

Partition regularity of nonlinear Diophantine equations

Lorenzo Luperi Baglini

University of Vienna

Applications of Ultrafilters and Nonstandard Methods, IV

University of Hawaii at Manoa

Partition regularity of polynomials/equations

In this talk, we will repeatedly talk about the following property:

Partition regularity of polynomials/equations

In this talk, we will repeatedly talk about the following property:

Definition

Let $P(x_1, \dots, x_n) \in \mathbb{Z}[x_1, \dots, x_n]$.

Partition regularity of polynomials/equations

In this talk, we will repeatedly talk about the following property:

Definition

Let $P(x_1, \dots, x_n) \in \mathbb{Z}[x_1, \dots, x_n]$. We say that the equation $P(x_1, \dots, x_n) = 0$ is *(weakly) partition regular (PR) on \mathbb{N}* if

Partition regularity of polynomials/equations

In this talk, we will repeatedly talk about the following property:

Definition

Let $P(x_1, \dots, x_n) \in \mathbb{Z}[x_1, \dots, x_n]$. We say that the equation $P(x_1, \dots, x_n) = 0$ is *(weakly) partition regular (PR) on \mathbb{N}* if it has a monochromatic solution in every finite coloring of \mathbb{N} , i.e.

$\forall k \in \mathbb{N}, \forall \mathbb{N} = A_1 \cup \dots \cup A_k \ \exists i \leq k \ \exists x_1, \dots, x_n \in A_i \text{ s.t.}$

$P(x_1, \dots, x_n) = 0$.

Partition regularity of polynomials/equations

In this talk, we will repeatedly talk about the following property:

Definition

Let $P(x_1, \dots, x_n) \in \mathbb{Z}[x_1, \dots, x_n]$. We say that the equation $P(x_1, \dots, x_n) = 0$ is *(weakly) partition regular (PR) on \mathbb{N}* if it has a monochromatic solution in every finite coloring of \mathbb{N} , i.e.

$$\forall k \in \mathbb{N}, \forall \mathbb{N} = A_1 \cup \dots \cup A_k \ \exists i \leq k \ \exists x_1, \dots, x_n \in A_i \text{ s.t.}$$
$$P(x_1, \dots, x_n) = 0.$$

Example

Trivially, for every $n \in \mathbb{N}$, the polynomial $x - n$ is PR.

Rado's theorem

Theorem (Schur)

The polynomial $x + y - z$ is PR.

Rado's theorem

Theorem (Schur)

The polynomial $x + y - z$ is PR.

Theorem (Rado)

A linear Diophantine equation with no constant term

$$c_1x_1 + \cdots + c_nx_n = 0$$

is PR on \mathbb{N} if and only if the following condition is satisfied:

Rado's theorem

Theorem (Schur)

The polynomial $x + y - z$ is PR.

Theorem (Rado)

A linear Diophantine equation with no constant term

$$c_1x_1 + \cdots + c_nx_n = 0$$

is PR on \mathbb{N} if and only if the following condition is satisfied:

- *“There exists a nonempty set $J \subseteq \{1, \dots, n\}$ such that $\sum_{j \in J} c_j = 0$.”*

Nonlinear results/1

Theorem (Multiplicative Rado)

A nonlinear Diophantine equation $\prod_{i=1}^n x_i^{c_i} = 1$ is PR on \mathbb{N} if and only if the following condition is satisfied:

Nonlinear results/1

Theorem (Multiplicative Rado)

A nonlinear Diophantine equation $\prod_{i=1}^n x_i^{c_i} = 1$ is PR on \mathbb{N} if and only if the following condition is satisfied:

- “There exists a nonempty set $J \subseteq \{1, \dots, n\}$ such that $\sum_{j \in J} c_j = 0$.”

Nonlinear results/1

Theorem (Multiplicative Rado)

A nonlinear Diophantine equation $\prod_{i=1}^n x_i^{c_i} = 1$ is PR on \mathbb{N} if and only if the following condition is satisfied:

- “There exists a nonempty set $J \subseteq \{1, \dots, n\}$ such that $\sum_{j \in J} c_j = 0$.”

Idea: $n \rightarrow 2^n$.

Nonlinear results/1

Theorem (Multiplicative Rado)

A nonlinear Diophantine equation $\prod_{i=1}^n x_i^{c_i} = 1$ is PR on \mathbb{N} if and only if the following condition is satisfied:

- “There exists a nonempty set $J \subseteq \{1, \dots, n\}$ such that $\sum_{j \in J} c_j = 0$.”

Idea: $n \rightarrow 2^n$.

Theorem (Lefmann)

Let $k \in \mathbb{N}$. A Diophantine equation of the form $c_1 x_1^{1/k} + \dots + c_n x_n^{1/k} = 0$ is PR on \mathbb{N} if and only if the following condition is satisfied:

Nonlinear results/1

Theorem (Multiplicative Rado)

A nonlinear Diophantine equation $\prod_{i=1}^n x_i^{c_i} = 1$ is PR on \mathbb{N} if and only if the following condition is satisfied:

- “There exists a nonempty set $J \subseteq \{1, \dots, n\}$ such that $\sum_{j \in J} c_j = 0$.”

Idea: $n \rightarrow 2^n$.

Theorem (Lefmann)

Let $k \in \mathbb{N}$. A Diophantine equation of the form $c_1 x_1^{1/k} + \dots + c_n x_n^{1/k} = 0$ is PR on \mathbb{N} if and only if the following condition is satisfied:

- “There exists a nonempty set $J \subseteq \{1, \dots, n\}$ such that $\sum_{j \in J} c_j = 0$.”

Nonlinear results/1

Theorem (Multiplicative Rado)

A nonlinear Diophantine equation $\prod_{i=1}^n x_i^{c_i} = 1$ is PR on \mathbb{N} if and only if the following condition is satisfied:

- “There exists a nonempty set $J \subseteq \{1, \dots, n\}$ such that $\sum_{j \in J} c_j = 0$.”

Idea: $n \rightarrow 2^n$.

Theorem (Lefmann)

Let $k \in \mathbb{N}$. A Diophantine equation of the form $c_1 x_1^{1/k} + \dots + c_n x_n^{1/k} = 0$ is PR on \mathbb{N} if and only if the following condition is satisfied:

- “There exists a nonempty set $J \subseteq \{1, \dots, n\}$ such that $\sum_{j \in J} c_j = 0$.”

Idea: $n \rightarrow n^k$.

Nonlinear results/2

Theorem (Bergelson, Furstenberg, McCutcheon)

Let $P(z) \in \mathbb{Z}[z]$ be such that $P(0) = 0$. Then the equation $x - y = P(z)$ is PR.

Nonlinear results/2

Theorem (Bergelson, Furstenberg, McCutcheon)

Let $P(z) \in \mathbb{Z}[z]$ be such that $P(0) = 0$. Then the equation $x - y = P(z)$ is PR.

Idea: use ergodic methods (recurrence sets).

Nonlinear results/2

Theorem (Bergelson, Furstenberg, McCutcheon)

Let $P(z) \in \mathbb{Z}[z]$ be such that $P(0) = 0$. Then the equation $x - y = P(z)$ is PR.

Idea: use ergodic methods (recurrence sets).

Theorem (Csikvári, Gyarmati and Sárkőzy)

The equation $x + y = z^2$ is not partition regular.

Nonlinear results/2

Theorem (Bergelson, Furstenberg, McCutcheon)

Let $P(z) \in \mathbb{Z}[z]$ be such that $P(0) = 0$. Then the equation $x - y = P(z)$ is PR.

Idea: use ergodic methods (recurrence sets).

Theorem (Csikvári, Gyarmati and Sárkőzy)

The equation $x + y = z^2$ is not partition regular.

They asked the following question: is $x + y = tz$ PR?

Nonlinear results/2

Theorem (Bergelson, Furstenberg, McCutcheon)

Let $P(z) \in \mathbb{Z}[z]$ be such that $P(0) = 0$. Then the equation $x - y = P(z)$ is PR.

Idea: use ergodic methods (recurrence sets).

Theorem (Csikvári, Gyarmati and Sárkőzy)

The equation $x + y = z^2$ is not partition regular.

They asked the following question: is $x + y = tz$ PR?

In 2010, by using algebraic properties of ultrafilters in $\beta\mathbb{N}$, Bergelson solved the problem in the positive.

Nonlinear results/3

Independently, Hindman proved a more general version of Bergelson's result:

Nonlinear results/3

Independently, Hindman proved a more general version of Bergelson's result:

Theorem (Hindman)

All Diophantine equations of the form $\sum_{i=1}^n x_i = \prod_{i=1}^m y_i$ are PR.

Nonlinear results/3

Independently, Hindman proved a more general version of Bergelson's result:

Theorem (Hindman)

All Diophantine equations of the form $\sum_{i=1}^n x_i = \prod_{i=1}^m y_i$ are PR.

Idea: use the algebra of $\beta\mathbb{N}$, in particular the existence of a ultrafilter \mathcal{U} such that every set $A \in \mathcal{U}$ is additively and multiplicatively IP.

Nonlinear results/3

Independently, Hindman proved a more general version of Bergelson's result:

Theorem (Hindman)

All Diophantine equations of the form $\sum_{i=1}^n x_i = \prod_{i=1}^m y_i$ are PR.

Idea: use the algebra of $\beta\mathbb{N}$, in particular the existence of a ultrafilter \mathcal{U} such that every set $A \in \mathcal{U}$ is additively and multiplicatively IP.

Theorem (Luperi Baglini)

Let $n, m > 0$. For every choice of sets $F_i \subseteq \{1, \dots, m\}$, the equation $\sum_{i=1}^n c_i x_i (\prod_{j \in F_i} y_j) = 0$ is partition regular whenever $\sum_{i \in J} c_j = 0$ for some nonempty $J \subseteq \{1, \dots, m\}$. (It is agreed that $\prod_{j \in \emptyset} y_j = 1$.)

Nonlinear results/3

Independently, Hindman proved a more general version of Bergelson's result:

Theorem (Hindman)

All Diophantine equations of the form $\sum_{i=1}^n x_i = \prod_{i=1}^m y_i$ are PR.

Idea: use the algebra of $\beta\mathbb{N}$, in particular the existence of a ultrafilter \mathcal{U} such that every set $A \in \mathcal{U}$ is additively and multiplicatively IP.

Theorem (Luperi Baglini)

Let $n, m > 0$. For every choice of sets $F_i \subseteq \{1, \dots, m\}$, the equation $\sum_{i=1}^n c_i x_i (\prod_{j \in F_i} y_j) = 0$ is partition regular whenever $\sum_{i \in J} c_j = 0$ for some nonempty $J \subseteq \{1, \dots, m\}$. (It is agreed that $\prod_{j \in \emptyset} y_j = 1$.)

Idea: use the existence of a multiplicatively idempotent ultrafilter \mathcal{U} with good linear properties; study the ultrafilter using nonstandard analysis.

Nonlinear results/4

Theorem (Di Nasso, Riggio)

Let $k, n, m \in \mathbb{N}$ be such that $k \notin \{n, m\}$. Then the equation $x^m + y^n = z^k$ is not PR.

Nonlinear results/4

Theorem (Di Nasso, Riggio)

Let $k, n, m \in \mathbb{N}$ be such that $k \notin \{n, m\}$. Then the equation $x^m + y^n = z^k$ is not PR.

Idea: use nonstandard analysis, write numbers in base p for a sufficiently large prime number p .

Nonlinear results/4

Theorem (Di Nasso, Riggio)

Let $k, n, m \in \mathbb{N}$ be such that $k \notin \{n, m\}$. Then the equation $x^m + y^n = z^k$ is not PR.

Idea: use nonstandard analysis, write numbers in base p for a sufficiently large prime number p .

Theorem (Moreira)

Let $\sum_{i=1}^n c_i = 0$. Then $\sum_{i=1}^n c_i x_i^2 = y$ is PR.

Nonlinear results/4

Theorem (Di Nasso, Riggio)

Let $k, n, m \in \mathbb{N}$ be such that $k \notin \{n, m\}$. Then the equation $x^m + y^n = z^k$ is not PR.

Idea: use nonstandard analysis, write numbers in base p for a sufficiently large prime number p .

Theorem (Moreira)

Let $\sum_{i=1}^n c_i = 0$. Then $\sum_{i=1}^n c_i x_i^2 = y$ is PR.

Idea: use ergodic methods involving the set of affinities $\{x \rightarrow ax + b\}$; alternatively, use an embeddability property of piecewise syndetic sets w.r.t. arithmetic progressions.

Partition regularity as a ultrafilters problem

$\beta\mathbb{N}$ turns out to be a natural setting where to study PR problems because of the following characterization (which is given here for equations, but holds in a way more general fashion):

Partition regularity as a ultrafilters problem

$\beta\mathbb{N}$ turns out to be a natural setting where to study PR problems because of the following characterization (which is given here for equations, but holds in a way more general fashion):

Proposition

A Diophantine equation $P(x_1, \dots, x_n) = 0$ is PR if and only if there exists $\mathcal{U} \in \beta\mathbb{N}$ such that for every $A \in \mathcal{U}$ there exists $a_1, \dots, a_n \in A$ with $P(a_1, \dots, a_n) = 0$.

Partition regularity as a ultrafilters problem

$\beta\mathbb{N}$ turns out to be a natural setting where to study PR problems because of the following characterization (which is given here for equations, but holds in a way more general fashion):

Proposition

A Diophantine equation $P(x_1, \dots, x_n) = 0$ is PR if and only if there exists $\mathcal{U} \in \beta\mathbb{N}$ such that for every $A \in \mathcal{U}$ there exists $a_1, \dots, a_n \in A$ with $P(a_1, \dots, a_n) = 0$.

In this case, we say that \mathcal{U} witnesses the PR of the equation (notation: $\mathcal{U} \models P(a_1, \dots, a_n) = 0$).

Banach density and IP-sets

Definition

Let $A \subseteq \mathbb{N}$. The *upper Banach density* of A is

$$BD(A) = \lim_{n \rightarrow +\infty} \sup_{m \in \mathbb{N}} \frac{|A \cap [m, m+n]|}{n+1}.$$

We let $\Delta = \{\mathcal{U} \in \beta\mathbb{N} \mid BD(A) > 0 \ \forall A \in \mathcal{U}\}$.

Banach density and IP-sets

Definition

Let $A \subseteq \mathbb{N}$. The *upper Banach density* of A is

$$BD(A) = \lim_{n \rightarrow +\infty} \sup_{m \in \mathbb{N}} \frac{|A \cap [m, m+n]|}{n+1}.$$

We let $\Delta = \{\mathcal{U} \in \beta\mathbb{N} \mid BD(A) > 0 \ \forall A \in \mathcal{U}\}$.

Definition

Let $G = (g_i)_{i \in \mathbb{N}}$ be an increasing sequence of natural numbers. The IP-set generated by G is the set of finite sums

$$FS(G) = FS(g_i)_{i \in \mathbb{N}} = \left\{ \sum_{j=1}^k g_{i_j} \mid i_1 < i_2 < \dots < i_k \right\}.$$

A set $A \subseteq \mathbb{N}$ is called IP-large if it contains an IP-set. Multiplicative IP-sets and multiplicative IP-large sets are defined similarly.

Special ultrafilters

Various classes of ultrafilters are important in this field, the "best" being combinatorially rich ultrafilters:

Definition

\mathcal{U} is combinatorially rich if $\mathcal{U} \in \mathbb{M} \cap \Delta \cap K(\odot)$ and $\mathcal{U} \odot \mathcal{U} = \mathcal{U}$, where $\mathbb{M} = \{\mathcal{V} \in \beta\mathbb{N} \mid \forall A \in \mathcal{V} \text{ } A \text{ is central in } (\mathbb{N}, +)\}$.

Special ultrafilters

Various classes of ultrafilters are important in this field, the "best" being combinatorially rich ultrafilters:

Definition

\mathcal{U} is combinatorially rich if $\mathcal{U} \in \mathbb{M} \cap \Delta \cap K(\odot)$ and $\mathcal{U} \odot \mathcal{U} = \mathcal{U}$, where $\mathbb{M} = \{\mathcal{V} \in \beta\mathbb{N} \mid \forall A \in \mathcal{V} \text{ } A \text{ is central in } (\mathbb{N}, +)\}$.

Notice that if \mathcal{U} is combinatorially rich and $A \in \mathcal{U}$ then:

Special ultrafilters

Various classes of ultrafilters are important in this field, the "best" being combinatorially rich ultrafilters:

Definition

\mathcal{U} is combinatorially rich if $\mathcal{U} \in \mathbb{M} \cap \Delta \cap K(\odot)$ and $\mathcal{U} \odot \mathcal{U} = \mathcal{U}$, where $\mathbb{M} = \{\mathcal{V} \in \beta\mathbb{N} \mid \forall A \in \mathcal{V} \text{ } A \text{ is central in } (\mathbb{N}, +)\}$.

Notice that if \mathcal{U} is combinatorially rich and $A \in \mathcal{U}$ then:

- A is central in $(\mathbb{N}, +)$, in particular it is IP;

Special ultrafilters

Various classes of ultrafilters are important in this field, the "best" being combinatorially rich ultrafilters:

Definition

\mathcal{U} is combinatorially rich if $\mathcal{U} \in \mathbb{M} \cap \Delta \cap K(\odot)$ and $\mathcal{U} \odot \mathcal{U} = \mathcal{U}$, where $\mathbb{M} = \{\mathcal{V} \in \beta\mathbb{N} \mid \forall A \in \mathcal{V} \text{ } A \text{ is central in } (\mathbb{N}, +)\}$.

Notice that if \mathcal{U} is combinatorially rich and $A \in \mathcal{U}$ then:

- A is central in $(\mathbb{N}, +)$, in particular it is IP;
- A is also multiplicatively IP;

Special ultrafilters

Various classes of ultrafilters are important in this field, the "best" being combinatorially rich ultrafilters:

Definition

\mathcal{U} is combinatorially rich if $\mathcal{U} \in \mathbb{M} \cap \Delta \cap K(\odot)$ and $\mathcal{U} \odot \mathcal{U} = \mathcal{U}$, where $\mathbb{M} = \{\mathcal{V} \in \beta\mathbb{N} \mid \forall A \in \mathcal{V} \text{ } A \text{ is central in } (\mathbb{N}, +)\}$.

Notice that if \mathcal{U} is combinatorially rich and $A \in \mathcal{U}$ then:

- A is central in $(\mathbb{N}, +)$, in particular it is IP;
- A is also multiplicatively IP;
- A contains solutions to all homogeneous PR equations (we will show this later), in particular to all linear equations;

Special ultrafilters

Various classes of ultrafilters are important in this field, the "best" being combinatorially rich ultrafilters:

Definition

\mathcal{U} is combinatorially rich if $\mathcal{U} \in \mathbb{M} \cap \Delta \cap K(\odot)$ and $\mathcal{U} \odot \mathcal{U} = \mathcal{U}$, where $\mathbb{M} = \{\mathcal{V} \in \beta\mathbb{N} \mid \forall A \in \mathcal{V} \text{ } A \text{ is central in } (\mathbb{N}, +)\}$.

Notice that if \mathcal{U} is combinatorially rich and $A \in \mathcal{U}$ then:

- A is central in $(\mathbb{N}, +)$, in particular it is IP;
- A is also multiplicatively IP;
- A contains solutions to all homogeneous PR equations (we will show this later), in particular to all linear equations;
- $BD(A) > 0$.

A surprisingly simple key Lemma

Lemma

Let \mathcal{U} be a common witness of the equations $P_1(x_1, \dots, x_n) = 0$ and $P_2(y_1, \dots, y_m) = 0$.

A surprisingly simple key Lemma

Lemma

Let \mathcal{U} be a common witness of the equations $P_1(x_1, \dots, x_n) = 0$ and $P_2(y_1, \dots, y_m) = 0$. Then \mathcal{U} is also a PR-witness of the system:

$$\begin{cases} P_1(x_1, \dots, x_n) = 0; \\ P_2(y_1, \dots, y_m) = 0; \\ x_1 = y_1. \end{cases}$$

A surprisingly simple key Lemma

Lemma

Let \mathcal{U} be a common witness of the equations $P_1(x_1, \dots, x_n) = 0$ and $P_2(y_1, \dots, y_m) = 0$. Then \mathcal{U} is also a PR-witness of the system:

$$\begin{cases} P_1(x_1, \dots, x_n) = 0; \\ P_2(y_1, \dots, y_m) = 0; \\ x_1 = y_1. \end{cases}$$

Proof.

Let $A \in \mathcal{U}$ be fixed. Let

$$\begin{aligned} \Lambda_1 &= \{a \in A \mid \exists a_2, \dots, a_n \in A \text{ s.t. } P_1(a, a_2, \dots, a_n) = 0\}, \\ \Lambda_2 &= \{b \in A \mid \exists b_2, \dots, b_m \in A \text{ s.t. } P_2(b, b_2, \dots, b_m) = 0\}. \end{aligned}$$

A surprisingly simple key Lemma

Lemma

Let \mathcal{U} be a common witness of the equations $P_1(x_1, \dots, x_n) = 0$ and $P_2(y_1, \dots, y_m) = 0$. Then \mathcal{U} is also a PR-witness of the system:

$$\begin{cases} P_1(x_1, \dots, x_n) = 0; \\ P_2(y_1, \dots, y_m) = 0; \\ x_1 = y_1. \end{cases}$$

Proof.

Let $A \in \mathcal{U}$ be fixed. Let

$$\Lambda_1 = \{a \in A \mid \exists a_2, \dots, a_n \in A \text{ s.t. } P_1(a, a_2, \dots, a_n) = 0\},$$

$$\Lambda_2 = \{b \in A \mid \exists b_2, \dots, b_m \in A \text{ s.t. } P_2(b, b_2, \dots, b_m) = 0\}.$$

Notice that $\Lambda_1, \Lambda_2 \in \mathcal{U}$, as otherwise $\neg(\mathcal{U} \models P_i = 0)$.

A surprisingly simple key Lemma

Lemma

Let \mathcal{U} be a common witness of the equations $P_1(x_1, \dots, x_n) = 0$ and $P_2(y_1, \dots, y_m) = 0$. Then \mathcal{U} is also a PR-witness of the system:

$$\begin{cases} P_1(x_1, \dots, x_n) = 0; \\ P_2(y_1, \dots, y_m) = 0; \\ x_1 = y_1. \end{cases}$$

Proof.

Let $A \in \mathcal{U}$ be fixed. Let

$$\Lambda_1 = \{a \in A \mid \exists a_2, \dots, a_n \in A \text{ s.t. } P_1(a, a_2, \dots, a_n) = 0\},$$

$$\Lambda_2 = \{b \in A \mid \exists b_2, \dots, b_m \in A \text{ s.t. } P_2(b, b_2, \dots, b_m) = 0\}.$$

Notice that $\Lambda_1, \Lambda_2 \in \mathcal{U}$, as otherwise $\neg(\mathcal{U} \models P_i = 0)$. Take $\Lambda_1 \cap \Lambda_2$. □

Some examples

Example

Take $\mathcal{U} \models u - v = t^2$.

Some examples

Example

Take $\mathcal{U} \models u - v = t^2$.

Then \mathcal{U} witnesses also of the PR of the system

$$\begin{cases} u_1 - y = x^2; \\ u_2 - z = t^2; \\ y = t. \end{cases}$$

Some examples

Example

Take $\mathcal{U} \models u - v = t^2$.

Then \mathcal{U} witnesses also of the PR of the system

$$\begin{cases} u_1 - y = x^2; \\ u_2 - z = t^2; \\ y = t. \end{cases}$$

It is readily seen that this is equivalent to the PR of the configuration $\{x, y, z, y + x^2, z + y^2\}$ (which had already been proven by ergodic methods).

Homogeneous equations

Theorem

Let $P(x_1, \dots, x_n)$ be a homogeneous PR polynomial.

Homogeneous equations

Theorem

Let $P(x_1, \dots, x_n)$ be a homogeneous PR polynomial. Then the set of its PR-witnesses

$$\mathfrak{W}_P = \{\mathcal{U} \in \beta\mathbb{N} \mid \mathcal{U} \models P(x_1, \dots, x_n) = 0\}$$

is a closed multiplicative two sided ideal.

Homogeneous equations

Theorem

Let $P(x_1, \dots, x_n)$ be a homogeneous PR polynomial. Then the set of its PR-witnesses

$$\mathfrak{W}_P = \{\mathcal{U} \in \beta\mathbb{N} \mid \mathcal{U} \models P(x_1, \dots, x_n) = 0\}$$

is a closed multiplicative two sided ideal.

Proof.

(Nonstandard) Let $\mathcal{U} \in \mathfrak{W}_P$. Let $\alpha_1, \dots, \alpha_n \in \mu(\mathcal{U})$ be such that ${}^*P(\alpha_1, \dots, \alpha_n) = 0$.

Homogeneous equations

Theorem

Let $P(x_1, \dots, x_n)$ be a homogeneous PR polynomial. Then the set of its PR-witnesses

$$\mathfrak{W}_P = \{\mathcal{U} \in \beta\mathbb{N} \mid \mathcal{U} \models P(x_1, \dots, x_n) = 0\}$$

is a closed multiplicative two sided ideal.

Proof.

(Nonstandard) Let $\mathcal{U} \in \mathfrak{W}_P$. Let $\alpha_1, \dots, \alpha_n \in \mu(\mathcal{U})$ be such that ${}^*P(\alpha_1, \dots, \alpha_n) = 0$. Let $\beta \in \mu(\mathcal{V})$. Then $\alpha_1 \cdot {}^*\beta, \dots, \alpha_n \cdot {}^*\beta \in \mu(\mathcal{U} \odot \mathcal{V})$, and $P(\alpha_1 \cdot {}^*\beta, \dots, \alpha_n \cdot {}^*\beta) = 0$.

Homogeneous equations

Theorem

Let $P(x_1, \dots, x_n)$ be a homogeneous PR polynomial. Then the set of its PR-witnesses

$$\mathfrak{W}_P = \{\mathcal{U} \in \beta\mathbb{N} \mid \mathcal{U} \models P(x_1, \dots, x_n) = 0\}$$

is a closed multiplicative two sided ideal.

Proof.

(Nonstandard) Let $\mathcal{U} \in \mathfrak{W}_P$. Let $\alpha_1, \dots, \alpha_n \in \mu(\mathcal{U})$ be such that ${}^*P(\alpha_1, \dots, \alpha_n) = 0$. Let $\beta \in \mu(\mathcal{V})$. Then $\alpha_1 \cdot {}^*\beta, \dots, \alpha_n \cdot {}^*\beta \in \mu(\mathcal{U} \odot \mathcal{V})$, and ${}^*P(\alpha_1 \cdot {}^*\beta, \dots, \alpha_n \cdot {}^*\beta) = 0$. Hence $\mathcal{U} \odot \mathcal{V} \in \mathfrak{W}_P$. □

Homogeneous equations

Theorem

Let $P(x_1, \dots, x_n)$ be a homogeneous PR polynomial. Then the set of its PR-witnesses

$$\mathfrak{W}_P = \{\mathcal{U} \in \beta\mathbb{N} \mid \mathcal{U} \models P(x_1, \dots, x_n) = 0\}$$

is a closed multiplicative two sided ideal.

Proof.

(Nonstandard) Let $\mathcal{U} \in \mathfrak{W}_P$. Let $\alpha_1, \dots, \alpha_n \in \mu(\mathcal{U})$ be such that ${}^*P(\alpha_1, \dots, \alpha_n) = 0$. Let $\beta \in \mu(\mathcal{V})$. Then $\alpha_1 \cdot {}^*\beta, \dots, \alpha_n \cdot {}^*\beta \in \mu(\mathcal{U} \odot \mathcal{V})$, and $P(\alpha_1 \cdot {}^*\beta, \dots, \alpha_n \cdot {}^*\beta) = 0$. Hence $\mathcal{U} \odot \mathcal{V} \in \mathfrak{W}_P$. □

Corollary

Let $P(x_1, \dots, x_n)$ be a homogeneous PR polynomial. Then $\mathcal{U} \models P(x_1, \dots, x_n) = 0$ for every $\mathcal{U} \in \overline{K(\beta\mathbb{N}, \odot)}$.

The first generalization result

Theorem

Let $c(x_1 - x_2) = P(y_1, \dots, y_k)$ be a Diophantine equation where the polynomial P has no constant term and $c \neq 0$. If the set $A \subseteq \mathbb{N}$ is IP-large and has positive Banach density then there exist $\xi_1, \xi_2 \in A$ and mutually distinct $\eta_1, \dots, \eta_k \in A$ such that $c(\xi_1 - \xi_2) = P(\eta_1, \dots, \eta_k)$. Moreover, if $k = 1$ then one can take $\xi_1 \neq \xi_2$.

The first generalization result

Theorem

Let $c(x_1 - x_2) = P(y_1, \dots, y_k)$ be a Diophantine equation where the polynomial P has no constant term and $c \neq 0$. If the set $A \subseteq \mathbb{N}$ is IP-large and has positive Banach density then there exist $\xi_1, \xi_2 \in A$ and mutually distinct $\eta_1, \dots, \eta_k \in A$ such that $c(\xi_1 - \xi_2) = P(\eta_1, \dots, \eta_k)$. Moreover, if $k = 1$ then one can take $\xi_1 \neq \xi_2$.

Definition

A polynomial with integer coefficients is called a *Rado polynomial* if it can be written in the form

$$c_1 x_1 + \dots + c_n x_n + P(y_1, \dots, y_k)$$

where $n \geq 2$, P has no constant term, and there exists a nonempty subset $J \subseteq \{1, \dots, n\}$ such that $\sum_{j \in J} c_j = 0$.

Generalized Rado

Theorem

Let

$$R(x_1, \dots, x_n, y_1, \dots, y_k) = c_1 x_1 + \dots + c_n x_n + P(y_1, \dots, y_k)$$

be a Rado polynomial. Then every ultrafilter $\mathcal{U} \in \overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \Delta$ is a PR-witness of $R(x_1, \dots, x_n, y_1, \dots, y_k) = 0$.

Generalized Rado

Theorem

Let

$$R(x_1, \dots, x_n, y_1, \dots, y_k) = c_1 x_1 + \dots + c_n x_n + P(y_1, \dots, y_k)$$

be a Rado polynomial. Then every ultrafilter $\mathcal{U} \in \overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \Delta$ is a PR-witness of $R(x_1, \dots, x_n, y_1, \dots, y_k) = 0$.

Proof.

Consider the following system:

$$\begin{cases} c_1 z + c_2 x_2 + \dots + c_n x_n = 0; \\ c_1(w - x_1) = P(y_1, \dots, y_k); \\ z = w. \end{cases}$$

Main positive result/1

Theorem

Let \mathfrak{F} be the family of polynomials whose PR on \mathbb{N} is witnessed by at least an ultrafilter $\mathcal{U} \in \mathbb{I}(\odot) \cap \overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \Delta$. Then \mathfrak{F} includes:

Main positive result/1

Theorem

Let \mathfrak{F} be the family of polynomials whose PR on \mathbb{N} is witnessed by at least an ultrafilter $\mathcal{U} \in \mathbb{I}(\odot) \cap \overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \Delta$. Then \mathfrak{F} includes:

- Every Rado polynomial;

Main positive result/1

Theorem

Let \mathfrak{F} be the family of polynomials whose PR on \mathbb{N} is witnessed by at least an ultrafilter $\mathcal{U} \in \mathbb{I}(\odot) \cap \overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \Delta$. Then \mathfrak{F} includes:

- Every Rado polynomial;
- Every polynomial of the form

$$\sum_{i=1}^n c_i x_i \left(\prod_{j \in F_i} y_j \right)$$

where $\sum_{i=1}^n c_i x_i$ is a Rado polynomial and sets $F_i \subseteq \{1, \dots, m\}$;

Main positive result/1

Theorem

Let \mathfrak{F} be the family of polynomials whose PR on \mathbb{N} is witnessed by at least an ultrafilter $\mathcal{U} \in \mathbb{I}(\odot) \cap \overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \Delta$. Then \mathfrak{F} includes:

- Every Rado polynomial;
- Every polynomial of the form

$$\sum_{i=1}^n c_i x_i \left(\prod_{j \in F_i} y_j \right)$$

where $\sum_{i=1}^n c_i x_i$ is a Rado polynomial and sets $F_i \subseteq \{1, \dots, m\}$;

- Every polynomial

$$P(x, y_1, \dots, y_k) = x - \prod_{i=1}^k y_i;$$

Main positive result/1

Theorem

Let \mathfrak{F} be the family of polynomials whose PR on \mathbb{N} is witnessed by at least an ultrafilter $\mathcal{U} \in \mathbb{I}(\odot) \cap \overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \Delta$. Then \mathfrak{F} includes:

- Every Rado polynomial;
- Every polynomial of the form

$$\sum_{i=1}^n c_i x_i \left(\prod_{j \in F_i} y_j \right)$$

where $\sum_{i=1}^n c_i x_i$ is a Rado polynomial and sets $F_i \subseteq \{1, \dots, m\}$;

- Every polynomial

$$P(x, y_1, \dots, y_k) = x - \prod_{i=1}^k y_i;$$

Main positive result/2

Theorem

- *Every polynomial*

$$P(x, y_1, \dots, y_k) = x - \prod_{i=1}^k y_i^{a_i},$$

whenever the exponents $a_i \in \mathbb{Z}$ satisfy $\sum_{i=1}^n a_i = 1$.

Main positive result/2

Theorem

- *Every polynomial*

$$P(x, y_1, \dots, y_k) = x - \prod_{i=1}^k y_i^{a_i},$$

whenever the exponents $a_i \in \mathbb{Z}$ satisfy $\sum_{i=1}^n a_i = 1$.

Moreover, the family \mathfrak{F} satisfies the following closure properties:

Main positive result/2

Theorem

- Every polynomial

$$P(x, y_1, \dots, y_k) = x - \prod_{i=1}^k y_i^{a_i},$$

whenever the exponents $a_i \in \mathbb{Z}$ satisfy $\sum_{i=1}^n a_i = 1$.

Moreover, the family \mathfrak{F} satisfies the following closure properties:

- If $P(z, y_1, \dots, y_k) \in \mathfrak{F}$ and $z - g(x_1, \dots, x_n) \in \mathfrak{F}$, then
 $P(g(x_1, \dots, x_n), y_1, \dots, y_k) \in \mathfrak{F}$;

Main positive result/2

Theorem

- Every polynomial

$$P(x, y_1, \dots, y_k) = x - \prod_{i=1}^k y_i^{a_i},$$

whenever the exponents $a_i \in \mathbb{Z}$ satisfy $\sum_{i=1}^n a_i = 1$.

Moreover, the family \mathfrak{F} satisfies the following closure properties:

- If $P(z, y_1, \dots, y_k) \in \mathfrak{F}$ and $z - g(x_1, \dots, x_n) \in \mathfrak{F}$, then $P(g(x_1, \dots, x_n), y_1, \dots, y_k) \in \mathfrak{F}$;
- if $P(x_1, \dots, x_n) \in \mathfrak{F}$ is homogeneous, then $P\left(\frac{1}{x_1}, \dots, \frac{1}{x_n}\right) \in \mathfrak{F}$.

Some examples

Some examples

Example

Let $n, m \in \mathbb{N}$ and assume that, for every $i \leq n, j \leq m$, the equations

$$x_{i,1} = \sum_{h=1}^{r_i} c_{i,h} x_{i,h}, \quad y_{j,1} = \sum_{k=1}^{s_j} d_{j,k} y_{j,k}$$

are PR.

Some examples

Example

Let $n, m \in \mathbb{N}$ and assume that, for every $i \leq n, j \leq m$, the equations

$$x_{i,1} = \sum_{h=1}^{r_i} c_{i,h} x_{i,h}, \quad y_{j,1} = \sum_{k=1}^{s_j} d_{j,k} y_{j,k}$$

are PR.

Let $a_1, \dots, a_n, b_1, \dots, b_m$ be such that $\sum_{i=1}^n a_i = \sum_{j=1}^m b_j$ and consider the homogeneous PR equation $\prod_{i=1}^n t_i^{a_i} = \prod_{j=1}^m z_j^{b_j}$.

Some examples

Example

Let $n, m \in \mathbb{N}$ and assume that, for every $i \leq n, j \leq m$, the equations

$$x_{i,1} = \sum_{h=1}^{r_i} c_{i,h} x_{i,h}, \quad y_{j,1} = \sum_{k=1}^{s_j} d_{j,k} y_{j,k}$$

are PR.

Let $a_1, \dots, a_n, b_1, \dots, b_m$ be such that $\sum_{i=1}^n a_i = \sum_{j=1}^m b_j$ and consider the homogeneous PR equation $\prod_{i=1}^n t_i^{a_i} = \prod_{j=1}^m z_j^{b_j}$.

All these equations are PR and homogeneous and therefore, by the closure property (i), also

$$\prod_{i=1}^n \left(\sum_{h=1}^{r_i} c_{i,h} x_{i,h} \right)^{a_i} = \prod_{j=1}^m \left(\sum_{k=1}^{s_j} d_{j,k} y_{j,k} \right)^{b_j}$$

is PR.

Some examples

Example

Let $n, m \in \mathbb{N}$ and assume that, for every $i \leq n, j \leq m$, the equations

$$x_{i,1} = \sum_{h=1}^{r_i} c_{i,h} x_{i,h}, \quad y_{j,1} = \sum_{k=1}^{s_j} d_{j,k} y_{j,k}$$

are PR.

Let $a_1, \dots, a_n, b_1, \dots, b_m$ be such that $\sum_{i=1}^n a_i = \sum_{j=1}^m b_j$ and consider the homogeneous PR equation $\prod_{i=1}^n t_i^{a_i} = \prod_{j=1}^m z_j^{b_j}$.

All these equations are PR and homogeneous and therefore, by the closure property (i), also

$$\prod_{i=1}^n \left(\sum_{h=1}^{r_i} c_{i,h} x_{i,h} \right)^{a_i} = \prod_{j=1}^m \left(\sum_{k=1}^{s_j} d_{j,k} y_{j,k} \right)^{b_j}$$

is PR.

Some examples

Example

For every $n \in \mathbb{N}$, the polynomial $u - v - z^n$ is in \mathfrak{F} ;

Some examples

Example

For every $n \in \mathbb{N}$, the polynomial $u - v - z^n$ is in \mathfrak{F} ; moreover, for every $k \geq 2$ the function $x = \prod_{j=1}^k x_j$ is in \mathfrak{F} .

Some examples

Example

For every $n \in \mathbb{N}$, the polynomial $u - v - z^n$ is in \mathfrak{F} ; moreover, for every $k \geq 2$ the function $x = \prod_{j=1}^k x_j$ is in \mathfrak{F} . Therefore, for every $h, k \geq 2$ we can apply the closure property (i) of \mathfrak{F} to the system

$$\begin{cases} u - v = z^n; \\ x = \prod_{j=1}^h x_j; \\ y = \prod_{j=1}^k y_j; \\ x = u, y = v. \end{cases}$$

Some examples

Example

For every $n \in \mathbb{N}$, the polynomial $u - v - z^n$ is in \mathfrak{F} ; moreover, for every $k \geq 2$ the function $x = \prod_{j=1}^k x_j$ is in \mathfrak{F} . Therefore, for every $h, k \geq 2$ we can apply the closure property (i) of \mathfrak{F} to the system

$$\begin{cases} u - v = z^n; \\ x = \prod_{j=1}^h x_j; \\ y = \prod_{j=1}^k y_j; \\ x = u, y = v. \end{cases}$$

Hence $\prod_{j=1}^h x_j - \prod_{j=1}^k y_j = z^n$ is in \mathfrak{F} . In particular, $x_1 x_2 - y_1 y_2 = z^2$ is PR.

Some examples

Example

For every $n \in \mathbb{N}$, the polynomial $u - v - z^n$ is in \mathfrak{F} ; moreover, for every $k \geq 2$ the function $x = \prod_{j=1}^k x_j$ is in \mathfrak{F} . Therefore, for every $h, k \geq 2$ we can apply the closure property (i) of \mathfrak{F} to the system

$$\begin{cases} u - v = z^n; \\ x = \prod_{j=1}^h x_j; \\ y = \prod_{j=1}^k y_j; \\ x = u, y = v. \end{cases}$$

Hence $\prod_{j=1}^h x_j - \prod_{j=1}^k y_j = z^n$ is in \mathfrak{F} . In particular, $x_1 x_2 - y_1 y_2 = z^2$ is PR.

Example

$P(x_1, x_2, x_3) = x_1 x_2 - 2x_3$ is PR but it does not belong to \mathfrak{F} .

u -equivalence and partition regularity

Definition

Two hypernatural numbers $\xi, \xi' \in {}^*\mathbb{N}$ are *u -equivalent* if they cannot be distinguished by any hyper-extension, i.e. if for every $A \subseteq \mathbb{N}$ one has either $\xi, \xi' \in {}^*A$ or $\xi, \xi' \notin {}^*A$.

u -equivalence and partition regularity

Definition

Two hypernatural numbers $\xi, \xi' \in {}^* \mathbb{N}$ are *u -equivalent* if they cannot be distinguished by any hyper-extension, i.e. if for every $A \subseteq \mathbb{N}$ one has either $\xi, \xi' \in {}^* A$ or $\xi, \xi' \notin {}^* A$.

When the hyperextension has the $|\wp(\mathbb{N})|^+$ -enlarging property, ultrafilters and hypernaturals can be identified:

u -equivalence and partition regularity

Definition

Two hypernatural numbers $\xi, \xi' \in {}^* \mathbb{N}$ are *u -equivalent* if they cannot be distinguished by any hyper-extension, i.e. if for every $A \subseteq \mathbb{N}$ one has either $\xi, \xi' \in {}^* A$ or $\xi, \xi' \notin {}^* A$.

When the hyperextension has the $|\wp(\mathbb{N})|^+$ -enlarging property, ultrafilters and hypernaturals can be identified:

- $\alpha \rightarrow \mathcal{U}_\alpha = \{A \in \wp(\mathbb{N}) \mid \alpha \in {}^* A\}$;

u -equivalence and partition regularity

Definition

Two hypernatural numbers $\xi, \xi' \in {}^* \mathbb{N}$ are *u -equivalent* if they cannot be distinguished by any hyper-extension, i.e. if for every $A \subseteq \mathbb{N}$ one has either $\xi, \xi' \in {}^* A$ or $\xi, \xi' \notin {}^* A$.

When the hyperextension has the $|\wp(\mathbb{N})|^+$ -enlarging property, ultrafilters and hypernaturals can be identified:

- $\alpha \rightarrow \mathcal{U}_\alpha = \{A \in \wp(\mathbb{N}) \mid \alpha \in {}^* A\}$;
- $\mathcal{U} \rightarrow \mu(\mathcal{U}) = \{\alpha \in {}^* \mathbb{N} \mid \mathcal{U} = \mathcal{U}_\alpha\}$.

u -equivalence and partition regularity

Definition

Two hypernatural numbers $\xi, \xi' \in {}^* \mathbb{N}$ are *u -equivalent* if they cannot be distinguished by any hyper-extension, i.e. if for every $A \subseteq \mathbb{N}$ one has either $\xi, \xi' \in {}^* A$ or $\xi, \xi' \notin {}^* A$.

When the hyperextension has the $|\wp(\mathbb{N})|^{+}$ -enlarging property, ultrafilters and hypernaturals can be identified:

- $\alpha \rightarrow \mathcal{U}_\alpha = \{A \in \wp(\mathbb{N}) \mid \alpha \in {}^* A\}$;
- $\mathcal{U} \rightarrow \mu(\mathcal{U}) = \{\alpha \in {}^* \mathbb{N} \mid \mathcal{U} = \mathcal{U}_\alpha\}$.

Proposition

A Diophantine equation $P(x_1, \dots, x_n) = 0$ is PR if and only if there exist u -equivalent hypernatural numbers ξ_1, \dots, ξ_n with ${}^* P(\xi_1, \dots, \xi_n) = 0$.

Multi-index notations

- An n -dimensional **multi-index** is an n -tuple $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}_0^n$;

Multi-index notations

- An n -dimensional **multi-index** is an n -tuple $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}_0^n$;
- $\alpha \leq \beta$ means that $\alpha_i \leq \beta_i$ for all $i = 1, \dots, n$;

Multi-index notations

- An n -dimensional **multi-index** is an n -tuple $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}_0^n$;
- $\alpha \leq \beta$ means that $\alpha_i \leq \beta_i$ for all $i = 1, \dots, n$;
- $\alpha < \beta$ means that $\alpha \leq \beta$ and $\alpha \neq \beta$;

Multi-index notations

- An n -dimensional **multi-index** is an n -tuple $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}_0^n$;
- $\alpha \leq \beta$ means that $\alpha_i \leq \beta_i$ for all $i = 1, \dots, n$;
- $\alpha < \beta$ means that $\alpha \leq \beta$ and $\alpha \neq \beta$;
- If $\mathbf{x} = (x_1, \dots, x_n)$ is vector and $\alpha = (\alpha_1, \dots, \alpha_n)$ is a multi-index, the product $\prod_{i=1}^n x_i^{\alpha_i}$ is denoted by \mathbf{x}^α ;

Multi-index notations

- An n -dimensional **multi-index** is an n -tuple $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}_0^n$;
- $\alpha \leq \beta$ means that $\alpha_i \leq \beta_i$ for all $i = 1, \dots, n$;
- $\alpha < \beta$ means that $\alpha \leq \beta$ and $\alpha \neq \beta$;
- If $\mathbf{x} = (x_1, \dots, x_n)$ is vector and $\alpha = (\alpha_1, \dots, \alpha_n)$ is a multi-index, the product $\prod_{i=1}^n x_i^{\alpha_i}$ is denoted by \mathbf{x}^α ;
- The **length** of a multi-index $\alpha = (\alpha_1, \dots, \alpha_n)$ is $|\alpha| = \sum_{i=1}^n \alpha_i$;

Multi-index notations

- An n -dimensional **multi-index** is an n -tuple $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}_0^n$;
- $\alpha \leq \beta$ means that $\alpha_i \leq \beta_i$ for all $i = 1, \dots, n$;
- $\alpha < \beta$ means that $\alpha \leq \beta$ and $\alpha \neq \beta$;
- If $\mathbf{x} = (x_1, \dots, x_n)$ is vector and $\alpha = (\alpha_1, \dots, \alpha_n)$ is a multi-index, the product $\prod_{i=1}^n x_i^{\alpha_i}$ is denoted by \mathbf{x}^α ;
- The **length** of a multi-index $\alpha = (\alpha_1, \dots, \alpha_n)$ is $|\alpha| = \sum_{i=1}^n \alpha_i$;
- A set I of n -dimensional multi-indexes having all the same length is called *homogeneous*;

Multi-index notations

- An n -dimensional **multi-index** is an n -tuple $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}_0^n$;
- $\alpha \leq \beta$ means that $\alpha_i \leq \beta_i$ for all $i = 1, \dots, n$;
- $\alpha < \beta$ means that $\alpha \leq \beta$ and $\alpha \neq \beta$;
- If $\mathbf{x} = (x_1, \dots, x_n)$ is vector and $\alpha = (\alpha_1, \dots, \alpha_n)$ is a multi-index, the product $\prod_{i=1}^n x_i^{\alpha_i}$ is denoted by \mathbf{x}^α ;
- The **length** of a multi-index $\alpha = (\alpha_1, \dots, \alpha_n)$ is $|\alpha| = \sum_{i=1}^n \alpha_i$;
- A set I of n -dimensional multi-indexes having all the same length is called *homogeneous*;
- Polynomials $P \in \mathbb{Z}[x_1, \dots, x_n]$ are written in the form $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha}$ where α are multi-indexes;

Multi-index notations

- An n -dimensional **multi-index** is an n -tuple $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}_0^n$;
- $\alpha \leq \beta$ means that $\alpha_i \leq \beta_i$ for all $i = 1, \dots, n$;
- $\alpha < \beta$ means that $\alpha \leq \beta$ and $\alpha \neq \beta$;
- If $\mathbf{x} = (x_1, \dots, x_n)$ is vector and $\alpha = (\alpha_1, \dots, \alpha_n)$ is a multi-index, the product $\prod_{i=1}^n x_i^{\alpha_i}$ is denoted by \mathbf{x}^α ;
- The **length** of a multi-index $\alpha = (\alpha_1, \dots, \alpha_n)$ is $|\alpha| = \sum_{i=1}^n \alpha_i$;
- A set I of n -dimensional multi-indexes having all the same length is called *homogeneous*;
- Polynomials $P \in \mathbb{Z}[x_1, \dots, x_n]$ are written in the form $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha}$ where α are multi-indexes;
- The **support** of P is the finite set $\text{supp}(P) = \{\alpha \mid c_{\alpha} \neq 0\}$;

Multi-index notations

- An n -dimensional **multi-index** is an n -tuple $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}_0^n$;
- $\alpha \leq \beta$ means that $\alpha_i \leq \beta_i$ for all $i = 1, \dots, n$;
- $\alpha < \beta$ means that $\alpha \leq \beta$ and $\alpha \neq \beta$;
- If $\mathbf{x} = (x_1, \dots, x_n)$ is vector and $\alpha = (\alpha_1, \dots, \alpha_n)$ is a multi-index, the product $\prod_{i=1}^n x_i^{\alpha_i}$ is denoted by \mathbf{x}^α ;
- The **length** of a multi-index $\alpha = (\alpha_1, \dots, \alpha_n)$ is $|\alpha| = \sum_{i=1}^n \alpha_i$;
- A set I of n -dimensional multi-indexes having all the same length is called *homogeneous*;
- Polynomials $P \in \mathbb{Z}[x_1, \dots, x_n]$ are written in the form $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha}$ where α are multi-indexes;
- The **support** of P is the finite set $\text{supp}(P) = \{\alpha \mid c_{\alpha} \neq 0\}$;
- A polynomial $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha}$ is **homogeneous** if $\text{supp}(P)$ is a homogeneous set of indexes.

Minimal and maximal indeces

Definition

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$. We say that a multi-index $\alpha \in \text{supp}(P)$ is **minimal** if there are no $\beta \in \text{supp}(P)$ with $\beta < \alpha$. The notion of **maximal** multi-index is defined similarly.

Minimal and maximal indeces

Definition

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$. We say that a multi-index $\alpha \in \text{supp}(P)$ is **minimal** if there are no $\beta \in \text{supp}(P)$ with $\beta < \alpha$. The notion of **maximal** multi-index is defined similarly. A nonempty set $J \subseteq \text{supp}(P)$ is called a **Rado set of indexes** if for every $\alpha, \beta \in J$ there exists a nonempty $\Lambda \subseteq \{1, \dots, n\}$ with $\sum_{i \in \Lambda} \alpha_i = \sum_{i \in \Lambda} \beta_i$.

Minimal and maximal indeces

Definition

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$. We say that a multi-index $\alpha \in \text{supp}(P)$ is **minimal** if there are no $\beta \in \text{supp}(P)$ with $\beta < \alpha$. The notion of **maximal** multi-index is defined similarly. A nonempty set $J \subseteq \text{supp}(P)$ is called a **Rado set of indexes** if for every $\alpha, \beta \in J$ there exists a nonempty $\Lambda \subseteq \{1, \dots, n\}$ with $\sum_{i \in \Lambda} \alpha_i = \sum_{i \in \Lambda} \beta_i$.

For linear polynomials, every nonempty $J \subseteq \text{Supp}(P) = \{\alpha(1), \dots, \alpha(n)\}$ is a Rado set of both minimal and maximal indexes.

Minimal and maximal indeces

Definition

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$. We say that a multi-index $\alpha \in \text{supp}(P)$ is **minimal** if there are no $\beta \in \text{supp}(P)$ with $\beta < \alpha$. The notion of **maximal** multi-index is defined similarly. A nonempty set $J \subseteq \text{supp}(P)$ is called a **Rado set of indexes** if for every $\alpha, \beta \in J$ there exists a nonempty $\Lambda \subseteq \{1, \dots, n\}$ with $\sum_{i \in \Lambda} \alpha_i = \sum_{i \in \Lambda} \beta_i$.

For linear polynomials, every nonempty $J \subseteq \text{Supp}(P) = \{\alpha(1), \dots, \alpha(n)\}$ is a Rado set of both minimal and maximal indexes.

Example

In $c_{(2,1,1,0)}x_1^2x_2x_3 + c_{(1,2,7,0)}x_1x_2^2x_3^7 + c_{(2,2,2,1)}x_1^2x_2^2x_3^2x_4$, the set $J = \{(2, 1, 1, 0), (1, 2, 7, 0)\}$ is a Rado set of minimal (but not maximal) indeces: just let $\Lambda = \{1, 2\} \subseteq \{1, 2, 3, 4\}$.

General necessary condition

Theorem

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$ be a polynomial with no constant term.

General necessary condition

Theorem

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$ be a polynomial with no constant term. Suppose there exists a prime p such that:

General necessary condition

Theorem

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$ be a polynomial with no constant term. Suppose there exists a prime p such that:

- ① $\sum_{\alpha} c_{\alpha} z^{|\alpha|} \equiv 0 \pmod{p}$ has no solutions $z \not\equiv 0$;

General necessary condition

Theorem

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$ be a polynomial with no constant term. Suppose there exists a prime p such that:

- ① $\sum_{\alpha} c_{\alpha} z^{|\alpha|} \equiv 0 \pmod{p}$ has no solutions $z \not\equiv 0$;
- ② For every Rado set J of minimal indexes, $\sum_{\alpha \in J} c_{\alpha} z^{|\alpha|} \equiv 0 \pmod{p}$ has no solutions $z \not\equiv 0$.

General necessary condition

Theorem

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$ be a polynomial with no constant term. Suppose there exists a prime p such that:

- ① $\sum_{\alpha} c_{\alpha} z^{|\alpha|} \equiv 0 \pmod{p}$ has no solutions $z \not\equiv 0$;
- ② For every Rado set J of minimal indexes, $\sum_{\alpha \in J} c_{\alpha} z^{|\alpha|} \equiv 0 \pmod{p}$ has no solutions $z \not\equiv 0$.

Then $P(\mathbf{x})$ is not PR, except possibly for constant solutions

$x_1 = \dots = x_n$.

General necessary condition

Theorem

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$ be a polynomial with no constant term. Suppose there exists a prime p such that:

- ① $\sum_{\alpha} c_{\alpha} z^{|\alpha|} \equiv 0 \pmod{p}$ has no solutions $z \not\equiv 0$;
- ② For every Rado set J of minimal indexes, $\sum_{\alpha \in J} c_{\alpha} z^{|\alpha|} \equiv 0 \pmod{p}$ has no solutions $z \not\equiv 0$.

Then $P(\mathbf{x})$ is not PR, except possibly for constant solutions

$$x_1 = \dots = x_n.$$

Proof.

Pick infinite $\xi_1 \approx \dots \approx \xi_n$ such that $P(\boldsymbol{\xi}) = \sum_{\alpha} c_{\alpha} \boldsymbol{\xi}^{\alpha} = 0$.

General necessary condition

Theorem

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$ be a polynomial with no constant term. Suppose there exists a prime p such that:

- ① $\sum_{\alpha} c_{\alpha} z^{|\alpha|} \equiv 0 \pmod{p}$ has no solutions $z \not\equiv 0$;
- ② For every Rado set J of minimal indexes, $\sum_{\alpha \in J} c_{\alpha} z^{|\alpha|} \equiv 0 \pmod{p}$ has no solutions $z \not\equiv 0$.

Then $P(\mathbf{x})$ is not PR, except possibly for constant solutions

$$x_1 = \dots = x_n.$$

Proof.

Pick infinite $\xi_1 \approx \dots \approx \xi_n$ such that $P(\boldsymbol{\xi}) = \sum_{\alpha} c_{\alpha} \boldsymbol{\xi}^{\alpha} = 0$. Write ξ_i in base p .

General necessary condition

Theorem

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$ be a polynomial with no constant term. Suppose there exists a prime p such that:

- ① $\sum_{\alpha} c_{\alpha} z^{|\alpha|} \equiv 0 \pmod{p}$ has no solutions $z \not\equiv 0$;
- ② For every Rado set J of minimal indexes, $\sum_{\alpha \in J} c_{\alpha} z^{|\alpha|} \equiv 0 \pmod{p}$ has no solutions $z \not\equiv 0$.

Then $P(\mathbf{x})$ is not PR, except possibly for constant solutions

$$x_1 = \dots = x_n.$$

Proof.

Pick infinite $\xi_1 \approx \dots \approx \xi_n$ such that $P(\boldsymbol{\xi}) = \sum_{\alpha} c_{\alpha} \boldsymbol{\xi}^{\alpha} = 0$. Write ξ_i in base p . Find the absurd playing with the exponents and the coefficients in this expansion. □

Examples

Examples

Example

Let $P(x_1, x_2, x_3) = x_1^2 x_2 - 2x_3$. Pick any prime number p with $p \equiv 3$ or $p \equiv 5 \pmod{8}$, so that 2 is not a quadratic residue modulo p .

Examples

Example

Let $P(x_1, x_2, x_3) = x_1^2 x_2 - 2x_3$. Pick any prime number p with $p \equiv 3$ or $p \equiv 5 \pmod{8}$, so that 2 is not a quadratic residue modulo p . Then condition (1) is satisfied because $z^3 - 2z \equiv 0$ iff $z \equiv 0$, and also condition (2) is easily verified.

Examples

Example

Let $P(x_1, x_2, x_3) = x_1^2 x_2 - 2x_3$. Pick any prime number p with $p \equiv 3$ or $p \equiv 5 \pmod{8}$, so that 2 is not a quadratic residue modulo p . Then condition (1) is satisfied because $z^3 - 2z \equiv 0$ iff $z \equiv 0$, and also condition (2) is easily verified. Since it has no constant solutions $x_1 = x_2 = x_3$, we can conclude that $P(x_1, x_2, x_3)$ is not PR.

Examples

Example

Let $P(x_1, x_2, x_3) = x_1^2 x_2 - 2x_3$. Pick any prime number p with $p \equiv 3$ or $p \equiv 5 \pmod{8}$, so that 2 is not a quadratic residue modulo p . Then condition (1) is satisfied because $z^3 - 2z \equiv 0$ iff $z \equiv 0$, and also condition (2) is easily verified. Since it has no constant solutions $x_1 = x_2 = x_3$, we can conclude that $P(x_1, x_2, x_3)$ is not PR.

Notice that, by Multiplicative Rado's Theorem, the seemingly similar equation $x_1^2 x_2 = x_3$ is PR.

Examples

Example

Let $P(x_1, x_2, x_3) = x_1^2 x_2 - 2x_3$. Pick any prime number p with $p \equiv 3$ or $p \equiv 5 \pmod{8}$, so that 2 is not a quadratic residue modulo p . Then condition (1) is satisfied because $z^3 - 2z \equiv 0$ iff $z \equiv 0$, and also condition (2) is easily verified. Since it has no constant solutions $x_1 = x_2 = x_3$, we can conclude that $P(x_1, x_2, x_3)$ is not PR.

Notice that, by Multiplicative Rado's Theorem, the seemingly similar equation $x_1^2 x_2 = x_3$ is PR.

Corollary

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$ be an homogeneous polynomial. If for every nonempty $J \subseteq \text{supp}(P)$ one has $\sum_{\alpha \in J} c_{\alpha} \neq 0$, then $P(\mathbf{x})$ is not PR.

Necessary condition for sums of polynomials in one variable/1

Theorem

For every $i = 1, \dots, n$ let $P_i(x_i) = \sum_{s=1}^{d_i} c_{i,s} x_i^s$ be a polynomial of degree d_i in the variable x_i with no constant term.

Necessary condition for sums of polynomials in one variable/1

Theorem

For every $i = 1, \dots, n$ let $P_i(x_i) = \sum_{s=1}^{d_i} c_{i,s} x_i^s$ be a polynomial of degree d_i in the variable x_i with no constant term. If the Diophantine equation

$$\sum_{i=1}^n P_i(x_i) = 0$$

is PR then the following “Rado’s condition” is satisfied:

Necessary condition for sums of polynomials in one variable/1

Theorem

For every $i = 1, \dots, n$ let $P_i(x_i) = \sum_{s=1}^{d_i} c_{i,s} x_i^s$ be a polynomial of degree d_i in the variable x_i with no constant term. If the Diophantine equation

$$\sum_{i=1}^n P_i(x_i) = 0$$

is PR then the following “Rado’s condition” is satisfied:

- “There exists a nonempty set $J \subseteq \{1, \dots, n\}$ such that $d_i = d_j$ for every $i, j \in J$, and $\sum_{j \in J} c_{j,d_j} = 0$.”

Necessary condition for sums of polynomials in one variable/2

Proof.

For every i , let $\Lambda(i) = \{s \mid c_{i,s} \neq 0\}$ be the support of $P_i(x_i)$, and for every s , let $\Gamma(s) = \{i \mid c_{i,s} \neq 0\}$. If we denote by

$$P(\mathbf{x}) = \sum_{i=1}^n P_i(x_i) = \sum_{i=1}^n \sum_{s \in \Lambda(i)} c_{i,s} x_i^s,$$

by the nonstandard characterization of non-trivial PR, we can pick infinite $\xi_1 \approx \dots \approx \xi_n$ such that $P(\xi) = 0$. Now fix any finite number $p \geq 2$, and write the numbers ξ_i in base p :

$$\xi_i = \sum_{t=0}^{\tau_i} a_{i,t} p^{\tau_i - t}$$

where $0 \leq a_{i,t} \leq p-1$ and $a_{i,0} \neq 0$.

Necessary condition for sums of polynomials in one variable/3

Proof.

Let $s_*\tau_* = \max\{s\tau_i \mid i \in \Gamma(s)\}$. It is not difficult to show that $d_i = s_*$ for every $i \in \Gamma(s_*)$, by the maximality of $s_*\tau_*$.

Necessary condition for sums of polynomials in one variable/3

Proof.

Let $s_*\tau_* = \max\{s\tau_i \mid i \in \Gamma(s)\}$. It is not difficult to show that $d_i = s_*$ for every $i \in \Gamma(s_*)$, by the maximality of $s_*\tau_*$.

Now let $I_* = \{i \in \Gamma(s_*) \mid \tau_i = \tau_*\}$, and decompose $P(\xi) = \Theta + \Psi + \Phi$, where:

- $\Theta = \sum_{i \in I_*} c_{i,s_*} \xi_i^{s_*}$;
- $\Psi = \sum_{i \in \Gamma(s_*) \setminus I_*} c_{i,s_*} \xi_i^{s_*}$;
- $\Phi = \sum_{s \neq s_*} \sum_{i \in \Gamma(s)} c_{i,s} \xi_i^s$.

Necessary condition for sums of polynomials in one variable/3

Proof.

Let $s_*\tau_* = \max\{s\tau_i \mid i \in \Gamma(s)\}$. It is not difficult to show that $d_i = s_*$ for every $i \in \Gamma(s_*)$, by the maximality of $s_*\tau_*$.

Now let $I_* = \{i \in \Gamma(s_*) \mid \tau_i = \tau_*\}$, and decompose $P(\xi) = \Theta + \Psi + \Phi$, where:

- $\Theta = \sum_{i \in I_*} c_{i,s_*} \xi_i^{s_*}$;
- $\Psi = \sum_{i \in \Gamma(s_*) \setminus I_*} c_{i,s_*} \xi_i^{s_*}$;
- $\Phi = \sum_{s \neq s_*} \sum_{i \in \Gamma(s)} c_{i,s} \xi_i^s$.

Lemma

- ① $\Theta = \left(\sum_{i \in I_*} c_{i,s_*} \right) \zeta + \Theta'$ for suitable $\zeta \geq p^{s_*\tau_*}$ and $|\Theta'| \ll p^{s_*\tau_*}$.

Necessary condition for sums of polynomials in one variable/3

Proof.

Let $s_*\tau_* = \max\{s\tau_i \mid i \in \Gamma(s)\}$. It is not difficult to show that $d_i = s_*$ for every $i \in \Gamma(s_*)$, by the maximality of $s_*\tau_*$.

Now let $I_* = \{i \in \Gamma(s_*) \mid \tau_i = \tau_*\}$, and decompose $P(\xi) = \Theta + \Psi + \Phi$, where:

- $\Theta = \sum_{i \in I_*} c_{i,s_*} \xi_i^{s_*}$;
- $\Psi = \sum_{i \in \Gamma(s_*) \setminus I_*} c_{i,s_*} \xi_i^{s_*}$;
- $\Phi = \sum_{s \neq s_*} \sum_{i \in \Gamma(s)} c_{i,s} \xi_i^s$.

Lemma

- ① $\Theta = \left(\sum_{i \in I_*} c_{i,s_*} \right) \zeta + \Theta'$ for suitable $\zeta \geq p^{s_*\tau_*}$ and $|\Theta'| \ll p^{s_*\tau_*}$.
- ② $|\Psi| \ll p^{s_*\tau_*}$.

Necessary condition for sums of polynomials in one variable/3

Proof.

Let $s_*\tau_* = \max\{s\tau_i \mid i \in \Gamma(s)\}$. It is not difficult to show that $d_i = s_*$ for every $i \in \Gamma(s_*)$, by the maximality of $s_*\tau_*$.

Now let $I_* = \{i \in \Gamma(s_*) \mid \tau_i = \tau_*\}$, and decompose $P(\xi) = \Theta + \Psi + \Phi$, where:

- $\Theta = \sum_{i \in I_*} c_{i,s_*} \xi_i^{s_*}$;
- $\Psi = \sum_{i \in \Gamma(s_*) \setminus I_*} c_{i,s_*} \xi_i^{s_*}$;
- $\Phi = \sum_{s \neq s_*} \sum_{i \in \Gamma(s)} c_{i,s} \xi_i^s$.

Lemma

- ① $\Theta = \left(\sum_{i \in I_*} c_{i,s_*} \right) \zeta + \Theta'$ for suitable $\zeta \geq p^{s_*\tau_*}$ and $|\Theta'| \ll p^{s_*\tau_*}$.
- ② $|\Psi| \ll p^{s_*\tau_*}$.
- ③ $|\Phi| \ll p^{s_*\tau_*}$.

Necessary condition for sums of polynomials in one variable/3

Proof.

Let $s_*\tau_* = \max\{s\tau_i \mid i \in \Gamma(s)\}$. It is not difficult to show that $d_i = s_*$ for every $i \in \Gamma(s_*)$, by the maximality of $s_*\tau_*$.

Now let $I_* = \{i \in \Gamma(s_*) \mid \tau_i = \tau_*\}$, and decompose $P(\xi) = \Theta + \Psi + \Phi$, where:

- $\Theta = \sum_{i \in I_*} c_{i,s_*} \xi_i^{s_*}$;
- $\Psi = \sum_{i \in \Gamma(s_*) \setminus I_*} c_{i,s_*} \xi_i^{s_*}$;
- $\Phi = \sum_{s \neq s_*} \sum_{i \in \Gamma(s)} c_{i,s} \xi_i^s$.

Lemma

- ① $\Theta = \left(\sum_{i \in I_*} c_{i,s_*} \right) \zeta + \Theta'$ for suitable $\zeta \geq p^{s_*\tau_*}$ and $|\Theta'| \ll p^{s_*\tau_*}$.
- ② $|\Psi| \ll p^{s_*\tau_*}$.
- ③ $|\Phi| \ll p^{s_*\tau_*}$.

Necessary condition for sums of polynomials in one variable/3

Proof.

Since $P(\xi) = \Theta + \Psi + \Phi = 0$, the above inequalities imply that the sum of coefficients $\sum_{i \in I_*} c_{i,s_*} = 0$.

Necessary condition for sums of polynomials in one variable/3

Proof.

Since $P(\xi) = \Theta + \Psi + \Phi = 0$, the above inequalities imply that the sum of coefficients $\sum_{i \in I_*} c_{i,s_*} = 0$. We claim that $J = I_*$ is the desired set of indexes. In fact, I_* is trivially nonempty; moreover, $d_i = d_j = s_*$ for all $i, j \in J$; and $\sum_{j \in J} c_{j,d_j} = \sum_{j \in J} c_{j,s_*} = 0$.

Necessary condition for sums of polynomials in one variable/3

Proof.

Since $P(\xi) = \Theta + \Psi + \Phi = 0$, the above inequalities imply that the sum of coefficients $\sum_{i \in I_*} c_{i,s_*} = 0$. We claim that $J = I_*$ is the desired set of indexes. In fact, I_* is trivially nonempty; moreover, $d_i = d_j = s_*$ for all $i, j \in J$; and $\sum_{j \in J} c_{j,d_j} = \sum_{j \in J} c_{j,s_*} = 0$.

The most complicated part is the proof of the Lemma.

Necessary condition for sums of polynomials in one variable/3

Proof.

Since $P(\xi) = \Theta + \Psi + \Phi = 0$, the above inequalities imply that the sum of coefficients $\sum_{i \in I_*} c_{i,s_*} = 0$. We claim that $J = I_*$ is the desired set of indexes. In fact, I_* is trivially nonempty; moreover, $d_i = d_j = s_*$ for all $i, j \in J$; and $\sum_{j \in J} c_{j,d_j} = \sum_{j \in J} c_{j,s_*} = 0$.

The most complicated part is the proof of the Lemma. The idea is to let $\varphi : \mathbb{N} \rightarrow \mathbb{N}_0$ be the function s.t. $p^{\varphi(m)} \leq m < p^{\varphi(m)+1}$; and for every $t \in \mathbb{N}_0$, let $\psi_t(m) : \mathbb{N} \rightarrow \{0, 1, \dots, p-1\}$ be the function where $\psi_t(m)$ is the $(t+1)$ -th digit from the left when m is written in base p .

Necessary condition for sums of polynomials in one variable/3

Proof.

Since $P(\xi) = \Theta + \Psi + \Phi = 0$, the above inequalities imply that the sum of coefficients $\sum_{i \in I_*} c_{i,s_*} = 0$. We claim that $J = I_*$ is the desired set of indexes. In fact, I_* is trivially nonempty; moreover, $d_i = d_j = s_*$ for all $i, j \in J$; and $\sum_{j \in J} c_{j,d_j} = \sum_{j \in J} c_{j,s_*} = 0$.

The most complicated part is the proof of the Lemma. The idea is to let $\varphi : \mathbb{N} \rightarrow \mathbb{N}_0$ be the function s.t. $p^{\varphi(m)} \leq m < p^{\varphi(m)+1}$; and for every $t \in \mathbb{N}_0$, let $\psi_t(m) : \mathbb{N} \rightarrow \{0, 1, \dots, p-1\}$ be the function where $\psi_t(m)$ is the $(t+1)$ -th digit from the left when m is written in base p . Then the u -equivalences $\xi_1 \sim_u \dots \sim_u \xi_n$ imply, by *overspill*, that for every $a \in \mathbb{N}$ one has $\xi_i^a = \zeta_i^a + \vartheta_{i,a}$ where $p^{a\tau_i} \leq \zeta_i^a \leq \xi_i^a < p^{a\tau_i+a}$ and $\vartheta_{i,a} \ll p^{a\tau_i}$.

Necessary condition for sums of polynomials in one variable/3

Proof.

Since $P(\xi) = \Theta + \Psi + \Phi = 0$, the above inequalities imply that the sum of coefficients $\sum_{i \in I_*} c_{i,s_*} = 0$. We claim that $J = I_*$ is the desired set of indexes. In fact, I_* is trivially nonempty; moreover, $d_i = d_j = s_*$ for all $i, j \in J$; and $\sum_{j \in J} c_{j,d_j} = \sum_{j \in J} c_{j,s_*} = 0$.

The most complicated part is the proof of the Lemma. The idea is to let $\varphi : \mathbb{N} \rightarrow \mathbb{N}_0$ be the function s.t. $p^{\varphi(m)} \leq m < p^{\varphi(m)+1}$; and for every $t \in \mathbb{N}_0$, let $\psi_t(m) : \mathbb{N} \rightarrow \{0, 1, \dots, p-1\}$ be the function where $\psi_t(m)$ is the $(t+1)$ -th digit from the left when m is written in base p . Then the u -equivalences $\xi_1 \sim_u \dots \sim_u \xi_n$ imply, by *overspill*, that for every $a \in \mathbb{N}$ one has $\xi_i^a = \zeta_i^a + \vartheta_{i,a}$ where $p^{a\tau_i} \leq \zeta_i^a \leq \xi_i^a < p^{a\tau_i+a}$ and $\vartheta_{i,a} \ll p^{a\tau_i}$. With this decomposition, the lemma can be proven by showing that ζ_i^a and $\vartheta_{i,a}$ "does not mix in computations".

Examples

Examples

Corollary

A polynomial of the form $\sum_{i=1}^n c_i x_i + P(y)$, where P is a nonlinear polynomial with no constant term, is PR if and only if it is a Rado polynomial.

Examples

Corollary

A polynomial of the form $\sum_{i=1}^n c_i x_i + P(y)$, where P is a nonlinear polynomial with no constant term, is PR if and only if it is a Rado polynomial.

Example

The polynomial

$$P(x, y) = x^3 + 2x + y^3 - 2y$$

is not PR (even if it contains a partial sum of coefficients that equals zero).

Examples

Corollary

A polynomial of the form $\sum_{i=1}^n c_i x_i + P(y)$, where P is a nonlinear polynomial with no constant term, is PR if and only if it is a Rado polynomial.

Example

The polynomial

$$P(x, y) = x^3 + 2x + y^3 - 2y$$

is not PR (even if it contains a partial sum of coefficients that equals zero).

Example

The polynomials $x^n + y^m = z^k$ are not PR for $k \notin \{n, m\}$.

Open Problems/1

Open Problems/1

Open Problem 1. Is $x^2 + y^2 = z^2$ PR?

Open Problems/1

Open Problem 1. Is $x^2 + y^2 = z^2$ PR?

Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings.

Open Problems/1

Open Problem 1. Is $x^2 + y^2 = z^2$ PR?

Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

Open Problems/1

Open Problem 1. Is $x^2 + y^2 = z^2$ PR?

Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

Theorem

For every $k \in \mathbb{N}$ there exists $s_0(k)$ such that for every $s > s_0(k)$ and $c_1, \dots, c_s \in \mathbb{Z} \setminus \{0\}$ the following equivalence holds:

Open Problems/1

Open Problem 1. Is $x^2 + y^2 = z^2$ PR?

Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

Theorem

For every $k \in \mathbb{N}$ there exists $s_0(k)$ such that for every $s > s_0(k)$ and $c_1, \dots, c_s \in \mathbb{Z} \setminus \{0\}$ the following equivalence holds:

- The equation $\sum_{i=1}^s c_i x_i^k$ is PR;

Open Problems/1

Open Problem 1.

Is $x^2 + y^2 = z^2$ PR?

Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

Theorem

For every $k \in \mathbb{N}$ there exists $s_0(k)$ such that for every $s > s_0(k)$ and $c_1, \dots, c_s \in \mathbb{Z} \setminus \{0\}$ the following equivalence holds:

- The equation $\sum_{i=1}^s c_i x_i^k$ is PR;
- there exists a nonempty set $J \subseteq \{1, \dots, s\}$ s.t. $\sum_{j \in J} c_j = 0$.

Open Problems/1

Open Problem 1.

Is $x^2 + y^2 = z^2$ PR?

Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

Theorem

For every $k \in \mathbb{N}$ there exists $s_0(k)$ such that for every $s > s_0(k)$ and $c_1, \dots, c_s \in \mathbb{Z} \setminus \{0\}$ the following equivalence holds:

- The equation $\sum_{i=1}^s c_i x_i^k$ is PR;
- there exists a nonempty set $J \subseteq \{1, \dots, s\}$ s.t. $\sum_{j \in J} c_j = 0$.

$s_0(k)$ is of the order $k \log k$.

Open Problems/1

Open Problem 1.

Is $x^2 + y^2 = z^2$ PR?

Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

Theorem

For every $k \in \mathbb{N}$ there exists $s_0(k)$ such that for every $s > s_0(k)$ and $c_1, \dots, c_s \in \mathbb{Z} \setminus \{0\}$ the following equivalence holds:

- The equation $\sum_{i=1}^s c_i x_i^k$ is PR;
- there exists a nonempty set $J \subseteq \{1, \dots, s\}$ s.t. $\sum_{j \in J} c_j = 0$.

$s_0(k)$ is of the order $k \log k$.

Open Problem 2.

Are there simple decidable conditions under which a given (non-homogeneous) Diophantine equation with no constant term is PR on \mathbb{N} if and only if it is PR on \mathbb{Z} if and only if it is PR on \mathbb{Q} ?

Open Problems/2

Open Problems/2

Open Problem 3. Are equations of the form $\sum_{i=1}^n c_i x_i = \sum_{j=1}^m d_j y_j^2$ PR if and only if the linear or the quadratic part satisfy a Rado condition?

Open Problems/2

Open Problem 3. Are equations of the form $\sum_{i=1}^n c_i x_i = \sum_{j=1}^m d_j y_j^2$ PR if and only if the linear or the quadratic part satisfy a Rado condition?

Open Problem 4. Are there simple “Rado-like” necessary and sufficient conditions under which a given Diophantine equation with no constant term is PR on sufficiently large finite fields \mathbb{F}_p ?

Open Problems/2

Open Problem 3. Are equations of the form $\sum_{i=1}^n c_i x_i = \sum_{j=1}^m d_j y_j^2$ PR if and only if the linear or the quadratic part satisfy a Rado condition?

Open Problem 4. Are there simple “Rado-like” necessary and sufficient conditions under which a given Diophantine equation with no constant term is PR on sufficiently large finite fields \mathbb{F}_p ?

Open Problem 5. Is there a characterization of PR infinite systems of Diophantine equations in terms of u -equivalence? (Or, equivalently, by means of ultrafilters?)

Thank You!

email: lorenzo.luperi.baglini@univie.ac.at