Partition regularity of nonlinear Diophantine equations

Lorenzo Luperi Baglini

University of Vienna

Applications of Ultrafilters and Nonstandard Methods, IV

University of Hawaii at Manoa
Partition regularity of polynomials/equations

In this talk, we will repeatedly talk about the following property:

Definition
Let \(P_{x_1, \ldots, x_n} \) be a polynomial in \(\mathbb{Z}_r \). We say that the equation \(P_{x_1, \ldots, x_n} = 0 \) is (weakly) partition regular (PR) on \(\mathbb{N} \) if it has a monochromatic solution in every infinite coloring of \(\mathbb{N} \), i.e. for every coloring \(\mathbb{N} = \bigcup_{i=1}^k A_i \) with \(\mathbb{N} \cap A_i \) nonempty, there exist \(x_1, \ldots, x_n \in A_i \) such that \(P_{x_1, \ldots, x_n} = 0 \).

Example
Trivially, for every \(n \in \mathbb{N} \), the polynomial \(x^n \) is PR.
Partition regularity of polynomials/equations

In this talk, we will repeatedly talk about the following property:

Definition

Let $P(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$.
Partition regularity of polynomials/equations

In this talk, we will repeatedly talk about the following property:

Definition

Let $P(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$. We say that the equation $P(x_1, \ldots, x_n) = 0$ is *(weakly) partition regular (PR)* on \mathbb{N} if
Partition regularity of polynomials/equations

In this talk, we will repeatedly talk about the following property:

Definition

Let $P(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$. We say that the equation $P(x_1, \ldots, x_n) = 0$ is (weakly) partition regular (PR) on \mathbb{N} if it has a monochromatic solution in every finite coloring of \mathbb{N}, i.e.

$$\forall k \in \mathbb{N}, \forall \mathbb{N} = A_1 \cup \cdots \cup A_k \exists i \leq k \exists x_1, \ldots, x_n \in A_i \text{ s.t. } P(x_1, \ldots, x_n) = 0.$$
Partition regularity of polynomials/equations

In this talk, we will repeatedly talk about the following property:

Definition

Let $P(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$. We say that the equation $P(x_1, \ldots, x_n) = 0$ is (weakly) partition regular (PR) on \mathbb{N} if it has a monochromatic solution in every finite coloring of \mathbb{N}, i.e.

\[
\forall k \in \mathbb{N}, \forall \mathbb{N} = A_1 \cup \cdots \cup A_k \exists i \leq k \exists x_1, \ldots, x_n \in A_i \text{ s.t. } P(x_1, \ldots, x_n) = 0.
\]

Example

Trivially, for every $n \in \mathbb{N}$, the polynomial $x - n$ is PR.
Rado’s theorem

Theorem (Schur)

The polynomial $x + y - z$ is PR.
Rado’s theorem

Theorem (Schur)

The polynomial $x + y - z$ is PR.

Theorem (Rado)

A linear Diophantine equation with no constant term

$$c_1x_1 + \cdots + c_nx_n = 0$$

is PR on \mathbb{N} if and only if the following condition is satisfied:
Rado’s theorem

Theorem (Schur)

The polynomial $x + y - z$ is PR.

Theorem (Rado)

A linear Diophantine equation with no constant term

$$c_1 x_1 + \cdots + c_n x_n = 0$$

is PR on \mathbb{N} if and only if the following condition is satisfied:

- “There exists a nonempty set $J \subseteq \{1, \ldots, n\}$ such that $\sum_{j \in J} c_j = 0$.”
Theorem (Multiplicative Rado)

A nonlinear Diophantine equation $\prod_{i=1}^{n} x_i^{c_i} = 1$ is PR on \mathbb{N} if and only if the following condition is satisfied:
Nonlinear results/1

Theorem (Multiplicative Rado)

A nonlinear Diophantine equation $\prod_{i=1}^{n} x_i^{c_i} = 1$ is PR on \mathbb{N} if and only if the following condition is satisfied:

- “There exists a nonempty set $J \subseteq \{1, \ldots, n\}$ such that $\sum_{j \in J} c_j = 0$.”
Theorem (Multiplicative Rado)

A nonlinear Diophantine equation $ \prod_{i=1}^{n} x_i^{c_i} = 1 $ is PR on $ \mathbb{N} $ if and only if the following condition is satisfied:

- “There exists a nonempty set $ J \subseteq \{1, \ldots, n\} $ such that $ \sum_{j \in J} c_j = 0 $.”

Idea: $ n \rightarrow 2^n $.

Lorenzo Luperi Baglini
University of Vienna
23 March 2019
Nonlinear results/1

Theorem (Multiplicative Rado)

A nonlinear Diophantine equation $\prod_{i=1}^{n} x_i^{c_i} = 1$ is PR on \mathbb{N} if and only if the following condition is satisfied:

- “There exists a nonempty set $J \subseteq \{1, \ldots, n\}$ such that $\sum_{j \in J} c_j = 0$.”

Idea: $n \rightarrow 2^n$.

Theorem (Lefmann)

Let $k \in \mathbb{N}$. A Diophantine equation of the form $c_1 x_1^{1/k} + \cdots + c_n x_n^{1/k} = 0$ is PR on \mathbb{N} if and only if the following condition is satisfied:
Nonlinear results/1

Theorem (Multiplicative Rado)

A nonlinear Diophantine equation \(\prod_{i=1}^{n} x_i^{c_i} = 1 \) is PR on \(\mathbb{N} \) if and only if the following condition is satisfied:

- “There exists a nonempty set \(J \subseteq \{1, \ldots, n\} \) such that \(\sum_{j \in J} c_j = 0 \).”

Idea: \(n \to 2^n \).

Theorem (Lefmann)

Let \(k \in \mathbb{N} \). A Diophantine equation of the form \(c_1 x_1^{1/k} + \cdots + c_n x_n^{1/k} = 0 \) is PR on \(\mathbb{N} \) if and only if the following condition is satisfied:

- “There exists a nonempty set \(J \subseteq \{1, \ldots, n\} \) such that \(\sum_{j \in J} c_j = 0 \).”
Theorem (Multiplicative Rado)

A nonlinear Diophantine equation \(\prod_{i=1}^{n} x_i^{c_i} = 1 \) is PR on \(\mathbb{N} \) if and only if the following condition is satisfied:

- “There exists a nonempty set \(J \subseteq \{1, \ldots, n\} \) such that \(\sum_{j \in J} c_j = 0 \).”

Idea: \(n \rightarrow 2^n \).

Theorem (Lefmann)

Let \(k \in \mathbb{N} \). A Diophantine equation of the form \(c_1 x_1^{1/k} + \cdots + c_n x_n^{1/k} = 0 \) is PR on \(\mathbb{N} \) if and only if the following condition is satisfied:

- “There exists a nonempty set \(J \subseteq \{1, \ldots, n\} \) such that \(\sum_{j \in J} c_j = 0 \).”

Idea: \(n \rightarrow n^k \).
Nonlinear results/2

Theorem (Bergelson, Furstenberg, McCutcheon)

Let $P(z) \in \mathbb{Z}[z]$ be such that $P(0) = 0$. Then the equation $x - y = P(z)$ is PR.
Nonlinear results/2

Theorem (Bergelson, Furstenberg, McCutcheon)

Let $P(z) \in \mathbb{Z}[z]$ be such that $P(0) = 0$. Then the equation $x - y = P(z)$ is PR.

Idea: use ergodic methods (recurrence sets).
Nonlinear results/2

Theorem (Bergelson, Furstenberg, McCutcheon)

Let \(P(z) \in \mathbb{Z}[z] \) be such that \(P(0) = 0 \). Then the equation \(x - y = P(z) \) is PR.

Idea: use ergodic methods (recurrence sets).

Theorem (Csikvári, Gyarmati and Sárkőzy)

The equation \(x + y = z^2 \) is not partition regular.
Nonlinear results/2

Theorem (Bergelson, Furstenberg, McCutcheon)

Let \(P(z) \in \mathbb{Z}[z] \) be such that \(P(0) = 0 \). Then the equation \(x - y = P(z) \) is PR.

Idea: use ergodic methods (recurrence sets).

Theorem (Csikvári, Gyarmati and Sárkőzy)

The equation \(x + y = z^2 \) is not partition regular.

They asked the following question: is \(x + y = tz \) PR?
Nonlinear results/2

Theorem (Bergelson, Furstenberg, McCutcheon)

Let \(P(z) \in \mathbb{Z}[z] \) be such that \(P(0) = 0 \). Then the equation \(x - y = P(z) \) is PR.

Idea: use ergodic methods (recurrence sets).

Theorem (Csikvári, Gyarmati and Sárkőzy)

The equation \(x + y = z^2 \) is not partition regular.

They asked the following question: is \(x + y = tz \) PR?

In 2010, by using algebraic properties of ultrafilters in \(\beta \mathbb{N} \), Bergelson solved the problem in the positive.
Nonlinear results/3

Independently, Hindman proved a more general version of Bergelson’s result:

\[
\begin{align*}
\text{Theorem (Hindman)} \\
\text{All Diophantine equations of the form } & x_1^n \pm m_1 y_1 = 0 \\
\text{are PR.} \\
\text{Idea: use the algebra of } & \beta^N, \text{in particular the existence of a ultralter } U \text{ such that every set } A^P U \text{is additively and multiplicatively IP.}
\end{align*}
\]

\[
\begin{align*}
\text{Theorem (Luperi Baglini)} \\
\text{Let } n, m \neq 0. \text{ For every choice of sets } F_1, \ldots, F_m, \text{ the equation } & x_1^n + \cdots + x_n^{c_1} \pm j \in F_j y_1^{q_1} = 0 \text{ is partition regular whenever } c_j \neq 0 \text{ for some nonempty } J \neq 1, \ldots, m. \text{ (It is agreed that } \pm j \in F_j). \\
\text{Idea: use the existence of a multiplicatively idempotent ultralter } U \text{ with good linear properties; study the ultralter using nonstandard analysis.}
\end{align*}
\]
Nonlinear results/3

Independently, Hindman proved a more general version of Bergelson’s result:

Theorem (Hindman)

All Diophantine equations of the form \(\sum_{i=1}^{n} x_i = \prod_{i=1}^{m} y_i \) are PR.

Idea: use the algebra of \(\beta \mathbb{N} \), in particular the existence of a ultrafilter \(U \) such that every set \(A \) is additively and multiplicatively \(IP \).

Theorem (Luperi Baglini)

Let \(n, m \geq 0 \). For every choice of sets \(F_i \) for \(i = 1, \ldots, m \), the equation \(\sum_{i=1}^{n} c_i x_i \pm \prod_{i=1}^{m} y_i = 0 \) is partition regular whenever \(\sum_{i=1}^{n} c_i \) for some nonempty \(J \) of \(i = 1, \ldots, m \). (It is agreed that \(\pm \) always holds.)

Idea: use the existence of a multiplicatively idempotent ultrafilter \(U \) with good linear properties; study the ultrafilter using nonstandard analysis.
Nonlinear results/3

Independently, Hindman proved a more general version of Bergelson’s result:

Theorem (Hindman)

All Diophantine equations of the form $\sum_{i=1}^{n} x_i = \prod_{i=1}^{m} y_i$ are PR.

Idea: use the algebra of $\beta\mathbb{N}$, in particular the existence of a ultrafilter \mathcal{U} such that every set $A \in \mathcal{U}$ is additively and multiplicatively IP.
Nonlinear results/3

Independently, Hindman proved a more general version of Bergelson’s result:

Theorem (Hindman)

All Diophantine equations of the form $\sum_{i=1}^{n} x_i = \prod_{i=1}^{m} y_i$ are PR.

Idea: use the algebra of $\beta\mathbb{N}$, in particular the existence of a ultrafilter \mathcal{U} such that every set $A \in \mathcal{U}$ is additively and multiplicatively IP.

Theorem (Luperi Baglini)

Let $n, m > 0$. For every choice of sets $F_i \subseteq \{1, \ldots, m\}$, the equation $\sum_{i=1}^{n} c_i x_i (\prod_{j \in F_i} y_j) = 0$ is partition regular whenever $\sum_{i \in J} c_i = 0$ for some nonempty $J \subseteq \{1, \ldots, m\}$. (It is agreed that $\prod_{j \in \emptyset} y_j = 1$.)
Nonlinear results/3

Independently, Hindman proved a more general version of Bergelson’s result:

Theorem (Hindman)

All Diophantine equations of the form \(\sum_{i=1}^{n} x_i = \prod_{i=1}^{m} y_i \) are PR.

Idea: use the algebra of \(\beta \mathbb{N} \), in particular the existence of a ultrafilter \(\mathcal{U} \) such that every set \(A \in \mathcal{U} \) is additively and multiplicatively IP.

Theorem (Luperi Baglini)

Let \(n, m > 0 \). For every choice of sets \(F_i \subseteq \{1, \ldots, m\} \), the equation \(\sum_{i=1}^{n} c_i x_i (\prod_{j \in F_i} y_j) = 0 \) is partition regular whenever \(\sum_{i \in J} c_j = 0 \) for some nonempty \(J \subseteq \{1, \ldots, m\} \). (It is agreed that \(\prod_{j \in \emptyset} y_j = 1 \).)

Idea: use the existence of a multiplicatively idempotent ultrafilter \(\mathcal{U} \) with good linear properties; study the ultrafilter using nonstandard analysis.
Theorem (Di Nasso, Riggio)

Let $k, n, m \in \mathbb{N}$ be such that $k \notin \{n, m\}$. Then the equation

$$x^m + y^n = z^k$$

is not PR.
Theorem (Di Nasso, Riggio)

Let \(k, n, m \in \mathbb{N} \) be such that \(k \notin \{n, m\} \). Then the equation
\[x^m + y^n = z^k \] is not PR.

Idea: use nonstandard analysis, write numbers in base \(p \) for a sufficiently large prime number \(p \).
Theorem (Di Nasso, Riggio)

Let $k, n, m \in \mathbb{N}$ be such that $k \notin \{n, m\}$. Then the equation $x^m + y^n = z^k$ is not PR.

Idea: use nonstandard analysis, write numbers in base p for a sufficiently large prime number p.

Theorem (Moreira)

Let $\sum_{i=1}^{n} c_i = 0$. Then $\sum_{i=1}^{n} c_i x_i^2 = y$ is PR.
Nonlinear results/4

Theorem (Di Nasso, Riggio)

Let $k, n, m \in \mathbb{N}$ be such that $k \notin \{n, m\}$. Then the equation $x^m + y^n = z^k$ is not PR.

Idea: use nonstandard analysis, write numbers in base p for a sufficiently large prime number p.

Theorem (Moreira)

Let $\sum_{i=1}^{n} c_i = 0$. Then $\sum_{i=1}^{n} c_i x_i^2 = y$ is PR.

Idea: use ergodic methods involving the set of affinities $\{x \to ax + b\}$; alternatively, use an embeddability property of piecewise syndetic sets w.r.t. arithmetic progressions.
Partition regularity as a ultrafilters problem

$\beta\mathbb{N}$ turns out to be a natural setting where to study PR problems because of the following characterization (which is given here for equations, but holds in a way more general fashion):

Proposition

A Diophantine equation

$P(x_1,\ldots,x_n,q_0)$ is PR if and only if there exists $U_P^{\beta\mathbb{N}}$ such that for every $A_P \subseteq U_P$ there exists $a_1,\ldots,a_n \in A$ with $P(a_1,\ldots,a_n,q_0)$.

In this case, we say that U_P witnesses the PR of the equation (notation: $U_P | \mathfrak{u}$).

Lorenzo Luperi Baglini
University of Vienna
23 March 2019
\(\beta \mathbb{N} \) turns out to be a natural setting where to study PR problems because of the following characterization (which is given here for equations, but holds in a way more general fashion):

Proposition

A Diophantine equation \(P(x_1, \ldots, x_n) = 0 \) is PR if and only if there exists \(U \in \beta \mathbb{N} \) such that for every \(A \in U \) there exists \(a_1, \ldots, a_n \in A \) with \(P(a_1, \ldots, a_n) = 0 \).

Lorenzo Luperi Baglini
University of Vienna
23 March 2019 8 / 32
Partition regularity as a ultrafilters problem

$\beta\mathbb{N}$ turns out to be a natural setting where to study PR problems because of the following characterization (which is given here for equations, but holds in a way more general fashion):

Proposition

A Diophantine equation $P(x_1, \ldots, x_n) = 0$ is PR if and only if there exists $\mathcal{U} \in \beta\mathbb{N}$ such that for every $A \in \mathcal{U}$ there exists $a_1, \ldots, a_n \in A$ with $P(a_1, \ldots, a_n) = 0$.

In this case, we say that \mathcal{U} witnesses the PR of the equation (notation: $\mathcal{U} \models P(a_1, \ldots, a_n) = 0$).
Banach density and IP-sets

Definition

Let $A \subseteq \mathbb{N}$. The upper *Banach density* of A is

$$BD(A) = \lim_{n \to +\infty} \sup_{m \in \mathbb{N}} \frac{|A \cap [m, m+n]|}{n+1}.$$

We let $\Delta = \{ \mathcal{U} \in \beta \mathbb{N} \mid BD(A) > 0 \ \forall A \in \mathcal{U} \}$.

Lorenzo Luperi Baglini

University of Vienna

23 March 2019
Banach density and IP-sets

Definition

Let $A \subseteq \mathbb{N}$. The upper Banach density of A is

$$BD(A) = \lim_{n \to +\infty} \sup_{m \in \mathbb{N}} \frac{|A \cap [m, m+n]|}{n+1}.$$

We let $\Delta = \{ \mathcal{U} \in \beta \mathbb{N} \mid BD(A) > 0 \ \forall A \in \mathcal{U} \}$.

Definition

Let $G = (g_i)_{i \in \mathbb{N}}$ be an increasing sequence of natural numbers. The IP-set generated by G is the set of finite sums

$$FS(G) = FS(g_i)_{i \in \mathbb{N}} = \left\{ \sum_{j=1}^{k} g_{i_j} \mid i_1 < i_2 < \cdots < i_k \right\}.$$

A set $A \subseteq \mathbb{N}$ is called IP-large if it contains an IP-set. Multiplicative IP-sets and multiplicative IP-large sets are defined similarly.
Special ultrafilters

Various classes of ultrafilters are important in this field, the "best" being combinatorially rich ultrafilters:

Definition

\(\mathcal{U} \) is combinatorially rich if \(\mathcal{U} \in M \cap \triangle \cap K(\otimes) \) and \(\mathcal{U} \otimes \mathcal{U} = \mathcal{U} \), where

\[
M = \{ \mathcal{V} \in \beta\mathbb{N} \mid \forall A \in \mathcal{V} \ A \text{ is central in } (\mathbb{N}, +) \}.
\]
Special ultrafilters

Various classes of ultrafilters are important in this field, the "best" being combinatorially rich ultrafilters:

Definition

\[\mathcal{U} \text{ is combinatorially rich if } \mathcal{U} \in \mathcal{M} \cap \Delta \cap K(\otimes) \text{ and } \mathcal{U} \otimes \mathcal{U} = \mathcal{U}, \text{ where} \]

\[\mathcal{M} = \{ \mathcal{V} \in \beta \mathbb{N} \mid \forall A \in \mathcal{V} \ A \text{ is central in } (\mathbb{N}, +) \}. \]

Notice that if \(\mathcal{U} \) is combinatorially rich and \(A \in \mathcal{U} \) then:
Special ultrafilters

Various classes of ultrafilters are important in this field, the "best" being combinatorially rich ultrafilters:

Definition

\[\mathcal{U} \text{ is combinatorially rich if } \mathcal{U} \in \mathcal{M} \cap \Delta \cap K(\circ) \text{ and } \mathcal{U} \circ \mathcal{U} = \mathcal{U}, \text{ where } \]
\[\mathcal{M} = \{ \mathcal{V} \in \beta \mathbb{N} \mid \forall A \in \mathcal{V} \text{ A is central in } (\mathbb{N}, +) \}. \]

Notice that if \(\mathcal{U} \) is combinatorially rich and \(A \in \mathcal{U} \) then:

- \(A \) is central in \((\mathbb{N}, +) \), in particular it is IP;
Special ultrafilters

Various classes of ultrafilters are important in this field, the "best" being combinatorially rich ultrafilters:

Definition

\mathcal{U} is combinatorially rich if $\mathcal{U} \in \mathcal{M} \cap \Delta \cap K(\otimes)$ and $\mathcal{U} \circ \mathcal{U} = \mathcal{U}$, where $\mathcal{M} = \{ \mathcal{V} \in \beta \mathbb{N} | \forall A \in \mathcal{V} \text{ A is central in } (\mathbb{N}, +) \}$.

Notice that if \mathcal{U} is combinatorially rich and $A \in \mathcal{U}$ then:

- A is central in $(\mathbb{N}, +)$, in particular it is IP;
- A is also multiplicatively IP;
Special ultrafilters

Various classes of ultrafilters are important in this field, the "best" being combinatorially rich ultrafilters:

Definition

\mathcal{U} is combinatorially rich if $\mathcal{U} \in \mathcal{M} \cap \Delta \cap K(\circ)$ and $\mathcal{U} \circ \mathcal{U} = \mathcal{U}$, where

$$\mathcal{M} = \{ \mathcal{V} \in \beta \mathbb{N} \mid \forall A \in \mathcal{V} \text{ A is central in } (\mathbb{N}, +) \}.$$

Notice that if \mathcal{U} is combinatorially rich and $A \in \mathcal{U}$ then:

- A is central in $(\mathbb{N}, +)$, in particular it is IP;
- A is also multiplicatively IP;
- A contains solutions to all homogeneous PR equations (we will show this later), in particular to all linear equations;
Various classes of ultrafilters are important in this field, the "best" being combinatorially rich ultrafilters:

Definition

\mathcal{U} is combinatorially rich if $\mathcal{U} \in \mathbb{M} \cap \Delta \cap K(\odot)$ and $\mathcal{U} \odot \mathcal{U} = \mathcal{U}$, where $\mathbb{M} = \{ \mathcal{V} \in \beta\mathbb{N} | \forall A \in \mathcal{V} A \text{ is central in } (\mathbb{N}, +) \}$.

Notice that if \mathcal{U} is combinatorially rich and $A \in \mathcal{U}$ then:

- A is central in $(\mathbb{N}, +)$, in particular it is IP;
- A is also multiplicatively IP;
- A contains solutions to all homogeneous PR equations (we will show this later), in particular to all linear equations;
- $BD(A) > 0$.

A surprisingly simple key Lemma

Lemma

Let \(U \) be a common witness of the equations \(P_1(x_1, \ldots, x_n) = 0 \) and \(P_2(y_1, \ldots, y_m) = 0 \).
A surprisingly simple key Lemma

Lemma

Let \(U \) be a common witness of the equations \(P_1 (x_1, \ldots, x_n) = 0 \) and \(P_2 (y_1, \ldots, y_m) = 0 \). Then \(U \) is also a PR-witness of the system:

\[
\begin{align*}
P_1 (x_1, \ldots, x_n) &= 0; \\
P_2 (y_1, \ldots, y_m) &= 0; \\
x_1 &= y_1.
\end{align*}
\]
A surprisingly simple key Lemma

Lemma

Let \mathcal{U} be a common witness of the equations $P_1(x_1, \ldots, x_n) = 0$ and $P_2(y_1, \ldots, y_m) = 0$. Then \mathcal{U} is also a PR-witness of the system:

\[
\begin{align*}
P_1(x_1, \ldots, x_n) &= 0; \\
P_2(y_1, \ldots, y_m) &= 0; \\
x_1 &= y_1.
\end{align*}
\]

Proof.

Let $A \in \mathcal{U}$ be fixed. Let

\[
\begin{align*}
\Lambda_1 &= \{ a \in A \mid \exists a_2, \ldots, a_n \in A \text{ s.t. } P_1(a, a_2, \ldots, a_n) = 0 \}, \\
\Lambda_2 &= \{ b \in A \mid \exists b_2, \ldots, b_m \in A \text{ s.t. } P_2(b, b_2, \ldots, b_m) = 0 \}.
\end{align*}
\]
A surprisingly simple key Lemma

Lemma

Let U be a common witness of the equations $P_1(x_1, \ldots, x_n) = 0$ and $P_2(y_1, \ldots, y_m) = 0$. Then U is also a PR-witness of the system:

\[
\begin{cases}
 P_1(x_1, \ldots, x_n) = 0; \\
 P_2(y_1, \ldots, y_m) = 0; \\
 x_1 = y_1.
\end{cases}
\]

Proof.

Let $A \in U$ be fixed. Let

\[
\begin{align*}
\Lambda_1 &= \{ a \in A \mid \exists a_2, \ldots, a_n \in A \text{ s.t. } P_1(a, a_2, \ldots, a_n) = 0 \}, \\
\Lambda_2 &= \{ b \in A \mid \exists b_2, \ldots, b_m \in A \text{ s.t. } P_2(b, b_2, \ldots, b_m) = 0 \}.
\end{align*}
\]

Notice that $\Lambda_1, \Lambda_2 \in U$, as otherwise $\neg (U \models P_i = 0)$.
A surprisingly simple key Lemma

Lemma

Let U be a common witness of the equations $P_1(x_1, \ldots, x_n) = 0$ and $P_2(y_1, \ldots, y_m) = 0$. Then U is also a PR-witness of the system:

$$
\begin{align*}
\left\{ P_1(x_1, \ldots, x_n) = 0; \\
P_2(y_1, \ldots, y_m) = 0; \\
x_1 = y_1.
\right.
\end{align*}
$$

Proof.

Let $A \in U$ be fixed. Let

$$
\begin{align*}
\Lambda_1 &= \{ a \in A \mid \exists a_2, \ldots, a_n \in A \text{ s.t. } P_1(a, a_2, \ldots, a_n) = 0 \}, \\
\Lambda_2 &= \{ b \in A \mid \exists b_2, \ldots, b_m \in A \text{ s.t. } P_2(b, b_2, \ldots, b_m) = 0 \}.
\end{align*}
$$

Notice that $\Lambda_1, \Lambda_2 \in U$, as otherwise $\neg (U \models P_i = 0)$. Take $\Lambda_1 \cap \Lambda_2$. □
Some examples

Example

Take $U \models u - v = t^2$.
Some examples

Example

Take $\mathcal{U} \models u - v = t^2$.

Then \mathcal{U} witnesses also of the PR of the system

\[
\begin{cases}
 u_1 - y = x^2; \\
 u_2 - z = t^2; \\
 y = t.
\end{cases}
\]
Some examples

Example

Take $\mathcal{U} \models u - v = t^2$.

Then \mathcal{U} witnesses also of the PR of the system

\[
\begin{aligned}
 u_1 - y &= x^2; \\
 u_2 - z &= t^2; \\
 y &= t.
\end{aligned}
\]

It is readily seen that this is equivalent to the PR of the configuration $\{x, y, z, y + x^2, z + y^2\}$ (which had already been proven by ergodic methods).
Homogeneous equations

Theorem

\[P(x_1, \ldots, x_n) \text{ be a homogeneous PR polynomial.} \]
Homogeneous equations

Theorem

Let $P(x_1, \ldots, x_n)$ be a homogeneous PR polynomial. Then the set of its PR-witnesses

$$\mathcal{W}_P = \{ U \in \beta \mathbb{N} | U \models P(x_1, \ldots, x_n) = 0 \}$$

is a closed multiplicative two sided ideal.
Homogeneous equations

Theorem

Let \(P(x_1, \ldots, x_n) \) be a homogeneous PR polynomial. Then the set of its PR-witnesses

\[
\mathcal{W}_P = \{ U \in \beta N \mid U \models P(x_1, \ldots, x_n) = 0 \}
\]

is a closed multiplicative two sided ideal.

Proof.

(Nonstandard) Let \(U \in \mathcal{W}_P \). Let \(\alpha_1, \ldots, \alpha_n \in \mu(U) \) be such that

\[
*P(\alpha_1, \ldots, \alpha_n) = 0.
\]
Homogeneous equations

Theorem

Let $P(x_1, \ldots, x_n)$ be a homogeneous PR polynomial. Then the set of its PR-witnesses

$$\mathcal{W}_P = \{U \in \beta \mathbb{N} | U \models P(x_1, \ldots, x_n) = 0\}$$

is a closed multiplicative two sided ideal.

Proof.

(Nonstandard) Let $U \in \mathcal{W}_P$. Let $\alpha_1, \ldots, \alpha_n \in \mu(U)$ be such that

$$*P(\alpha_1, \ldots, \alpha_n) = 0.$$ Let $\beta \in \mu(V)$. Then $\alpha_1 \cdot *\beta, \ldots, \alpha_n \cdot *\beta \in \mu(U \odot V)$, and

$$P(\alpha_1 \cdot *\beta, \ldots, x_n \cdot *\beta) = 0.$$
Homogeneous equations

Theorem

Let $P(x_1,\ldots,x_n)$ be a homogeneous PR polynomial. Then the set of its PR-witnesses

$$\mathcal{W}_P = \{U \in \beta\mathbb{N} \mid U \models P(x_1,\ldots,x_n) = 0\}$$

is a closed multiplicative two sided ideal.

Proof.

(Nonstandard) Let $U \in \mathcal{W}_P$. Let $\alpha_1,\ldots,\alpha_n \in \mu(U)$ be such that $*P(\alpha_1,\ldots,\alpha_n) = 0$. Let $\beta \in \mu(V)$. Then $\alpha_1 \cdot *\beta,\ldots,\alpha_n \cdot *\beta \in \mu(U \odot V)$, and $P(\alpha_1 \cdot *\beta,\ldots,\alpha_n \cdot *\beta) = 0$. Hence $U \odot V \in \mathcal{W}_P$. \qed
Homogeneous equations

Theorem

Let $P(x_1, \ldots, x_n)$ be a homogeneous PR polynomial. Then the set of its PR-witnesses

$$\mathcal{W}_P = \{ \mathcal{U} \in \beta \mathbb{N} \mid \mathcal{U} \models P(x_1, \ldots, x_n) = 0 \}$$

is a closed multiplicative two sided ideal.

Proof.

(Nonstandard) Let $\mathcal{U} \in \mathcal{W}_P$. Let $\alpha_1, \ldots, \alpha_n \in \mu(\mathcal{U})$ be such that $\star P(\alpha_1, \ldots, \alpha_n) = 0$. Let $\beta \in \mu(\mathcal{V})$. Then $\alpha_1 \cdot \star \beta, \ldots, \alpha_n \cdot \star \beta \in \mu(\mathcal{U} \odot \mathcal{V})$, and $P(\alpha_1 \cdot \star \beta, \ldots, \alpha_n \cdot \star \beta) = 0$. Hence $\mathcal{U} \odot \mathcal{V} \in \mathcal{W}_P$. □

Corollary

Let $P(x_1, \ldots, x_n)$ be a homogeneous PR polynomial. Then $\mathcal{U} \models P(x_1, \ldots, x_n) = 0$ for every $\mathcal{U} \in K(\beta \mathbb{N}, \odot)$.

Lorenzo Luperi Baglini
University of Vienna
23 March 2019 13 / 32
The first generalization result

Theorem

Let \(c(x_1 - x_2) = P(y_1, \ldots, y_k) \) be a Diophantine equation where the polynomial \(P \) has no constant term and \(c \neq 0 \). If the set \(A \subseteq \mathbb{N} \) is IP-large and has positive Banach density then there exist \(\xi_1, \xi_2 \in A \) and mutually distinct \(\eta_1, \ldots, \eta_k \in A \) such that \(c(\xi_1 - \xi_2) = P(\eta_1, \ldots, \eta_k) \). Moreover, if \(k = 1 \) then one can take \(\xi_1 \neq \xi_2 \).
The first generalization result

Theorem

Let $c(x_1 - x_2) = P(y_1, \ldots, y_k)$ be a Diophantine equation where the polynomial P has no constant term and $c \neq 0$. If the set $A \subseteq \mathbb{N}$ is IP-large and has positive Banach density then there exist $\xi_1, \xi_2 \in A$ and mutually distinct $\eta_1, \ldots, \eta_k \in A$ such that $c(\xi_1 - \xi_2) = P(\eta_1, \ldots, \eta_k)$. Moreover, if $k = 1$ then one can take $\xi_1 \neq \xi_2$.

Definition

A polynomial with integer coefficients is called a *Rado polynomial* if it can be written in the form

$$c_1x_1 + \cdots + c_nx_n + P(y_1, \ldots, y_k)$$

where $n \geq 2$, P has no constant term, and there exists a nonempty subset $J \subseteq \{1, \ldots, n\}$ such that $\sum_{j \in J} c_j = 0$.

Lorenzo Luperi Baglini
University of Vienna
23 March 2019
14 / 32
Generalized Rado

Theorem

Let

\[R(x_1, \ldots, x_n, y_1, \ldots, y_k) = c_1 x_1 + \ldots + c_n x_n + P(y_1, \ldots, y_k) \]

be a Rado polynomial. Then every ultrafilter \(\mathcal{U} \in K(\otimes) \cap \mathbb{II}(\oplus) \cap \Delta \) is a \(PR \)-witness of \(R(x_1, \ldots, x_n, y_1, \ldots, y_k) = 0 \).
Generalized Rado

Theorem

Let

\[R(x_1, \ldots, x_n, y_1, \ldots, y_k) = c_1 x_1 + \ldots + c_n x_n + P(y_1, \ldots, y_k) \]

be a Rado polynomial. Then every ultrafilter \(\mathcal{U} \in \overline{K(\odot)} \cap \overline{I(\oplus)} \cap \Delta \) is a PR-witness of \(R(x_1, \ldots, x_n, y_1, \ldots, y_k) = 0 \).

Proof.

Consider the following system:

\[
\begin{cases}
 c_1 z + c_2 x_2 + \ldots + c_n x_n = 0; \\
 c_1 (w - x_1) = P(y_1, \ldots, y_k); \\
 z = w.
\end{cases}
\]
Main positive result/1

Theorem

Let \(\mathcal{F} \) be the family of polynomials whose PR on \(\mathbb{N} \) is witnessed by at least an ultrafilter \(\mathcal{U} \in \mathcal{I}(\otimes) \cap \overline{K(\otimes)} \cap \mathcal{I}(\oplus) \cap \Delta \). Then \(\mathcal{F} \) includes:

- Every Radó polynomial;
- Every polynomial of the form
 \[n \overset{1}{\ldots} i c_i x^i \overset{1}{\ldots} j P_f \] where \(n \overset{1}{\ldots} i c_i x^i \) is a Radó polynomial and sets \(F_i = \overset{1}{\ldots} m \);
- Every polynomial
 \[P_{px,y} x^k \overset{1}{\ldots} y^i \]
Main positive result/1

Theorem

Let \(\mathcal{F} \) be the family of polynomials whose PR on \(\mathbb{N} \) is witnessed by at least an ultrafilter \(\mathcal{U} \in \mathcal{I}(\otimes) \cap \overline{\mathcal{K}(\otimes)} \cap \mathcal{I}(\oplus) \cap \Delta \). Then \(\mathcal{F} \) includes:

- Every Rado polynomial;
Theorem

Let \mathcal{F} be the family of polynomials whose PR on \mathbb{N} is witnessed by at least an ultrafilter $\mathcal{U} \in \mathbb{I}(\odot) \cap \overline{K(\odot)} \cap \mathbb{I}(\oplus) \cap \Delta$. Then \mathcal{F} includes:

- Every Rado polynomial;
- Every polynomial of the form

$$\sum_{i=1}^{n} c_i x_i \left(\prod_{j \in F_i} y_j \right)$$

where $\sum_{i=1}^{n} c_i x_i$ is a Rado polynomial and sets $F_i \subseteq \{1, \ldots, m\}$;
Theorem

Let \mathcal{F} be the family of polynomials whose PR on \mathbb{N} is witnessed by at least an ultrafilter $\mathcal{U} \in \mathcal{I}(\emptyset) \cap \overline{\mathcal{K}(\emptyset)} \cap \mathcal{I}(\emptyset) \cap \Delta$. Then \mathcal{F} includes:

- Every Rado polynomial;
- Every polynomial of the form

$$
\sum_{i=1}^{n} c_i x_i \left(\prod_{j \in F_i} y_j \right)
$$

where $\sum_{i=1}^{n} c_i x_i$ is a Rado polynomial and sets $F_i \subseteq \{1, \ldots, m\}$;

- Every polynomial

$$
P(x, y_1, \ldots, y_k) = x - \prod_{i=1}^{k} y_i;
$$
Main positive result/1

Theorem

Let \mathcal{F} be the family of polynomials whose PR on \mathbb{N} is witnessed by at least an ultrafilter $\mathcal{U} \in \mathcal{I}(\bigodot) \cap \overline{K(\bigodot)} \cap \mathcal{I}(\bigoplus) \cap \Delta$. Then \mathcal{F} includes:

- Every Rado polynomial;
- Every polynomial of the form
 \[
 \sum_{i=1}^{n} c_i x_i \left(\prod_{j \in F_i} y_j \right)
 \]
 where $\sum_{i=1}^{n} c_i x_i$ is a Rado polynomial and sets $F_i \subseteq \{1, \ldots, m\};$
- Every polynomial
 \[
 P(x, y_1, \ldots, y_k) = x - \prod_{i=1}^{k} y_i;
 \]
Theorem

- **Every polynomial**

\[P(x, y_1, \ldots, y_k) = x - \prod_{i=1}^{k} y_i^{a_i}, \]

wherever the exponents \(a_i \in \mathbb{Z} \) satisfy \(\sum_{i=1}^{n} a_i = 1. \)
Main positive result/2

Theorem

- Every polynomial

\[P(x, y_1, \ldots, y_k) = x - \prod_{i=1}^{k} y_i^{a_i}, \]

whenever the exponents \(a_i \in \mathbb{Z} \) satisfy \(\sum_{i=1}^{n} a_i = 1 \).

Moreover, the family \(\mathcal{F} \) satisfies the following closure properties:
Main positive result/2

Theorem

- Every polynomial

\[P(x, y_1, \ldots, y_k) = x - \prod_{i=1}^{k} y_i^{a_i}, \]

whenever the exponents \(a_i \in \mathbb{Z} \) satisfy \(\sum_{i=1}^{n} a_i = 1 \).

Moreover, the family \(\mathcal{F} \) satisfies the following closure properties:

(i) If \(P(z, y_1, \ldots, y_k) \in \mathcal{F} \) and \(z - g(x_1, \ldots, x_n) \in \mathcal{F} \), then \(P(g(x_1, \ldots, x_n), y_1, \ldots, y_k) \in \mathcal{F} \);
Main positive result/2

Theorem

- Every polynomial

\[P(x, y_1, \ldots, y_k) = x - \prod_{i=1}^{k} y_i^{a_i}, \]

whenever the exponents \(a_i \in \mathbb{Z} \) satisfy \(\sum_{i=1}^{n} a_i = 1 \).

Moreover, the family \(F \) satisfies the following closure properties:

(i) If \(P(z, y_1, \ldots, y_k) \in F \) and \(z - g(x_1, \ldots, x_n) \in F \), then
 \[P(g(x_1, \ldots, x_n), y_1, \ldots, y_k) \in F; \]

(ii) if \(P(x_1, \ldots, x_n) \in F \) is homogeneous, then \(P \left(\frac{1}{x_1}, \ldots, \frac{1}{x_n} \right) \in F. \)
Some examples
Some examples

Example

Let $n, m \in \mathbb{N}$ and assume that, for every $i \leq n$, $j \leq m$, the equations

$$
\begin{align*}
 x_{i,1} &= \sum_{h=1}^{r_i} c_{i,h} x_{i,h}, \\
 y_{j,1} &= \sum_{k=1}^{s_j} d_{j,k} y_{j,k}
\end{align*}
$$

are PR.
Some examples

Example

Let \(n, m \in \mathbb{N} \) and assume that, for every \(i \leq n, j \leq m \), the equations

\[
 x_{i,1} = \sum_{h=1}^{r_i} c_{i,h} x_{i,h}, \quad y_{j,1} = \sum_{k=1}^{s_j} d_{j,k} y_{j,k}
\]

are PR.

Let \(a_1, \ldots, a_n, b_1, \ldots, b_m \) be such that \(\sum_{i=1}^{n} a_i = \sum_{j=1}^{m} b_j \) and consider the homogeneous PR equation

\[
 \prod_{i=1}^{n} t_i^{a_i} = \prod_{j=1}^{m} z_j^{b_j}.
\]
Some examples

Example

Let \(n, m \in \mathbb{N} \) and assume that, for every \(i \leq n, j \leq m \), the equations

\[
x_{i,1} = \sum_{h=1}^{r_i} c_{i,h} x_{i,h}, \quad y_{j,1} = \sum_{k=1}^{s_j} d_{j,k} y_{j,k}
\]

are PR.

Let \(a_1, \ldots, a_n, b_1, \ldots, b_m \) be such that \(\sum_{i=1}^{n} a_i = \sum_{j=1}^{m} b_j \) and consider the homogeneous PR equation \(\prod_{i=1}^{n} t_i^{a_i} = \prod_{j=1}^{m} z_j^{b_j} \).

All these equations are PR and homogeneous and therefore, by the closure property (i), also

\[
\prod_{i=1}^{n} \left(\sum_{h=1}^{r_i} c_{i,h} x_{i,h} \right)^{a_i} = \prod_{j=1}^{m} \left(\sum_{k=1}^{s_j} d_{j,k} y_{j,k} \right)^{b_j}
\]

is PR.
Some examples

Example

Let $n, m \in \mathbb{N}$ and assume that, for every $i \leq n$, $j \leq m$, the equations

$$x_{i,1} = \sum_{h=1}^{r_i} c_{i,h} x_{i,h}, \quad y_{j,1} = \sum_{k=1}^{s_j} d_{j,k} y_{j,k}$$

are PR.

Let $a_1, \ldots, a_n, b_1, \ldots, b_m$ be such that $\sum_{i=1}^{n} a_i = \sum_{j=1}^{m} b_j$ and consider the homogeneous PR equation $\prod_{i=1}^{n} t_{i}^{a_i} = \prod_{j=1}^{m} z_{j}^{b_j}$.

All these equations are PR and homogeneous and therefore, by the closure property (i), also

$$\prod_{i=1}^{n} \left(\sum_{h=1}^{r_i} c_{i,h} x_{i,h} \right)^{a_i} = \prod_{j=1}^{m} \left(\sum_{k=1}^{s_j} d_{j,k} y_{j,k} \right)^{b_j}$$

is PR.
Some examples

Example

For every $n \in \mathbb{N}$, the polynomial $u - v - z^n$ is in \mathcal{F};
Some examples

Example
For every \(n \in \mathbb{N} \), the polynomial \(u - v - z^n \) is in \(\mathcal{F} \); moreover, for every \(k \geq 2 \) the function \(x = \prod_{j=1}^{k} x_j \) is in \(\mathcal{F} \).
Some examples

Example

For every $n \in \mathbb{N}$, the polynomial $u - v - z^n$ is in \mathcal{F}; moreover, for every $k \geq 2$ the function $x = \prod_{j=1}^{k} x_j$ is in \mathcal{F}. Therefore, for every $h, k \geq 2$ we can apply the closure property (i) of \mathcal{F} to the system

$$
\begin{align*}
\begin{cases}
u - v = z^n; \\
x = \prod_{j=1}^{h} x_j; \\
y = \prod_{j=1}^{k} y_j; \\
x = u, y = v.
\end{cases}
\end{align*}
$$
Some examples

Example

For every $n \in \mathbb{N}$, the polynomial $u - v - z^n$ is in \mathcal{F}; moreover, for every $k \geq 2$ the function $x = \prod_{j=1}^{k} x_j$ is in \mathcal{F}. Therefore, for every $h, k \geq 2$ we can apply the closure property (i) of \mathcal{F} to the system

$$
\begin{align*}
&u - v = z^n; \\
x = \prod_{j=1}^{h} x_j; \\
y = \prod_{j=1}^{k} y_j; \\
x = u, y = v.
\end{align*}
$$

Hence $\prod_{j=1}^{h} x_j - \prod_{j=1}^{k} y_j = z^n$ is in \mathcal{F}. In particular, $x_1 x_2 - y_1 y_2 = z^2$ is PR.
Some examples

Example

For every \(n \in \mathbb{N} \), the polynomial \(u - v - z^n \) is in \(\mathcal{F} \); moreover, for every \(k \geq 2 \) the function \(x = \prod_{j=1}^{k} x_j \) is in \(\mathcal{F} \). Therefore, for every \(h, k \geq 2 \) we can apply the closure property (i) of \(\mathcal{F} \) to the system

\[
\begin{align*}
 & u - v = z^n; \\
 & x = \prod_{j=1}^{h} x_j; \\
 & y = \prod_{j=1}^{k} y_j; \\
 & x = u, y = v.
\end{align*}
\]

Hence \(\prod_{j=1}^{h} x_j - \prod_{j=1}^{k} y_j = z^n \) is in \(\mathcal{F} \). In particular, \(x_1 x_2 - y_1 y_2 = z^2 \) is PR.

Example

\(P(x_1, x_2, x_3) = x_1 x_2 - 2x_3 \) is PR but it does not belong to \(\mathcal{F} \).
u-equivalence and partition regularity

Definition

Two hypernatural numbers $\xi, \xi' \in {}^*\mathbb{N}$ are *u-equivalent* if they cannot be distinguished by any hyper-extension, i.e. if for every $A \subseteq \mathbb{N}$ one has either $\xi, \xi' \in {}^*A$ or $\xi, \xi' \notin {}^*A$.

Lorenzo Luperi Baglini

University of Vienna

23 March 2019 20 / 32
u-equivalence and partition regularity

Definition

Two hypernatural numbers $\xi, \xi' \in \mathbb{N}$ are u-equivalent if they cannot be distinguished by any hyper-extension, i.e. if for every $A \subseteq \mathbb{N}$ one has either $\xi, \xi' \in *A$ or $\xi, \xi' \notin *A$.

When the hyperextension has the $|\varphi(\mathbb{N})|^+\text{-enlarging}$ property, ultrafilters and hypernaturals can be identified:
u-equivalence and partition regularity

Definition

Two hypernatural numbers $\xi, \xi' \in \mathbb{N}^*$ are **u-equivalent** if they cannot be distinguished by any hyper-extension, i.e. if for every $A \subseteq \mathbb{N}$ one has either $\xi, \xi' \in *A$ or $\xi, \xi' \not\in *A$.

When the hyperextension has the $|\wp(\mathbb{N})|^+$-enlarging property, ultrafilters and hypernaturals can be identified:

- $\alpha \rightarrow U_\alpha = \{A \in \wp(\mathbb{N}) \mid \alpha \in *A\}$;
u-equivalence and partition regularity

Definition

Two hypernatural numbers $\xi, \xi' \in \ast\mathbb{N}$ are u-equivalent if they cannot be distinguished by any hyper-extension, i.e. if for every $A \subseteq \mathbb{N}$ one has either $\xi, \xi' \in \ast A$ or $\xi, \xi' \notin \ast A$.

When the hyperextension has the $|\wp(\mathbb{N})|^+\text{-enlarging}$ property, ultrafilters and hypernaturals can be identified:

- $\alpha \rightarrow \mathcal{U}_\alpha = \{A \in \wp(\mathbb{N}) \mid \alpha \in \ast A\}$;
- $\mathcal{U} \rightarrow \mu(\mathcal{U}) = \{\alpha \in \ast\mathbb{N} \mid \mathcal{U} = \mathcal{U}_\alpha\}$.
u-equivalence and partition regularity

Definition

Two hypernatural numbers $\xi, \xi' \in *\mathbb{N}$ are **u-equivalent** if they cannot be distinguished by any hyper-extension, i.e. if for every $A \subseteq \mathbb{N}$ one has either $\xi, \xi' \in *A$ or $\xi, \xi' \notin *A$.

When the hyperextension has the $|\mathcal{P}(\mathbb{N})|^+$-enlarging property, ultrafilters and hypernaturals can be identified:

- $\alpha \to U_\alpha = \{A \in \mathcal{P}(\mathbb{N}) \mid \alpha \in *A\}$;
- $U \to \mu(U) = \{\alpha \in *\mathbb{N} \mid U = U_\alpha\}$.

Proposition

A Diophantine equation $P(x_1, \ldots, x_n) = 0$ is PR if and only if there exist u-equivalent hypernatural numbers ξ_1, \ldots, ξ_n with $*P(\xi_1, \ldots, \xi_n) = 0$.
Multi-index notations

- An n-dimensional multi-index is an n-tuple $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$;
Multi-index notations

- An n-dimensional multi-index is an n-tuple $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$;
- $\alpha \leq \beta$ means that $\alpha_i \leq \beta_i$ for all $i = 1, \ldots, n$;
Multi-index notations

- An n-dimensional **multi-index** is an n-tuple $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$;
- $\alpha \leq \beta$ means that $\alpha_i \leq \beta_i$ for all $i = 1, \ldots, n$;
- $\alpha < \beta$ means that $\alpha \leq \beta$ and $\alpha \neq \beta$;
Multi-index notations

- An n-dimensional multi-index is an n-tuple $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$;
- $\alpha \preceq \beta$ means that $\alpha_i \leq \beta_i$ for all $i = 1, \ldots, n$;
- $\alpha < \beta$ means that $\alpha \preceq \beta$ and $\alpha \neq \beta$;
- If $\mathbf{x} = (x_1, \ldots, x_n)$ is a vector and $\alpha = (\alpha_1, \ldots, \alpha_n)$ is a multi-index, the product $\prod_{i=1}^n x_i^{\alpha_i}$ is denoted by \mathbf{x}^α;
Multi-index notations

- An \(n \)-dimensional \textbf{multi-index} is an \(n \)-tuple \(\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n \);
- \(\alpha \preceq \beta \) means that \(\alpha_i \leq \beta_i \) for all \(i = 1, \ldots, n \);
- \(\alpha < \beta \) means that \(\alpha \preceq \beta \) and \(\alpha \neq \beta \);
- If \(\mathbf{x} = (x_1, \ldots, x_n) \) is vector and \(\alpha = (\alpha_1, \ldots, \alpha_n) \) is a multi-index, the product \(\prod_{i=1}^{n} x_i^{\alpha_i} \) is denoted by \(\mathbf{x}^\alpha \);
- The \textbf{length} of a multi-index \(\alpha = (\alpha_1, \ldots, \alpha_n) \) is \(|\alpha| = \sum_{i=1}^{n} \alpha_i \);
Multi-index notations

- An n-dimensional multi-index is an n-tuple $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$;
- $\alpha \leq \beta$ means that $\alpha_i \leq \beta_i$ for all $i = 1, \ldots, n$;
- $\alpha < \beta$ means that $\alpha \leq \beta$ and $\alpha \neq \beta$;
- If $x = (x_1, \ldots, x_n)$ is a vector and $\alpha = (\alpha_1, \ldots, \alpha_n)$ is a multi-index, the product $\prod_{i=1}^{n} x_i^{\alpha_i}$ is denoted by x^α;
- The length of a multi-index $\alpha = (\alpha_1, \ldots, \alpha_n)$ is $|\alpha| = \sum_{i=1}^{n} \alpha_i$;
- A set I of n-dimensional multi-indexes having all the same length is called homogeneous;
Multi-index notations

- An n-dimensional **multi-index** is an n-tuple $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$;
- $\alpha \leq \beta$ means that $\alpha_i \leq \beta_i$ for all $i = 1, \ldots, n$;
- $\alpha < \beta$ means that $\alpha \leq \beta$ and $\alpha \neq \beta$;
- If $\mathbf{x} = (x_1, \ldots, x_n)$ is vector and $\alpha = (\alpha_1, \ldots, \alpha_n)$ is a multi-index, the product $\prod_{i=1}^{n} x_i^{\alpha_i}$ is denoted by \mathbf{x}^α;
- The **length** of a multi-index $\alpha = (\alpha_1, \ldots, \alpha_n)$ is $|\alpha| = \sum_{i=1}^{n} \alpha_i$;
- A set I of n-dimensional multi-indexes having all the same length is called **homogeneous**;
- Polynomials $P \in \mathbb{Z}[x_1, \ldots, x_n]$ are written in the form $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha}$ where α are multi-indexes;
Multi-index notations

- An n-dimensional **multi-index** is an n-tuple $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$;
- $\alpha \leq \beta$ means that $\alpha_i \leq \beta_i$ for all $i = 1, \ldots, n$;
- $\alpha < \beta$ means that $\alpha \leq \beta$ and $\alpha \neq \beta$;
- If $\mathbf{x} = (x_1, \ldots, x_n)$ is vector and $\alpha = (\alpha_1, \ldots, \alpha_n)$ is a multi-index, the product $\prod_{i=1}^{n} x_i^{\alpha_i}$ is denoted by \mathbf{x}^{α};
- The **length** of a multi-index $\alpha = (\alpha_1, \ldots, \alpha_n)$ is $|\alpha| = \sum_{i=1}^{n} \alpha_i$;
- A set I of n-dimensional multi-indexes having all the same length is called **homogeneous**;
- Polynomials $P \in \mathbb{Z}[x_1, \ldots, x_n]$ are written in the form $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha}$ where α are multi-indexes;
- The **support** of P is the finite set $\text{supp}(P) = \{\alpha \mid c_{\alpha} \neq 0\}$;
Multi-index notations

- An \(n \)-dimensional \textbf{multi-index} is an \(n \)-tuple \(\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n \);
- \(\alpha \preceq \beta \) means that \(\alpha_i \leq \beta_i \) for all \(i = 1, \ldots, n \);
- \(\alpha < \beta \) means that \(\alpha \preceq \beta \) and \(\alpha \neq \beta \);
- If \(\mathbf{x} = (x_1, \ldots, x_n) \) is vector and \(\alpha = (\alpha_1, \ldots, \alpha_n) \) is a multi-index, the product \(\prod_{i=1}^n x_i^{\alpha_i} \) is denoted by \(\mathbf{x}^\alpha \);
- The \textbf{length} of a multi-index \(\alpha = (\alpha_1, \ldots, \alpha_n) \) is \(|\alpha| = \sum_{i=1}^n \alpha_i \);
- A set \(I \) of \(n \)-dimensional multi-indexes having all the same length is called \textit{homogeneous};
- Polynomials \(P \in \mathbb{Z}[x_1, \ldots, x_n] \) are written in the form \(P(\mathbf{x}) = \sum_\alpha c_\alpha \mathbf{x}^\alpha \) where \(\alpha \) are multi-indexes;
- The \textbf{support} of \(P \) is the finite set \(\text{supp}(P) = \{ \alpha \mid c_\alpha \neq 0 \} \);
- A polynomial \(P(\mathbf{x}) = \sum_\alpha c_\alpha \mathbf{x}^\alpha \) is \textbf{homogeneous} if \(\text{supp}(P) \) is a homogeneous set of indexes.
Minimal and maximal indeces

Definition

Let \(P(x) = \sum_{\alpha} c_{\alpha} x^\alpha \in \mathbb{Z}[x_1, \ldots, x_n] \). We say that a multi-index \(\alpha \in \text{supp}(P) \) is minimal if there are no \(\beta \in \text{supp}(P) \) with \(\beta < \alpha \). The notion of maximal multi-index is defined similarly.
Minimal and maximal indeces

Definition

Let $P(x) = \sum_\alpha c_\alpha x^\alpha \in \mathbb{Z}[x_1, \ldots, x_n]$. We say that a multi-index $\alpha \in \text{supp}(P)$ is \textit{minimal} if there are no $\beta \in \text{supp}(P)$ with $\beta < \alpha$. The notion of \textit{maximal} multi-index is defined similarly. A nonempty set $J \subseteq \text{supp}(P)$ is called a \textit{Rado set of indexes} if for every $\alpha, \beta \in J$ there exists a nonempty $\Lambda \subseteq \{1, \ldots, n\}$ with $\sum_{i \in \Lambda} \alpha_i = \sum_{i \in \Lambda} \beta_i$.

Lorenzo Luperi Baglini

University of Vienna

23 March 2019
Minimal and maximal indices

Definition

Let $P(x) = \sum_{\alpha} c_\alpha x^\alpha \in \mathbb{Z}[x_1, \ldots, x_n]$. We say that a multi-index $\alpha \in \text{supp}(P)$ is **minimal** if there are no $\beta \in \text{supp}(P)$ with $\beta < \alpha$. The notion of **maximal** multi-index is defined similarly. A nonempty set $J \subseteq \text{supp}(P)$ is called a Rado set of indexes if for every $\alpha, \beta \in J$ there exists a nonempty $\Lambda \subseteq \{1, \ldots, n\}$ with $\sum_{i \in \Lambda} \alpha_i = \sum_{i \in \Lambda} \beta_i$.

For linear polynomials, every nonempty $J \subseteq \text{Supp}(P) = \{\alpha(1), \ldots, \alpha(n)\}$ is a Rado set of both minimal and maximal indexes.
Minimal and maximal indeces

Definition

Let $P(x) = \sum_{\alpha} c_\alpha x^\alpha \in \mathbb{Z}[x_1, \ldots, x_n]$. We say that a multi-index $\alpha \in \text{supp}(P)$ is \textit{minimal} if there are no $\beta \in \text{supp}(P)$ with $\beta < \alpha$. The notion of \textit{maximal} multi-index is defined similarly. A nonempty set $J \subseteq \text{supp}(P)$ is called a \textit{Rado set of indexes} if for every $\alpha, \beta \in J$ there exists a nonempty $\Lambda \subseteq \{1, \ldots, n\}$ with $\sum_{i \in \Lambda} \alpha_i = \sum_{i \in \Lambda} \beta_i$.

For linear polynomials, every nonempty $J \subseteq \text{Supp}(P) = \{\alpha(1), \ldots, \alpha(n)\}$ is a Rado set of both minimal and maximal indexes.

Example

In $c_{(2,1,1,0)} x_1^2 x_2 x_3 + c_{(1,2,7,0)} x_1 x_2^2 x_3^7 + c_{(2,2,2,1)} x_1^2 x_2^2 x_3^2 x_4$, the set $J = \{(2, 1, 1, 0), (1, 2, 7, 0)\}$ is a Rado set of minimal (but not maximal) indeces: just let $\Lambda = \{1, 2\} \subseteq \{1, 2, 3, 4\}$.
General necessary condition

Theorem

Let \(P(x) = \sum_{\alpha} c_\alpha x^\alpha \in \mathbb{Z}[x_1, \ldots, x_n] \) be a polynomial with no constant term.
General necessary condition

Theorem

Let \(P(x) = \sum_{\alpha} c_\alpha x^\alpha \in \mathbb{Z}[x_1, \ldots, x_n] \) be a polynomial with no constant term. Suppose there exists a prime \(p \) such that:

1. \(z \mid \alpha \mod p \) has no solutions \(z \neq 0 \);
2. For every Rado set \(J \) of minimal indexes, \(\sum_{\alpha} c_\alpha z^\alpha \mod p \) has no solutions \(z \neq 0 \).

Then \(P(x) \) is not PR, except possibly for constant solutions \(x_1 \ldots x_n \).

Proof. Pick infinite \(\xi_1 \ldots \xi_n \) such that \(P(p^{\xi_1} \ldots p^{\xi_n}) = 0 \). Write \(\xi_i \) in base \(p \). Find the absurd playing with the exponents and the coefficients in this expansion.
General necessary condition

Theorem

Let $P(x) = \sum_{\alpha} c_{\alpha} x^\alpha \in \mathbb{Z}[x_1, \ldots, x_n]$ be a polynomial with no constant term. Suppose there exists a prime p such that:

1. $\sum_{\alpha} c_{\alpha} z^{\mid\alpha\mid} \equiv 0 \pmod{p}$ has no solutions $z \neq 0$;
General necessary condition

Theorem

Let \(P(x) = \sum_{\alpha} c_{\alpha}x^\alpha \in \mathbb{Z}[x_1, \ldots, x_n] \) be a polynomial with no constant term. Suppose there exists a prime \(p \) such that:

1. \(\sum_{\alpha} c_{\alpha}z^{\vert\alpha\vert} \equiv 0 \pmod{p} \) has no solutions \(z \neq 0 \);
2. For every Rado set \(J \) of minimal indexes, \(\sum_{\alpha \in J} c_{\alpha}z^{\vert\alpha\vert} \equiv 0 \pmod{p} \) has no solutions \(z \neq 0 \).

Proof.

Pick infinite \(\xi_1 u \ldots u \xi_n \) such that \(P(\xi)q^{\vert\alpha\vert} \equiv 0 \). Write \(\xi_i \) in base \(p \). Find the absurd playing with the exponents and the coefficients in this expansion.
General necessary condition

Theorem

Let \(P(x) = \sum_{\alpha} c_{\alpha} x^{\alpha} \in \mathbb{Z}[x_1, \ldots, x_n] \) be a polynomial with no constant term. Suppose there exists a prime \(p \) such that:

1. \(\sum_{\alpha} c_{\alpha} z^{|\alpha|} \equiv 0 \mod p \) has no solutions \(z \neq 0 \);
2. For every Rado set \(J \) of minimal indexes, \(\sum_{\alpha \in J} c_{\alpha} z^{|\alpha|} \equiv 0 \mod p \) has no solutions \(z \neq 0 \).

Then \(P(x) \) is not PR, except possibly for constant solutions \(x_1 = \ldots = x_n \).
General necessary condition

Theorem

Let \(P(x) = \sum_{\alpha} c_{\alpha} x^{\alpha} \in \mathbb{Z}[x_1, \ldots, x_n] \) be a polynomial with no constant term. Suppose there exists a prime \(p \) such that:

1. \(\sum_{\alpha} c_{\alpha} z^{\vert\alpha\vert} \equiv 0 \mod p \) has no solutions \(z \neq 0 \);
2. For every Rado set \(J \) of minimal indexes, \(\sum_{\alpha \in J} c_{\alpha} z^{\vert\alpha\vert} \equiv 0 \mod p \) has no solutions \(z \neq 0 \).

Then \(P(x) \) is not PR, except possibly for constant solutions \(x_1 = \ldots = x_n \).

Proof.

Pick infinite \(\xi_1 \sim \ldots \sim \xi_n \) such that \(P(\xi) = \sum_{\alpha} c_{\alpha} \xi^{\alpha} = 0 \).
General necessary condition

Theorem

Let $P(x) = \sum_{\alpha} c_{\alpha} x^{\alpha} \in \mathbb{Z}[x_1, \ldots, x_n]$ be a polynomial with no constant term. Suppose there exists a prime p such that:

1. $\sum_{\alpha} c_{\alpha} z^{|\alpha|} \equiv 0 \mod p$ has no solutions $z \neq 0$;
2. For every Rado set J of minimal indexes, $\sum_{\alpha \in J} c_{\alpha} z^{|\alpha|} \equiv 0 \mod p$ has no solutions $z \neq 0$.

Then $P(x)$ is not PR, except possibly for constant solutions $x_1 = \ldots = x_n$.

Proof.

Pick infinite $\xi_1 \sim \ldots \sim \xi_n$ such that $P(\xi) = \sum_{\alpha} c_{\alpha} \xi^{\alpha} = 0$. Write ξ_i in base p.
General necessary condition

Theorem

Let $P(x) = \sum_{\alpha} c_{\alpha} x^{\alpha} \in \mathbb{Z}[x_1, \ldots, x_n]$ be a polynomial with no constant term. Suppose there exists a prime p such that:

1. $\sum_{\alpha} c_{\alpha} z^{\left|\alpha\right|} \equiv 0 \mod p$ has no solutions $z \neq 0$;
2. For every Rado set J of minimal indexes, $\sum_{\alpha \in J} c_{\alpha} z^{\left|\alpha\right|} \equiv 0 \mod p$ has no solutions $z \neq 0$.

Then $P(x)$ is not PR, except possibly for constant solutions $x_1 = \ldots = x_n$.

Proof.

Pick infinite $\xi_1 \sim_u \ldots \sim_u \xi_n$ such that $P(\xi) = \sum_{\alpha} c_{\alpha} \xi^{\alpha} = 0$. Write ξ_i in base p. Find the absurd playing with the exponents and the coefficients in this expansion.
Examples

Let P_{x_1, x_2, x_3}. Pick any prime number p with $p \equiv 3 \text{ or } 5 \mod 8$, so that 2 is not a quadratic residue modulo p.

Then condition (1) is satisfied because $z_3 \equiv 2z \equiv 0$, and also condition (2) is easily verified.

Since it has no constant solutions x_1, x_2, x_3, we can conclude that P_{x_1, x_2, x_3} is not PR.

Notice that, by Multiplicative Rado's Theorem, the seemingly similar equation $x_2 + x_2 + x_3$ is PR.

Corollary Let $P_{p^{x_1}, x_2, x_3}^\alpha c^\alpha x^{\alpha P}$ be a homogeneous polynomial. If for every nonempty $J = \text{supp} P$ one has $\alpha_j P J \equiv 0$, then $P_{p^{x_1}, x_2, x_3}$ is not PR.
Example

Let $P(x_1, x_2, x_3) = x_1^2 x_2 - 2x_3$. Pick any prime number p with $p \equiv 3$ or $p \equiv 5 \mod 8$, so that 2 is not a quadratic residue modulo p.

Examples
Example

Let $P(x_1, x_2, x_3) = x_1^2 x_2 - 2x_3$. Pick any prime number p with $p \equiv 3$ or $p \equiv 5 \mod 8$, so that 2 is not a quadratic residue modulo p. Then condition (1) is satisfied because $z^3 - 2z \equiv 0$ iff $z \equiv 0$, and also condition (2) is easily verified.
Example

Let $P(x_1, x_2, x_3) = x_1^2x_2 - 2x_3$. Pick any prime number p with $p \equiv 3$ or $p \equiv 5 \mod 8$, so that 2 is not a quadratic residue modulo p. Then condition (1) is satisfied because $z^3 - 2z \equiv 0$ iff $z \equiv 0$, and also condition (2) is easily verified. Since it has no constant solutions $x_1 = x_2 = x_3$, we can conclude that $P(x_1, x_2, x_3)$ is not PR.
Examples

Example

Let $P(x_1, x_2, x_3) = x_1^2 x_2 - 2x_3$. Pick any prime number p with $p \equiv 3$ or $p \equiv 5 \mod 8$, so that 2 is not a quadratic residue modulo p. Then condition (1) is satisfied because $z^3 - 2z \equiv 0$ iff $z \equiv 0$, and also condition (2) is easily verified. Since it has no constant solutions $x_1 = x_2 = x_3$, we can conclude that $P(x_1, x_2, x_3)$ is not PR.

Notice that, by Multiplicative Rado’s Theorem, the seemingly similar equation $x_1^2 x_2 = x_3$ is PR.
Examples

Example

Let \(P(x_1, x_2, x_3) = x_1^2 x_2 - 2x_3 \). Pick any prime number \(p \) with \(p \equiv 3 \) or \(p \equiv 5 \mod 8 \), so that 2 is not a quadratic residue modulo \(p \). Then condition (1) is satisfied because \(z^3 - 2z \equiv 0 \iff z \equiv 0 \), and also condition (2) is easily verified. Since it has no constant solutions \(x_1 = x_2 = x_3 \), we can conclude that \(P(x_1, x_2, x_3) \) is not PR.

Notice that, by Multiplicative Rado’s Theorem, the seemingly similar equation \(x_1^2 x_2 = x_3 \) is PR.

Corollary

Let \(P(x) = \sum_{\alpha} c_{\alpha} x^\alpha \in \mathbb{Z}[x_1, \ldots, x_n] \) be an homogeneous polynomial. If for every nonempty \(J \subseteq \text{supp}(P) \) one has \(\sum_{\alpha \in J} c_{\alpha} \neq 0 \), then \(P(x) \) is not PR.
Theorem

For every $i = 1, \ldots, n$ let $P_i(x_i) = \sum_{s=1}^{d_i} c_i,s x_i^s$ be a polynomial of degree d_i in the variable x_i with no constant term.
Theorem

For every $i = 1, \ldots, n$ let $P_i(x_i) = \sum_{s=1}^{d_i} c_{i,s} x_i^s$ be a polynomial of degree d_i in the variable x_i with no constant term. If the Diophantine equation

$$\sum_{i=1}^{n} P_i(x_i) = 0$$

is PR then the following “Rado’s condition” is satisfied:
Theorem

For every $i = 1, \ldots, n$ let $P_i(x_i) = \sum_{s=1}^{d_i} c_{i,s} x_i^s$ be a polynomial of degree d_i in the variable x_i with no constant term. If the Diophantine equation

$$\sum_{i=1}^{n} P_i(x_i) = 0$$

is PR then the following “Rado’s condition” is satisfied:

- “There exists a nonempty set $J \subseteq \{1, \ldots, n\}$ such that $d_i = d_j$ for every $i, j \in J$, and $\sum_{j \in J} c_{j,d_j} = 0$.”
Necessary condition for sums of polynomials in one variable

Proof.

For every \(i \), let \(\Lambda(i) = \{ s \mid c_{i,s} \neq 0 \} \) be the support of \(P_i(x_i) \), and for every \(s \), let \(\Gamma(s) = \{ i \mid c_{i,s} \neq 0 \} \). If we denote by

\[
P(x) = \sum_{i=1}^{n} P_i(x_i) = \sum_{i=1}^{n} \sum_{s \in \Lambda(i)} c_{i,s} x_i^s,
\]

by the nonstandard characterization of non-trivial PR, we can pick infinite \(\xi_1 \sim \ldots \sim \xi_n \) such that \(P(\xi) = 0 \). Now fix any finite number \(p \geq 2 \), and write the numbers \(\xi_i \) in base \(p \):

\[
\xi_i = \sum_{t=0}^{\tau_i} a_{i,t} p^{\tau_i-t}
\]

where \(0 \leq a_{i,t} \leq p - 1 \) and \(a_{i,0} \neq 0 \).
Necessary condition for sums of polynomials in one variable/3

Proof.

Let $s_\ast \tau_\ast = \max\{s \tau_i \mid i \in \Gamma(s)\}$. It is not difficult to show that $d_i = s_\ast$ for every $i \in \Gamma(s_\ast)$, by the maximality of $s_\ast \tau_\ast$.
Necessary condition for sums of polynomials in one variable/3

Proof.

Let \(s_\ast \tau_\ast = \max\{s \tau_i \mid i \in \Gamma(s)\} \). It is not difficult to show that \(d_i = s_\ast \) for every \(i \in \Gamma(s_\ast) \), by the maximality of \(s_\ast \tau_\ast \).

Now let \(I_\ast = \{i \in \Gamma(s_\ast) \mid \tau_i = \tau_\ast\} \), and decompose \(P(\xi) = \Theta + \Psi + \Phi \), where:

- \(\Theta = \sum_{i \in I_\ast} c_{i,s_\ast} \xi_i^{s_\ast} \);
- \(\Psi = \sum_{i \in \Gamma(s_\ast) \setminus I_\ast} c_{i,s_\ast} \xi_i^{s_\ast} \);
- \(\Phi = \sum_{s \neq s_\ast} \sum_{i \in \Gamma(s)} c_{i,s} \xi_i^s \).
Necessary condition for sums of polynomials in one variable/3

Proof.

Let $s_* \tau_* = \max\{s \tau_i \mid i \in \Gamma(s)\}$. It is not difficult to show that $d_i = s_*$ for every $i \in \Gamma(s_*)$, by the maximality of $s_* \tau_*$. Now let $I_* = \{i \in \Gamma(s_*) \mid \tau_i = \tau_*\}$, and decompose $P(\xi) = \Theta + \Psi + \Phi$, where:

- $\Theta = \sum_{i \in I_*} c_{i,s_*} \xi^{s_*}_i$;
- $\Psi = \sum_{i \in \Gamma(s_*) \setminus I_*} c_{i,s_*} \xi^{s_*}_i$;
- $\Phi = \sum_{s \neq s_*} \sum_{i \in \Gamma(s)} c_{i,s} \xi^s_i$.

Lemma

1. $\Theta = \left(\sum_{i \in I_*} c_{i,s_*}\right) \zeta + \Theta'$ for suitable $\zeta \geq p^{s_* \tau_*}$ and $|\Theta'| \leq p^{s_* \tau_*}$.

Lorenzo Luperi Baglini
University of Vienna
23 March 2019
27 / 32
Necessary condition for sums of polynomials in one variable/3

Proof.

Let \(s_\tau = \max\{s \tau_i \mid i \in \Gamma(s)\} \). It is not difficult to show that \(d_i = s_\tau \) for every \(i \in \Gamma(s_\tau) \), by the maximality of \(s_\tau \).

Now let \(I_\tau = \{i \in \Gamma(s_\tau) \mid \tau_i = \tau_\tau\} \), and decompose \(P(\xi) = \Theta + \Psi + \Phi \), where:

- \(\Theta = \sum_{i \in I_\tau} c_{i,s_\tau} \xi^s \);
- \(\Psi = \sum_{i \in \Gamma(s_\tau) \setminus I_\tau} c_{i,s_\tau} \xi^s \);
- \(\Phi = \sum_{s \neq s_\tau} \sum_{i \in \Gamma(s)} c_{i,s} \xi^s \).

Lemma

1. \(\Theta = \left(\sum_{i \in I_\tau} c_{i,s_\tau}\right) \zeta + \Theta' \) for suitable \(\zeta \geq p^{s_\tau \tau_\tau} \) and \(|\Theta'| \leq p^{s_\tau \tau_\tau} \).
2. \(|\Psi| \leq p^{s_\tau \tau_\tau} \).
Necessary condition for sums of polynomials in one variable/3

Proof.

Let $s_\ast \tau_\ast = \max\{s \tau_i \mid i \in \Gamma(s)\}$. It is not difficult to show that $d_i = s_\ast$ for every $i \in \Gamma(s_\ast)$, by the maximality of $s_\ast \tau_\ast$.

Now let $I_\ast = \{i \in \Gamma(s_\ast) \mid \tau_i = \tau_\ast\}$, and decompose $P(\xi) = \Theta + \Psi + \Phi$, where:

- $\Theta = \sum_{i \in I_\ast} c_{i,s_\ast} \xi_i^{s_\ast}$;
- $\Psi = \sum_{i \in \Gamma(s_\ast) \setminus I_\ast} c_{i,s_\ast} \xi_i^{s_\ast}$;
- $\Phi = \sum_{s \neq s_\ast} \sum_{i \in \Gamma(s)} c_{i,s} \xi_i^s$.

Lemma

1. $\Theta = \left(\sum_{i \in I_\ast} c_{i,s_\ast}\right) \zeta + \Theta'$ for suitable $\zeta \geq p^{s_\ast \tau_\ast}$ and $\lvert \Theta' \rvert \leq p^{s_\ast \tau_\ast}$.

2. $\lvert \Psi \rvert \leq p^{s_\ast \tau_\ast}$.

3. $\lvert \Phi \rvert \leq p^{s_\ast \tau_\ast}$.
Necessary condition for sums of polynomials in one variable/3

Proof.

Let $s_{\ast} \tau_{\ast} = \max\{s \tau_i \mid i \in \Gamma(s)\}$. It is not difficult to show that $d_i = s_{\ast}$ for every $i \in \Gamma(s_{\ast})$, by the maximality of $s_{\ast} \tau_{\ast}$.

Now let $I_{\ast} = \{i \in \Gamma(s_{\ast}) \mid \tau_i = \tau_{\ast}\}$, and decompose $P(\xi) = \Theta + \Psi + \Phi$, where:

- $\Theta = \sum_{i \in I_{\ast}} c_{i,s_{\ast}} \xi_{i}^{s_{\ast}}$;
- $\Psi = \sum_{i \in \Gamma(s_{\ast}) \setminus I_{\ast}} c_{i,s_{\ast}} \xi_{i}^{s_{\ast}}$;
- $\Phi = \sum_{s \neq s_{\ast}} \sum_{i \in \Gamma(s)} c_{i,s} \xi_{i}^{s}$.

Lemma

1. $\Theta = \left(\sum_{i \in I_{\ast}} c_{i,s_{\ast}}\right) \zeta + \Theta' \text{ for suitable } \zeta \geq p^{s_{\ast} \tau_{\ast}} \text{ and } |\Theta'| \leq p^{s_{\ast} \tau_{\ast}}.$
2. $|\Psi| \leq p^{s_{\ast} \tau_{\ast}}.$
3. $|\Phi| \leq p^{s_{\ast} \tau_{\ast}}.$
Necessary condition for sums of polynomials in one variable/3

Proof.

Since \(P(\xi) = \Theta + \Psi + \Phi = 0 \), the above inequalities imply that the sum of coefficients \(\sum_{i \in I_*} c_{i,s*} = 0 \).
Proof.

Since $P(\xi) = \Theta + \Psi + \Phi = 0$, the above inequalities imply that the sum of coefficients $\sum_{i \in I_*} c_{i,s_*} = 0$. We claim that $J = I_*$ is the desired set of indexes. In fact, I_* is trivially nonempty; moreover, $d_i = d_j = s_*$ for all $i, j \in J$; and $\sum_{j \in J} c_{j,d_j} = \sum_{j \in J} c_{j,s_*} = 0$.
necessary condition for sums of polynomials in one variable/3

Proof.

Since \(P(\xi) = \Theta + \Psi + \Phi = 0 \), the above inequalities imply that the sum of coefficients \(\sum_{i \in I_*} c_{i,s_*} = 0 \). We claim that \(J = I_* \) is the desired set of indexes. In fact, \(I_* \) is trivially nonempty; moreover, \(d_i = d_j = s_* \) for all \(i, j \in J \); and \(\sum_{j \in J} c_{j,d_j} = \sum_{j \in J} c_{j,s_*} = 0 \).

The most complicated part is the proof of the Lemma.
Proof.

Since $P(\xi) = \Theta + \Psi + \Phi = 0$, the above inequalities imply that the sum of coefficients $\sum_{i \in I_*} c_{i,s_*} = 0$. We claim that $J = I_*$ is the desired set of indexes. In fact, I_* is trivially nonempty; moreover, $d_i = d_j = s_*$ for all $i, j \in J$; and $\sum_{j \in J} c_{j,d_j} = \sum_{j \in J} c_{j,s_*} = 0$.

The most complicated part is the proof of the Lemma. The idea is to let $\varphi : \mathbb{N} \to \mathbb{N}_0$ be the function s.t. $p^{\varphi(m)} \leq m < p^{\varphi(m)+1}$; and for every $t \in \mathbb{N}_0$, let $\psi_t(m) : \mathbb{N} \to \{0, 1, \ldots, p - 1\}$ be the function where $\psi_t(m)$ is the $(t + 1)$-th digit from the left when m is written in base p.
Necessary condition for sums of polynomials in one variable/3

Proof.

Since \(P(\xi) = \Theta + \Psi + \Phi = 0 \), the above inequalities imply that the sum of coefficients \(\sum_{i \in I_*} c_{i,s_*} = 0 \). We claim that \(J = I_* \) is the desired set of indexes. In fact, \(I_* \) is trivially nonempty; moreover, \(d_i = d_j = s_* \) for all \(i, j \in J \); and \(\sum_{j \in J} c_{j,d_j} = \sum_{j \in J} c_{j,s_*} = 0 \).

The most complicated part is the proof of the Lemma. The idea is to let \(\varphi : \mathbb{N} \to \mathbb{N}_0 \) be the function s.t. \(p^\varphi(m) \leq m < p^\varphi(m) + 1 \); and for every \(t \in \mathbb{N}_0 \), let \(\psi_t(m) : \mathbb{N} \to \{0, 1, \ldots, p - 1\} \) be the function where \(\psi_t(m) \) is the \((t + 1)\)-th digit from the left when \(m \) is written in base \(p \). Then the \(u \)-equivalences \(\xi_1 \sim_u \ldots \sim_u \xi_n \) imply, by overspill, that for every \(a \in \mathbb{N} \) one has \(\xi_i^a = \zeta_i^a + \vartheta_{i,a} \) where \(p^{a_{\tau_i}} \leq \zeta_i^a \leq \xi_i^a < p^{a_{\tau_i} + a} \) and \(\vartheta_{i,a} \leq p^{a_{\tau_i}} \).
Necessary condition for sums of polynomials in one variable/3

Proof.

Since \(P(\xi) = \Theta + \Psi + \Phi = 0 \), the above inequalities imply that the sum of coefficients \(\sum_{i \in I_*} c_{i,s_*} = 0 \). We claim that \(J = I_* \) is the desired set of indexes. In fact, \(I_* \) is trivially nonempty; moreover, \(d_i = d_j = s_* \) for all \(i, j \in J \); and \(\sum_{j \in J} c_{j,d_j} = \sum_{j \in J} c_{j,s_*} = 0 \).

The most complicated part is the proof of the Lemma. The idea is to let \(\phi : \mathbb{N} \to \mathbb{N}_0 \) be the function s.t. \(p^{\phi(m)} \leq m < p^{\phi(m)+1} \); and for every \(t \in \mathbb{N}_0 \), let \(\psi_t(m) : \mathbb{N} \to \{0, 1, \ldots, p - 1\} \) be the function where \(\psi_t(m) \) is the \((t + 1)\)-th digit from the left when \(m \) is written in base \(p \). Then the \(u \)-equivalences \(\xi_1 \sim_u \ldots \sim_u \xi_n \) imply, by overspill, that for every \(a \in \mathbb{N} \) one has \(\xi_i^a = \zeta_i^a + \vartheta_{i,a} \) where \(p^{a\tau_i} \leq \zeta_i^a \leq \xi_i^a < p^{a\tau_i+a} \) and \(\vartheta_{i,a} \leq p^{a\tau_i} \).

With this decomposition, the lemma can be proven by showing that \(\zeta_i^a \) and \(\vartheta_{i,a} \) "does not mix in computations".
Examples

A polynomial of the form

\[P(x_1, x_2, \ldots, x_n) = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n, \]

where \(P \) is a non-linear polynomial with no constant term, is PR if and only if it is a Rado polynomial.

Example

The polynomial

\[P(x, y) = x^3 y^2 + x^2 y^3 \]

is not PR (even if it contains a partial sum of coefficients that equals zero).

Example

The polynomials

\[x^n y^m z^k \]

are not PR for \(k < n, m \).

Lorenzo Luperi Baglini
University of Vienna
23 March 2019
Examples

Corollary

A polynomial of the form \(\sum_{i=1}^{n} c_i x_i + P(y) \), where \(P \) is a nonlinear polynomial with no constant term, is PR if and only if it is a Rado polynomial.
Examples

Corollary

A polynomial of the form \(\sum_{i=1}^{n} c_i x_i + P(y) \), where \(P \) is a nonlinear polynomial with no constant term, is PR if and only if it is a Rado polynomial.

Example

The polynomial

\[
P(x, y) = x^3 + 2x + y^3 - 2y
\]

is not PR (even if it contains a partial sum of coefficients that equals zero).
Examples

Corollary

A polynomial of the form \(\sum_{i=1}^{n} c_i x_i + P(y) \), where \(P \) is a nonlinear polynomial with no constant term, is PR if and only if it is a Rado polynomial.

Example

The polynomial

\[
P(x, y) = x^3 + 2x + y^3 - 2y
\]

is not PR (even if it contains a partial sum of coefficients that equals zero).

Example

The polynomials \(x^n + y^m = z^k \) are not PR for \(k \notin \{n, m\} \).
Op en Problems/1

Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings.

Moreover, using number theoretical methods, Chow, Lindqvist and Prendiville have proven the following:

Theorem
For every \(k \in \mathbb{N} \) there exists \(s_0, p, q \) such that for every \(s \neq s_0 \), \(p, q \) and \(c_1, \ldots, c_s \in \mathbb{Z} \), \(z \not\equiv 0 \), the following equivalence holds:

The equation \(\sum_{i=1}^{s} c_i x_i \) is PR;

there exists a nonempty set \(J \) such that \(\sum_{j \in J} c_j \not\equiv 0 \).

\(s_0, p, q \) is of the order \(k \log k \).

Open Problem 2.
Are there simple decidable conditions under which a given (non-homogeneous) Diophantine equation with no constant term is PR on \(\mathbb{N} \) if and only if it is PR on \(\mathbb{Z} \) if and only if it is PR on \(\mathbb{Q} \)?
Open Problems/1

Open Problem 1. Is $x^2 + y^2 = z^2$ PR?
Open Problems/1

Open Problem 1. Is \(x^2 + y^2 = z^2 \) PR?

Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings.
Open Problems/1

Open Problem 1. Is $x^2 + y^2 = z^2$ PR?

Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

Theorem

For every $k \in \mathbb{N}$ there exists s_0, p, q such that for every $s > s_0$ and $c_1, \ldots, c_s \in \mathbb{Z}$ such that $t_0 < t_1 < \ldots < t_s$ the following equivalence holds:

The equation $\sum_{i=1}^{s} c_i x^k_i$ is PR; there exists a nonempty set $J = \{t_1, \ldots, t_s\}$ such that $\sum_{j \in J} c_j = 0$.

s_0, p, q is of the order $k \log k$.

Open Problem 2.

Are there simple decidable conditions under which a given (non-homogeneous) Diophantine equation with no constant term is PR on \mathbb{N} if and only if it is PR on \mathbb{Z} if and only if it is PR on \mathbb{Q}?
Open Problems/1

Open Problem 1. Is $x^2 + y^2 = z^2$ PR?

Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

Theorem

For every $k \in \mathbb{N}$ there exists $s_0(k)$ such that for every $s > s_0(k)$ and $c_1, \ldots, c_s \in \mathbb{Z} \setminus \{0\}$ the following equivalence holds:
Open Problems/1

Open Problem 1. Is $x^2 + y^2 = z^2$ PR?

Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

Theorem

For every $k \in \mathbb{N}$ there exists $s_0(k)$ such that for every $s > s_0(k)$ and $c_1, \ldots, c_s \in \mathbb{Z} \setminus \{0\}$ the following equivalence holds:

- The equation $\sum_{i=1}^{s} c_i x_i^k$ is PR;
Open Problems/1

Open Problem 1. Is $x^2 + y^2 = z^2$ PR?

Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

Theorem

For every $k \in \mathbb{N}$ there exists $s_0(k)$ such that for every $s > s_0(k)$ and $c_1, \ldots, c_s \in \mathbb{Z} \setminus \{0\}$ the following equivalence holds:

- The equation $\sum_{i=1}^{s} c_i x_i^k$ is PR;
- there exists a nonempty set $J \subseteq \{1, \ldots, s\}$ s.t. $\sum_{j \in J} c_j = 0$.
Open Problems/1

Open Problem 1. Is $x^2 + y^2 = z^2$ PR?

Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

Theorem

For every $k \in \mathbb{N}$ there exists $s_0(k)$ such that for every $s > s_0(k)$ and $c_1, \ldots, c_s \in \mathbb{Z}\setminus\{0\}$ the following equivalence holds:

- The equation $\sum_{i=1}^{s} c_i x_i^k$ is PR;
- there exists a nonempty set $J \subseteq \{1, \ldots, s\}$ s.t. $\sum_{j \in J} c_j = 0$.

$s_0(k)$ is of the order $k \log k$.

Open Problems/1

Open Problem 1. Is $x^2 + y^2 = z^2$ PR?

Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

Theorem

For every $k \in \mathbb{N}$ there exists $s_0(k)$ such that for every $s > s_0(k)$ and $c_1, \ldots, c_s \in \mathbb{Z}\{0\}$ the following equivalence holds:

- The equation $\sum_{i=1}^{s} c_i x_i^k$ is PR;
- there exists a nonempty set $J \subseteq \{1, \ldots, s\}$ s.t. $\sum_{j \in J} c_j = 0$.

$s_0(k)$ is of the order $k \log k$.

Open Problem 2. Are there simple decidable conditions under which a given (non-homogeneous) Diophantine equation with no constant term is PR on \mathbb{N} if and only if it is PR on \mathbb{Z} if and only if it is PR on \mathbb{Q}?
Op en Problems/2

Are equations of the form
\[a_i^m b_j^2 \]
PR if and only if the linear or the quadratic part satisfy a Rado condition?

Op en Problem 4.
Are there simple Rado-like necessary and sufficient conditions under which a given Diophantine equation with no constant term is PR on sufficiently large finite fields \(F_p \)?

Op en Problem 5.
Is there a characterization of PR in infinite systems of Diophantine equations in terms of \(u \)-equivalence? (Or, equivalently, by means of ultralimits?)
Open Problem 3. Are equations of the form \(\sum_{i=1}^{n} c_i x_i = \sum_{j=1}^{m} d_j y_j^2 \)
PR if and only if the linear or the quadratic part satisfy a Rado condition?
Open Problems/2

Open Problem 3. Are equations of the form \(\sum_{i=1}^{n} c_i x_i = \sum_{j=1}^{m} d_j y_j^2 \) PR if and only if the linear or the quadratic part satisfy a Rado condition?

Open Problem 4. Are there simple “Rado-like” necessary and sufficient conditions under which a given Diophantine equation with no constant term is PR on sufficiently large finite fields \(\mathbb{F}_p \)?
Open Problem 3. Are equations of the form \(\sum_{i=1}^{n} c_i x_i = \sum_{j=1}^{m} d_j y_j^2 \) PR if and only if the linear or the quadratic part satisfy a Rado condition?

Open Problem 4. Are there simple “Rado-like” necessary and sufficient conditions under which a given Diophantine equation with no constant term is PR on sufficiently large finite fields \(\mathbb{F}_p \)?

Open Problem 5. Is there a characterization of PR infinite systems of Diophantine equations in terms of \(u \)-equivalence? (Or, equivalently, by means of ultrafilters?)
Thank You!

email: lorenzo.luperi.baglini@univie.ac.at