a; € Z satisfy > ;1 a; = 1.

Moreover, the family § satisfies the following closure properties:
(1) [fP(Zaylw-'ayk) ES and z —g(xl,...,mn) ES; then
P(g(.’Ifl,- oo al‘n)?ylv ° o0 7yk') € 3':.
(i1) if P(x1,...,2n) € F is homogeneous, then P (i, el i) €F.
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Example
Let n,m € N and assume that, for every ¢ < n, j < m, the equations

T3 )
Ti1 = D) CinTin, Yi1 = Y, diklik
h=1 k=1

are PR.
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Some examples

Example

Let n,m € N and assume that, for every ¢ < n, j < m, the equations

Ti Sj
Tl = Z CihTihy Yj,1 = Z dj kYj k
h=1 —

are PR.
Let ai,...,an,b1,...,by, be such that Z?:l a; = 2.5, bj and consider

the homogeneous PR equation [ [[_, ¢ = [[/L, z?j.
All these equations are PR and homogeneous and therefore, by the
closure property (i), also

n

T3 @ m Sj bj
11 (2 Ci,hTi h) = 11 (2 d',k%‘,k)
j=1 \k—1

i=1

is PR.
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Some examples

Example

For every n € N, the polynomial v — v — 2" is in §; moreover, for every

k = 2 the function x = ]_[?:1 x; is in §. Therefore, for every h,k > 2 we

can apply the closure property (i) of § to the system

u—v=2z"

h

L= Hj:l Sk
k

y =115

T =u,y=".
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For every n € N, the polynomial v — v — 2" is in §; moreover, for every

k = 2 the function x = ]_[?:1 x; is in §. Therefore, for every h,k > 2 we

can apply the closure property (i) of § to the system

u—v=2z"
h

T = Hj:l Tj;
k .

y =115

T =u,y=".

Hence ]_[?:1 iy = ]_[?:1 y; = 2" is in §. In particular, 2129 — y1y2 = 2>
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Some examples

Example

For every n € N, the polynomial v — v — 2" is in §; moreover, for every
k = 2 the function x = ]_[?:1 x; is in §. Therefore, for every h,k > 2 we
can apply the closure property (i) of § to the system

u—v=2z"
h

x—l_[jfl%
k

y =115

Hence ]_[?:1 iy = ]_[?:1 y; = 2" is in §. In particular, 2129 — y1y2 = 2>
is PR.

Example

P(x1,x9,x3) = x129 — 223 is PR but it does not belong to §.
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u-equivalence and partition regularity

Definition

Two hypernatural numbers &, &' € *N are u-equivalent if they cannot be
distinguished by any hyper-extension, i.e. if for every A € N one has

either £, € *A or £,&' ¢ *A.
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u-equivalence and partition regularity

Definition

Two hypernatural numbers &, &' € *N are u-equivalent if they cannot be
distinguished by any hyper-extension, i.e. if for every A € N one has

either £, € *A or £,&' ¢ *A.

When the hyperextension has the |p (N) |*-enlarging property,
ultrafilters and hypernaturals can be identified:

o a—->U,={Aecp(N)|ae*A};
o U — uUd) ={ae*N|U =U,}.

Proposition

A Diophantine equation P(x1,...,x,) =0 is PR if and only if there
exist u-equivalent hypernatural numbers &1, . .., &, with
*P(&1,.--,&) =0.
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Multi-index notations

e An n-dimensional multi-index is an n-tuple o = (aq, ..., a,) € NiJ;
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Multi-index notations

e An n-dimensional multi-index is an n-tuple o = (aq, ..., a,) € NiJ;
@ a < f means that a; < §; foralli =1,...,n;

@ o < S means that < S and o # 3

o If x = (x1,...,2,) is vector and a = (a1, ..., ) is a multi-index,
the product [, 5" is denoted by x“
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is called homogeneous;
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o If x = (x1,...,2,) is vector and a = (a1, ..., ) is a multi-index,
the product [ ;" 2 is denoted by x;

o The length of a multi-index o = (a1,..., o) is |a] = D" | a;;

@ A set I of n-dimensional multi-indexes having all the same length
is called homogeneous;

e Polynomials P € Z|x1,...,z,| are written in the form
P(x) = >, cax® where o are multi-indexes;

Lorenzo Luperi Baglini University of Vienna 23 March 2019 21 / 32



Multi-index notations

e An n-dimensional multi-index is an n-tuple o = (aq, ..., a,) € NiJ;
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Multi-index notations

e An n-dimensional multi-index is an n-tuple o = (aq, ..., a,) € NiJ;

o a < P means that o < B; foralli=1,...,n;

@ a <  means that o < § and o # 3

o If x = (x1,...,2,) is vector and a = (a1, ..., ) is a multi-index,
the product [ ;" 2 is denoted by x;

o The length of a multi-index o = (a1,..., o) is |a] = D" | a;;

@ A set I of n-dimensional multi-indexes having all the same length
is called homogeneous;

e Polynomials P € Z|x1,...,z,| are written in the form
P(x) = >, cax® where o are multi-indexes;

e The support of P is the finite set supp(P) = {«a | co # 0};

e A polynomial P(x) = ., cax® is homogeneous if supp(P) is a
homogeneous set of indexes.
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Minimal and maximal indeces

Definition

Let P(x) =Y., caX® € Zlx1, ..., xy]. We say that a multi-index
a € supp(P) is minimal if there are no B € supp(P) with f < «. The
notion of mazimal multi-index is defined similarly.
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Minimal and maximal indeces

Definition

Let P(x) =Y., caX® € Zlx1, ..., xy]. We say that a multi-index

a € supp(P) is minimal if there are no B € supp(P) with f < «. The
notion of maximal multi-index is defined similarly. A nonempty set
J € supp(P) is called a Rado set of indezes if for every o, 5 € J there
ezists a nonempty A < {1,...,n} with Y ,cp 0 = > cr Bi

Lorenzo Luperi Baglini

University of Vienna

23 March 2019 22 / 32



Minimal and maximal indeces

Definition

Let P(x) =Y., caX® € Zlx1, ..., xy]. We say that a multi-index

a € supp(P) is minimal if there are no B € supp(P) with f < «. The
notion of maximal multi-index is defined similarly. A nonempty set

J € supp(P) is called a Rado set of indezes if for every o, 5 € J there
ezists a nonempty A < {1,...,n} with Y ,cp 0 = > cr Bi

For linear polynomials, every nonempty
J € Supp(P) = {a(1),...,a(n)} is a Rado set of both minimal and
maximal indexes.
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Minimal and maximal indeces

Definition

Let P(x) =Y., caX® € Zlx1, ..., xy]. We say that a multi-index

a € supp(P) is minimal if there are no B € supp(P) with f < «. The
notion of maximal multi-index is defined similarly. A nonempty set

J € supp(P) is called a Rado set of indezes if for every o, 5 € J there
ezists a nonempty A < {1,...,n} with Y ,cp 0 = > cr Bi

For linear polynomials, every nonempty
J € Supp(P) = {a(1),...,a(n)} is a Rado set of both minimal and
maximal indexes.

Example

In c(1,1,0)Z3 %223 + €(1,2,7,0)L17325 + C(2,9.2,1) L1 T323T4, the set
J=1{(2,1,1,0),(1,2,7,0)} is a Rado set of minimal (but not maximal)
indeces: just let A = {1,2} < {1,2,3,4}.
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General necessary condition

Theorem

Let P(x) = >, cax® € Z]x, ..

., Tp| be a polynomial with no constant
term.
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has no solutions z # 0.
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General necessary condition

Theorem
Let P(x) = Y, caX® € Z|x1, ..., zp] be a polynomial with no constant
term. Suppose there exists a prime p such that:

9>, caz'® =0 mod p has no solutions z % 0 ;

@ For every Rado set J of minimal indexes, Y . ; ca?zl® =0 mod p
has no solutions z # 0.

Then P(x) is not PR, except possibly for constant solutions
Bl = o000 = e

Proof.
Pick infinite &; » ... + &, such that P(§) = >, ca§“ =0
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General necessary condition

Theorem
Let P(x) = Y, caX® € Z|x1, ..., zp] be a polynomial with no constant
term. Suppose there exists a prime p such that:

9>, caz'® =0 mod p has no solutions z % 0 ;

@ For every Rado set J of minimal indexes, Y . ; ca?zl® =0 mod p
has no solutions z # 0.

Then P(x) is not PR, except possibly for constant solutions
Bl = o000 = e

Proof.
Pick infinite &1 » ... + &, such that P(§) = >, ca€® = 0. Write & in

u

base p.
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General necessary condition

Theorem

Let P(x) = Y, caX® € Z|x1, ..., zp] be a polynomial with no constant
term. Suppose there exists a prime p such that:
9>, caz'® =0 mod p has no solutions z % 0 ;
@ For every Rado set J of minimal indexes, Y . ; ca?zl® =0 mod p
has no solutions z # 0.

Then P(x) is not PR, except possibly for constant solutions
Bl = o000 = e

Proof.

Pick infinite &1 » ... + &, such that P(§) = >, ca€® = 0. Write & in
base p. Find the absurd playing with the exponents and the coefficients
in this expansion. [

v

Lorenzo Luperi Baglini University of Vienna 23 March 2019 23 / 32
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Example

Let P(x1,22,73) = 2329 — 223. Pick any prime number p with p = 3 or
p =5 mod 8§, so that 2 is not a quadratic residue modulo p.
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Example

Let P(x1,22,73) = 2329 — 223. Pick any prime number p with p = 3 or
p =5 mod §, so that 2 is not a quadratic residue modulo p. Then
condition (1) is satisfied because z3 — 2z = 0 iff z = 0, and also
condition (2) is easily verified.
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Example

Let P(x1,22,73) = 2329 — 223. Pick any prime number p with p = 3 or
p =5 mod §, so that 2 is not a quadratic residue modulo p. Then
condition (1) is satisfied because 23 — 22 = 0 iff 2 =0, and also
condition (2) is easily verified. Since it has no constant solutions

x1 = x9 = x3, we can conclude that P(zq,z9,x3) is not PR.

Notice that, by Multiplicative Rado’s Theorem, the seemingly similar
equation z3zy = x3 is PR.
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Examples

Example

Let P(x1,22,73) = 2329 — 223. Pick any prime number p with p = 3 or
p =5 mod §, so that 2 is not a quadratic residue modulo p. Then
condition (1) is satisfied because 23 — 22 = 0 iff 2 =0, and also
condition (2) is easily verified. Since it has no constant solutions

x1 = x9 = x3, we can conclude that P(zq,z9,x3) is not PR.

Notice that, by Multiplicative Rado’s Theorem, the seemingly similar
equation z3zy = x3 is PR.

Corollary

Let P(x) =Y., caX® € Z|x1, ...,y be an homogeneous polynomial. If
for every nonempty J < supp(P) one has Y c;ca # 0, then P(x) is
not PR.
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Necessary condition for sums of polynomials in one
variable/1

Theorem

For everyi=1,...,n let Pj(x;) = 2?;1 cisx; be a polynomial of degree
d; in the variable x; with no constant term.
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Necessary condition for sums of polynomials in one
variable/1

Theorem

For everyi=1,...,n let Pj(x;) = Zgizl cisx; be a polynomial of degree
d; in the variable x; with no constant term. If the Diophantine equation

n

D Pim:) =0

=1

18 PR then the following “Rado’s condition” is satisfied:
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Necessary condition for sums of polynomials in one
variable/1

Theorem

For everyi=1,...,n let Pj(x;) = 2?;1 cisx; be a polynomial of degree
d; in the variable x; with no constant term. If the Diophantine equation

n

D Pim:) =0
i=1
18 PR then the following “Rado’s condition” is satisfied:

o “There exists a nonempty set J < {1,...,n} such that d; = d; for
every i,j € J, and ZjeJ cja; = 0.”
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Necessary condition for sums of polynomials in one
variable/2

Proof.
For every i, let A(i) = {s | ¢;,s # 0} be the support of P;(z;), and for
every s, let I'(s) = {i | ¢; s # 0}. If we denote by

P(x) = Y Pix;) = Z D CistS,
=1 1=1 seA(7)

by the nonstandard characterization of non-trivial PR, we can pick
infinite &; ~ ... ~ &, such that P(§) = 0. Now fix any finite number
p = 2, and write the numbers &; in base p:

Ti
T;—t
= 2 aitp*
t=0

where 0 < a;; <p—1and a;o # 0.
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Necessary condition for sums of polynomials in one
variable/3

Proof.

Let sy7 = max{s7; | i € I'(s)}. It is not difficult to show that d; = s,
for every i € I'(sx), by the maximality of $,7x.
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Let sy7 = max{s7; | i € I'(s)}. It is not difficult to show that d; = s,
for every i € I'(sx), by the maximality of $,7x.

Now let I, = {i € ['(s«) | s = 7«}, and decompose P(§) = O + ¥ + P,
where:

° 0= Ziel* Ci,sx gzs* ;
O U = ier(su)\Ta Cirsx &i * 5
° &= Zs;és* Zief‘(s) G fzs
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Necessary condition for sums of polynomials in one
variable/3

Proof.

Let sy7 = max{s7; | i € I'(s)}. It is not difficult to show that d; = s,
for every i € I'(sx), by the maximality of $,7x.

Now let I, = {i € ['(s«) | s = 7«}, and decompose P(§) = O + ¥ + P,
where:

° 0= Ziel* Ci,sx gzs* ;
O U = ier(su)\Ta Cirsx &i * 5
° &= Zs;és* Zief‘(s) G Ezs

Lemma

Q 0= (Ziel* ci’$*> ¢+ O for suitable { = p**™ and |0'| < p**T*.

Q || < p**7x,
Q [D] < p**7x.
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variable/3

Proof.

Let sy7 = max{s7; | i € I'(s)}. It is not difficult to show that d; = s,
for every i € I'(sx), by the maximality of $,7x.

Now let I, = {i € ['(s«) | s = 7«}, and decompose P(§) = O + ¥ + P,
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Necessary condition for sums of polynomials in one
variable/3

Proof.

Since P(§) = © + ¥ + & = 0, the above inequalities imply that the sum
of coefficients Ziel* @5, = 0L
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Since P(§) = © + ¥ + & = 0, the above inequalities imply that the sum
of coefficients Ziel* Cisy = 0. We claim that J = I, is the desired set of
indexes. In fact, I, is trivially nonempty; moreover, d; = d; = s, for all

i,j € J; and ZjeJ Cjd; = ZjeJ Cjsx = 0.
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Necessary condition for sums of polynomials in one
variable/3

Proof.

Since P(§) = © + ¥ + & = 0, the above inequalities imply that the sum
of coefficients Ziel* Cisy = 0. We claim that J = I, is the desired set of
indexes. In fact, I, is trivially nonempty; moreover, d; = d; = s, for all
1,7 € J; and Zjej Cjd; = Zjej Cj e = 0.

The most complicated part is the proof of the Lemma.
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Necessary condition for sums of polynomials in one
variable/3

Proof.

Since P(§) = © + ¥ + & = 0, the above inequalities imply that the sum
of coefficients Ziel* Cisy = 0. We claim that J = I, is the desired set of
indexes. In fact, I, is trivially nonempty; moreover, d; = d; = s, for all
i,j € J; and ZjeJ Cjd; = ZjeJ Cjsx = 0.

The most complicated part is the proof of the Lemma. The idea is to
let ¢ : N — Ny be the function s.t. p?M) < m < pPM*1: and for every
t € No, let ¢4(m) : N — {0,1,...,p — 1} be the function where ¢;(m) is
the (¢t + 1)-th digit from the left when m is written in base p.
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Since P(§) = © + ¥ + & = 0, the above inequalities imply that the sum
of coefficients Ziel* Cisy = 0. We claim that J = I, is the desired set of
indexes. In fact, I, is trivially nonempty; moreover, d; = d; = s, for all
i,j € J; and ZjeJ Cjd; = ZjeJ Cjsx = 0.

The most complicated part is the proof of the Lemma. The idea is to
let ¢ : N — Ny be the function s.t. p?M) < m < pPM*1: and for every
t € No, let ¢4(m) : N — {0,1,...,p — 1} be the function where ¢;(m) is
the (¢t + 1)-th digit from the left when m is written in base p. Then the
u-equivalences & ~ ... &, imply, by overspill, that for every a e N
one has & = (% + ¥; o where p®7 < (¢ < &' < p*it® and ¥, 4 < p*Ti.
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Necessary condition for sums of polynomials in one
variable/3

Proof.

Since P(§) = © + ¥ + & = 0, the above inequalities imply that the sum
of coefficients Ziel* Cisy = 0. We claim that J = I, is the desired set of
indexes. In fact, I, is trivially nonempty; moreover, d; = d; = s, for all
i,j € J; and ZjeJ Cjd; = Zje] Cjsx = 0.
The most complicated part is the proof of the Lemma. The idea is to
let ¢ : N — Ny be the function s.t. p?M) < m < pPM*1: and for every
t € No, let ¢4(m) : N — {0,1,...,p — 1} be the function where ¢;(m) is
the (¢t + 1)-th digit from the left when m is written in base p. Then the
u-equivalences & ~ ... &, imply, by overspill, that for every a e N
one has & = (% + ¥; o where p®7 < (¢ < &' < p*it® and ¥, 4 < p*Ti.
With this decomposition, the lemma can be proven by showing that ¢
and v; , "does not mix in computations".

Ol
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Corollary

A polynomial of the form Y | c;x; + P(y), where P is a nonlinear
polynomial with no constant term, is PR if and only if it is a Rado
polynomial.
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Corollary

A polynomial of the form Y | c;x; + P(y), where P is a nonlinear
polynomial with no constant term, is PR if and only if it is a Rado
polynomial.

Example
The polynomial
P(z,y) = 23+ 2z+9> -2y

is not PR (even if it contains a partial sum of coefficients that equals
7€ero).
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Examples

Corollary

A polynomial of the form Y | c;x; + P(y), where P is a nonlinear
polynomial with no constant term, is PR if and only if it is a Rado
polynomial.

Example
The polynomial
P(z,y) = 23+ 2z+9> -2y

is not PR (even if it contains a partial sum of coefficients that equals
7€ero).

Example

The polynomials 2" + y™ = z* are not PR for k ¢ {n,m}.
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Open Problem 1. Is 22 + 32 = 22 PR?
Recently, Heule, Kullmann and Marek have proven the PR of the
Pythagorean equation for 2-colorings.
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theoretical methods Chow, Lindqvist and Prendiville have proven the
following;:

Theorem

For every k € N there exists so(k) such that for every s > so(k) and
1, ... ,cs € Z\{0} the following equivalence holds:
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Recently, Heule, Kullmann and Marek have proven the PR of the
Pythagorean equation for 2-colorings. Moreover, using number
theoretical methods Chow, Lindqvist and Prendiville have proven the
following;:

Theorem

For every k € N there exists so(k) such that for every s > so(k) and
1, ... ,cs € Z\{0} the following equivalence holds:

o The equation Y.;_, c;x¥ is PR;

o there exists a nonempty set J S {1,...,s} s.t. Di;e;¢ =0,
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Open Problem 1. Is 22 + 32 = 22 PR?

Recently, Heule, Kullmann and Marek have proven the PR of the
Pythagorean equation for 2-colorings. Moreover, using number
theoretical methods Chow, Lindqvist and Prendiville have proven the
following;:

Theorem

For every k € N there exists so(k) such that for every s > so(k) and
1, ... ,cs € Z\{0} the following equivalence holds:

o The equation Y.;_, c;x¥ is PR;

o there exists a nonempty set J S {1,...,s} s.t. Di;e;¢ =0,

so(k) is of the order klog k.
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Open Problems/1

Open Problem 1. Is 22 + 32 = 22 PR?

Recently, Heule, Kullmann and Marek have proven the PR of the
Pythagorean equation for 2-colorings. Moreover, using number
theoretical methods Chow, Lindqvist and Prendiville have proven the
following;:

Theorem

For every k € N there exists so(k) such that for every s > so(k) and
1, ... ,cs € Z\{0} the following equivalence holds:

o The equation Y.;_, c;x¥ is PR;

o there exists a nonempty set J S {1,...,s} s.t. Di;e;¢ =0,

so(k) is of the order klog k.

Open Problem 2. Are there simple decidable conditions under which
a given (non-homogeneous) Diophantine equation with no constant
term is PR on N if and only if it is PR on Z if and only if it is PR on Q7
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Open Problems/2

Open Problem 3. Are equations of the form )" | ¢;z; = ZTZl djyjz-
PR if and only if the linear or the quadratic part satisfy a Rado
condition?
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Open Problems/2

Open Problem 3. Are equations of the form )" | ¢;z; = ZTZl djy]z
PR if and only if the linear or the quadratic part satisfy a Rado
condition?

Open Problem 4. Are there simple “Rado-like” necessary and
sufficient conditions under which a given Diophantine equation with no
constant term is PR on sufficiently large finite fields F,?
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Open Problems/2

Open Problem 3. Are equations of the form )" | ¢;z; = ZTzl djyjz
PR if and only if the linear or the quadratic part satisfy a Rado
condition?

Open Problem 4. Are there simple “Rado-like” necessary and
sufficient conditions under which a given Diophantine equation with no
constant term is PR on sufficiently large finite fields F,?

Open Problem 5. Is there a characterization of PR infinite systems

of Diophantine equations in terms of u-equivalence? (Or, equivalently,
by means of ultrafilters?)
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