Asymptotic spherical means as Loeb integrals

Irfan Alam

Department of Mathematics Louisiana State University Baton Rouge, LA

AMS Special Session on Applications of Ultrafilters and Nonstandard Methods

Honolulu, HI March 23, 2019

www.math.lsu.edu/~ialam1/hawaii.pdf

History and motivation

The benefits of nonstandard methods
The "infinite" sphere

History

Kinetic Theory of Gases

$$\bar{E} \propto T$$

Kinetic Theory of Gases

$$\bar{E} \propto T \Rightarrow E = kTN$$
.

Kinetic Theory of Gases

$$\bar{E} \propto T \Rightarrow E = kTN$$
.

$$\sum_{i=1}^{N} ||\vec{v_j}||^2 = \frac{2}{m}E = \frac{2}{m}kTN.$$

Maxwell(1860) and Boltzmann(1868)

J.C. Maxwell

L.E. Boltzmann

Along a particular direction, the probability that a given particle has velocity between x and "x + dx" is

$$\frac{1}{\alpha\sqrt{\pi}}e^{-\frac{x^2}{\alpha^2}}dx.$$

Poincaré's Calcul des probabilités (1912)

$$\lim_{n \to \infty} \int_{S^{n-1}(\sqrt{n})} \mathbb{1}_{x_1 \in (a,b)} d\bar{\sigma}_n(x_1,\ldots,x_n) = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.$$

J.H. Poincaré

A simple generalization

For any bounded measurable function $f: \mathbb{R}^k \to \mathbb{R}$, we have

$$\lim_{n\to\infty}\int\limits_{S^{n-1}(\sqrt{n})}f(x_1,\ldots x_k)d\bar{\sigma}_n(x_1,\ldots ,x_n)=\int_{\mathbb{R}^k}fd\mu.$$

J.H. Poincaré

Back to Maxwell-Boltzmann

The probability that a given particle has speed between v and

$$\frac{4}{\alpha^3\sqrt{\pi}}v^2e^{-\frac{v^2}{\alpha^2}}dv.$$

The mean velocity is

$$\frac{2\alpha}{\sqrt{\pi}}$$
.

Back to Maxwell-Boltzmann

The probability that a given particle has speed between v and "v + dv" is

$$\frac{4}{\alpha^3\sqrt{\pi}}v^2e^{-\frac{v^2}{\alpha^2}}dv.$$

The mean velocity is

$$\frac{2\alpha}{\sqrt{\pi}}$$
.

• This corresponds to integrating $\sqrt{x_1^2 + x_2^2 + x_3^2}$ in the sense of Poincaré.

$$\int\limits_{\mathbb{S}^{n-1}(\sqrt{n})} f d\bar{\sigma}_n = a_n b_n \int\limits_{\mathbb{R}^k} \frac{1}{\left(\sqrt{2\pi}\right)^k} \left(1 - \frac{||x||^2}{n}\right)^{\frac{n}{2}} \frac{\mathbb{1}_{B_k(\sqrt{n})}(x) f(x)}{\left(1 - \frac{||x||^2}{n}\right)^{\frac{k+2}{2}}} d\lambda(x),$$

where
$$a_n = \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-k}{2}\right)\cdot\left(\frac{n-k}{2}\right)^{\frac{k}{2}}}$$
 and $b_n = \left(1-\frac{k}{n}\right)^{\frac{n}{2}}$.

$$\int\limits_{\mathbb{R}^{n-1}(\sqrt{n})}fd\bar{\sigma}_n=a_nb_n\int\limits_{\mathbb{R}^k}\frac{1}{\left(\sqrt{2\pi}\right)^k}\left(1-\frac{||x||^2}{n}\right)^{\frac{n}{2}}\frac{\mathbb{1}_{B_k(\sqrt{n})}(x)f(x)}{\left(1-\frac{||x||^2}{n}\right)^{\frac{k+2}{2}}}d\lambda(x),$$

where
$$a_n = \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-k}{2}\right)\cdot\left(\frac{n-k}{2}\right)^{\frac{k}{2}}}$$
 and $b_n = \left(1-\frac{k}{n}\right)^{\frac{n}{2}}$.

- Dominated convergence theorem does not work directly.
- Not even clear if f is integrable over $S^{n-1}(\sqrt{n})$.

Trying to work with truncations

• We know the result for $f_m := f \mathbb{1}_{|f| < m}$. Therefore,

$$\lim_{n\to\infty}\int\limits_{S^{n-1}(\sqrt{n})}f_md\bar{\sigma}_n=\int\limits_{\mathbb{R}^k}f_md\mu$$

Trying to work with truncations

• We know the result for $f_m := f \mathbb{1}_{|f| < m}$. Therefore,

$$\lim_{m\to\infty}\lim_{n\to\infty}\int_{S^{n-1}(\sqrt{n})}f_md\bar{\sigma}_n=\lim_{m\to\infty}\int_{\mathbb{R}^k}f_md\mu=\int_{\mathbb{R}^k}fd\mu.$$

Trying to work with truncations

• We know the result for $f_m := f \mathbb{1}_{|f| < m}$. Therefore,

$$\lim_{m\to\infty}\lim_{n\to\infty}\int_{S^{n-1}(\sqrt{n})}f_md\bar{\sigma}_n=\lim_{m\to\infty}\int_{\mathbb{R}^k}f_md\mu=\int_{\mathbb{R}^k}fd\mu.$$

• We wanted $\lim_{n\to\infty}\lim_{m\to\infty}\int\limits_{S^{n-1}(\sqrt{n})}f_md\bar{\sigma}_n$ though.

Trying to work with truncations

• We know the result for $f_m := f \mathbb{1}_{|f| < m}$. Therefore,

$$\lim_{m\to\infty}\lim_{n\to\infty}\int_{S^{n-1}(\sqrt{n})}f_md\bar{\sigma}_n=\lim_{m\to\infty}\int_{\mathbb{R}^k}f_md\mu=\int_{\mathbb{R}^k}fd\mu.$$

- We wanted $\lim_{n\to\infty}\lim_{m\to\infty}\int\limits_{S^{n-1}(\sqrt{n})}f_md\bar{\sigma}_n$ though.
- No good general theory of switching double limits, unfortunately.

Our results applicable to this setting

Theorem 1

If (Ω_n, \mathbb{P}_n) and $(\mathbb{R}^k, \mathbb{P})$ are such that $\lim_{n \to \infty} \mathbb{P}_n(B) = \mathbb{P}(B)$ for all $B \in \mathcal{B}(\mathbb{R}^k)$, and $f : \mathbb{R}^k \to \mathbb{R}$ is measurable, then

$$\lim_{m\to\infty}\lim_{n\to\infty}\int_{\Omega_n\cap\{|f|>m\}}|f|\,d\mathbb{P}_n=0\iff\lim_{n\to\infty}\int_{\Omega_n}fd\mathbb{P}_n=\int_{\mathbb{R}^k}fd\mathbb{P}.$$

Our results applicable to this setting

Theorem 1

If (Ω_n, \mathbb{P}_n) and $(\mathbb{R}^k, \mathbb{P})$ are such that $\lim_{n\to\infty} \mathbb{P}_n(B) = \mathbb{P}(B)$ for all $B \in \mathcal{B}(\mathbb{R}^k)$, and $f : \mathbb{R}^k \to \mathbb{R}$ is measurable, then

$$\lim_{m\to\infty}\lim_{n\to\infty}\int_{\Omega_n\cap\{|f|>m\}}|f|\,d\mathbb{P}_n=0\iff\lim_{n\to\infty}\int_{\Omega_n}fd\mathbb{P}_n=\int_{\mathbb{R}^k}fd\mathbb{P}.$$

Theorem 2

If $f: \mathbb{R}^k \to \mathbb{R}$ is μ -integrable, then

$$\lim_{m\to\infty}\lim_{n\to\infty}\int_{S_n\cap\{|f|>m\}}|f|\,d\bar{\sigma}_n=0.$$

Thus,
$$\lim_{n\to\infty}\int_{S_n}fd\bar{\sigma}_n=\int_{\mathbb{R}^k}fd\mu$$
 for all μ -integrable f .

• Sengupta (and some of his PhD students) recently worked on a generalization where they fix an affine subspace of $\ell^2(\mathbb{R})$ and integrate over the corresponding sections of spheres.

- Sengupta (and some of his PhD students) recently worked on a generalization where they fix an affine subspace of $\ell^2(\mathbb{R})$ and integrate over the corresponding sections of spheres.
- If the centers/radii of the spheres are changing in a complicated way, then working with a standard sequence of integrals can be messy.

- Sengupta (and some of his PhD students) recently worked on a generalization where they fix an affine subspace of $\ell^2(\mathbb{R})$ and integrate over the corresponding sections of spheres.
- If the centers/radii of the spheres are changing in a complicated way, then working with a standard sequence of integrals can be messy.
 Nonstandard analysis gives the benefit of fixing a hyperfinite-dimensional sphere to work on.

- Sengupta (and some of his PhD students) recently worked on a generalization where they fix an affine subspace of $\ell^2(\mathbb{R})$ and integrate over the corresponding sections of spheres.
- If the centers/radii of the spheres are changing in a complicated way, then working with a standard sequence of integrals can be messy.
 Nonstandard analysis gives the benefit of fixing a hyperfinite-dimensional sphere to work on.
- More on this later.

• If f is integrable on $(S_n, \bar{\sigma}_n)$ for large n with $u_n := \int_{S_n} f d\bar{\sigma}_n$, then transfer gives:

• If f is integrable on $(S_n, \bar{\sigma}_n)$ for large n with $u_n := \int_{S_n} f d\bar{\sigma}_n$, then transfer gives:

$$u_N = \int_{S_N}^* f d\bar{\sigma}_N \text{ for all } N > \mathbb{N}.$$

• If f is integrable on $(S_n, \bar{\sigma}_n)$ for large n with $u_n := \int_{S_n} f d\bar{\sigma}_n$, then transfer gives:

$$u_N = \int_{S_N}^* f d\bar{\sigma}_N \text{ for all } N > \mathbb{N}.$$

• But this is not an integral, and $\bar{\sigma}_N$ is not a measure!

• If f is integrable on $(S_n, \bar{\sigma}_n)$ for large n with $u_n := \int_{S_n} f d\bar{\sigma}_n$, then transfer gives:

$$u_N = \int_{S_N}^* f d\bar{\sigma}_N \text{ for all } N > \mathbb{N}.$$

- But this is not an integral, and $\bar{\sigma}_N$ is not a measure!
- By transfer, $\bar{\sigma}_N : {}^*\mathcal{B}(S_N) \to {}^*[0,1]$ is a finitely additive function satisfying $\bar{\sigma}_N(S_N) = 1$, where ${}^*\mathcal{B}(S_N)$ is an algebra. The above is the value of the extension of the intregral operator at $((S_N, {}^*\mathcal{B}(S_N)), {}^*f)$.

• If f is integrable on $(S_n, \bar{\sigma}_n)$ for large n with $u_n := \int_{S_n} f d\bar{\sigma}_n$, then transfer gives:

$$u_N = \int_{S_N}^* f d\bar{\sigma}_N \text{ for all } N > \mathbb{N}.$$

- But this is not an integral, and $\bar{\sigma}_N$ is not a measure!
- By transfer, $\bar{\sigma}_N : {}^*\mathcal{B}(S_N) \to {}^*[0,1]$ is a finitely additive function satisfying $\bar{\sigma}_N(S_N) = 1$, where ${}^*\mathcal{B}(S_N)$ is an algebra. The above is the value of the extension of the intregral operator at $((S_N, {}^*\mathcal{B}(S_N)), {}^*f)$.
- $\operatorname{st}(\bar{\sigma}_N)$ extends to a probability measure by Carathédory Extension Theorem. Its completion $(S_N, L(^*\mathcal{B}(S_N)), L\bar{\sigma}_N)$ is called the Loeb space of $(S_N, ^*\mathcal{B}(S_N), \bar{\sigma}_N)$.

• Suppose $(\Omega, \mathcal{F}, \mathbb{P})$ is an internal probability space and $F \in {}^*L^1(\Omega)$ is such that $L\mathbb{P}(F \in {}^*\mathbb{R}_{fin}) = 1$.

- Suppose (Ω, F, P) is an internal probability space and F ∈ *L¹(Ω) is such that LP(F ∈ *R_{fin}) = 1. Then the following are equivalent:
 - (1) $\operatorname{st}(F)$ is Loeb integrable, and $\operatorname{st}\left({}^*\int_{\Omega} F d\mathbb{P}\right) = \int_{\Omega} \operatorname{st}(F) dL\mathbb{P}$.

- Suppose (Ω, F, P) is an internal probability space and F ∈ *L¹(Ω) is such that LP(F ∈ *R_{fin}) = 1. Then the following are equivalent:
 - (1) $\operatorname{st}(F)$ is Loeb integrable, and $\operatorname{st}\left({}^*\int_{\Omega} F d\mathbb{P}\right) = \int_{\Omega} \operatorname{st}(F) dL\mathbb{P}$.
 - (2) For every $M > \mathbb{N}$, we have $\operatorname{st} \left({}^* \int_{\Omega} |F| \, \mathbb{1}_{\{|F| > M\}} d\mathbb{P} \right) = 0$.

- Suppose (Ω, F, P) is an internal probability space and F ∈ *L¹(Ω) is such that LP(F ∈ *R_{fin}) = 1. Then the following are equivalent:
 - (1) $\operatorname{st}(F)$ is Loeb integrable, and $\operatorname{st}\left({}^*\int_{\Omega} Fd\mathbb{P}\right) = \int_{\Omega} \operatorname{st}(F)dL\mathbb{P}$.
 - (2) For every $M > \mathbb{N}$, we have $\operatorname{st} \left({}^* \int_{\Omega} |F| \, \mathbb{1}_{\{|F| > M\}} d\mathbb{P} \right) = 0$.
- A function *F* satisfying the above is called *S-integrable*.

- Suppose (Ω, F, P) is an internal probability space and F ∈ *L¹(Ω) is such that LP(F ∈ *R_{fin}) = 1. Then the following are equivalent:
 - (1) $\operatorname{st}(F)$ is Loeb integrable, and $\operatorname{st}\left({}^*\int_{\Omega} F d\mathbb{P}\right) = \int_{\Omega} \operatorname{st}(F) dL\mathbb{P}$.
 - (2) For every $M > \mathbb{N}$, we have $\operatorname{st} \left({}^* \int_{\Omega} |F| \, \mathbb{1}_{\{|F| > M\}} d\mathbb{P} \right) = 0$.
- A function F satisfying the above is called S-integrable.
- In our case, for $f: \mathbb{R}^k \to \mathbb{R}$, we have:

$$L\bar{\sigma}_N(^*f \in {}^*\mathbb{R}_{fin}) = L\bar{\sigma}_N(\cup_{m \in \mathbb{N}}\{|^*f| < m\})$$

- Suppose $(\Omega, \mathcal{F}, \mathbb{P})$ is an internal probability space and $F \in {}^*L^1(\Omega)$ is such that $L\mathbb{P}(F \in {}^*\mathbb{R}_{fin}) = 1$. Then the following are equivalent:
 - (1) $\operatorname{st}(F)$ is Loeb integrable, and $\operatorname{st}\left({}^*\int_{\Omega} Fd\mathbb{P}\right) = \int_{\Omega} \operatorname{st}(F)dL\mathbb{P}$.
 - (2) For every $M > \mathbb{N}$, we have $\operatorname{st} \left({}^* \int_{\Omega} |F| \, \mathbb{1}_{\{|F| > M\}} d\mathbb{P} \right) = 0$.
- A function F satisfying the above is called S-integrable.
- In our case, for $f: \mathbb{R}^k \to \mathbb{R}$, we have:

$$L\bar{\sigma}_{N}(^{*}f \in {^{*}\mathbb{R}_{fin}}) = L\bar{\sigma}_{N}\left(\bigcup_{m \in \mathbb{N}}\{|^{*}f| < m\}\right)$$
$$= \lim_{m \to \infty} L\bar{\sigma}_{N}\left({^{*}\{|f| < m\}}\right)$$

- Suppose (Ω, F, P) is an internal probability space and F ∈ *L¹(Ω) is such that LP(F ∈ *R_{fin}) = 1. Then the following are equivalent:
 - (1) $\operatorname{st}(F)$ is Loeb integrable, and $\operatorname{st}\left({}^*\int_{\Omega} F d\mathbb{P}\right) = \int_{\Omega} \operatorname{st}(F) dL\mathbb{P}$.
 - (2) For every $M > \mathbb{N}$, we have $\operatorname{st} \left({}^* \int_{\Omega} |F| \, \mathbb{1}_{\{|F| > M\}} d\mathbb{P} \right) = 0$.
- A function F satisfying the above is called S-integrable.
- In our case, for $f: \mathbb{R}^k \to \mathbb{R}$, we have:

$$L\bar{\sigma}_{N}(^{*}f \in {^{*}\mathbb{R}_{fin}}) = L\bar{\sigma}_{N}(\cup_{m \in \mathbb{N}}\{|^{*}f| < m\})$$

$$= \lim_{m \to \infty} L\bar{\sigma}_{N}(^{*}\{|f| < m\})$$

$$= \lim_{m \to \infty} \mu(|f| < m) = 1.$$

Proof of the result for spherical integrals

Theorem 1

If (Ω_n, \mathbb{P}_n) and $(\mathbb{R}^k, \mathbb{P})$ are such that $\lim_{n\to\infty} \mathbb{P}_n(B) = \mathbb{P}(B)$ for all $B \in \mathcal{B}(\mathbb{R}^k)$, and $f : \mathbb{R}^k \to \mathbb{R}$ is measurable, then

$$\lim_{m\to\infty}\lim_{n\to\infty}\int_{\Omega_n\cap\{|f|>m\}}|f|\,d\mathbb{P}_n=0\iff\lim_{n\to\infty}\int_{\Omega_n}fd\mathbb{P}_n=\int_{\mathbb{R}^k}fd\mathbb{P}.$$

Proof of the result for spherical integrals

Theorem 1

If (Ω_n, \mathbb{P}_n) and $(\mathbb{R}^k, \mathbb{P})$ are such that $\lim_{n\to\infty} \mathbb{P}_n(B) = \mathbb{P}(B)$ for all $B \in \mathcal{B}(\mathbb{R}^k)$, and $f : \mathbb{R}^k \to \mathbb{R}$ is measurable, then

$$\lim_{m\to\infty}\lim_{n\to\infty}\int_{\Omega_n\cap\{|f|>m\}}|f|\,d\mathbb{P}_n=0\iff\lim_{n\to\infty}\int_{\Omega_n}fd\mathbb{P}_n=\int_{\mathbb{R}^k}fd\mathbb{P}.$$

Proof of \Rightarrow .

Given $\epsilon \in \mathbb{R}_{>0}$, there exists $\ell_{\epsilon} \in \mathbb{N}$ such that the following holds:

Theorem 1

If (Ω_n, \mathbb{P}_n) and $(\mathbb{R}^k, \mathbb{P})$ are such that $\lim_{n \to \infty} \mathbb{P}_n(B) = \mathbb{P}(B)$ for all $B \in \mathcal{B}(\mathbb{R}^k)$, and $f : \mathbb{R}^k \to \mathbb{R}$ is measurable, then

$$\lim_{m\to\infty}\lim_{n\to\infty}\int_{\Omega_n\cap\{|f|>m\}}|f|\,d\mathbb{P}_n=0\iff\lim_{n\to\infty}\int_{\Omega_n}fd\mathbb{P}_n=\int_{\mathbb{R}^k}fd\mathbb{P}.$$

Proof of \Rightarrow .

Given $\epsilon \in \mathbb{R}_{>0}$, there exists $\ell_{\epsilon} \in \mathbb{N}$ such that the following holds: for any $m \geq \ell_{\epsilon}$, there is an $n_{\epsilon,m} \in \mathbb{N}$ such that

$$\int_{\Omega_n\cap\{|f|\geq m\}}|f|\ d\nu_n<\epsilon\ \text{for all}\ n\geq n_{\epsilon,m}.$$

Theorem 1

If (Ω_n, \mathbb{P}_n) and $(\mathbb{R}^k, \mathbb{P})$ are such that $\lim_{n \to \infty} \mathbb{P}_n(B) = \mathbb{P}(B)$ for all $B \in \mathcal{B}(\mathbb{R}^k)$, and $f : \mathbb{R}^k \to \mathbb{R}$ is measurable, then

$$\lim_{m\to\infty}\lim_{n\to\infty}\int_{\Omega_n\cap\{|f|>m\}}|f|\,d\mathbb{P}_n=0\iff\lim_{n\to\infty}\int_{\Omega_n}fd\mathbb{P}_n=\int_{\mathbb{R}^k}fd\mathbb{P}.$$

Proof of \Rightarrow .

By transfer, for any N > N,

$$\int_{\Omega_N}|^*f|\,\,\mathbb{1}_{\{|^*f|>l_\epsilon\}}d\nu_N<\epsilon.$$

Theorem 1

If (Ω_n, \mathbb{P}_n) and $(\mathbb{R}^k, \mathbb{P})$ are such that $\lim_{n\to\infty} \mathbb{P}_n(B) = \mathbb{P}(B)$ for all $B \in \mathcal{B}(\mathbb{R}^k)$, and $f : \mathbb{R}^k \to \mathbb{R}$ is measurable, then

$$\lim_{m\to\infty}\lim_{n\to\infty}\int_{\Omega_n\cap\{|f|>m\}}|f|\,d\mathbb{P}_n=0\iff\lim_{n\to\infty}\int_{\Omega_n}fd\mathbb{P}_n=\int_{\mathbb{R}^k}fd\mathbb{P}.$$

Proof of \Rightarrow .

By transfer, for any $M, N > \mathbb{N}$,

$$^* \int_{\Omega_N} |^* f| \, \mathbb{1}_{\{|^* f| > M\}} d\nu_N \leq ^* \int_{\Omega_N} |^* f| \, \mathbb{1}_{\{|^* f| > l_\epsilon\}} d\nu_N < \epsilon.$$

Theorem 1

If (Ω_n, \mathbb{P}_n) and $(\mathbb{R}^k, \mathbb{P})$ are such that $\lim_{n\to\infty} \mathbb{P}_n(B) = \mathbb{P}(B)$ for all $B \in \mathcal{B}(\mathbb{R}^k)$, and $f : \mathbb{R}^k \to \mathbb{R}$ is measurable, then

$$\lim_{m\to\infty}\lim_{n\to\infty}\int_{\Omega_n\cap\{|f|>m\}}|f|\,d\mathbb{P}_n=0\iff\lim_{n\to\infty}\int_{\Omega_n}fd\mathbb{P}_n=\int_{\mathbb{R}^k}fd\mathbb{P}.$$

Proof of \Rightarrow .

$$\mathbf{st}\left(^* \int_{\Omega_N} {}^* f d\mathbb{P}_N\right) = \int_{\Omega_N} \mathbf{st}(^* f) dL \mathbb{P}_N \stackrel{DCT}{=} \lim_{m \to \infty} \int_{\Omega_N} \mathbf{st}(^* f_m) dL \mathbb{P}_n$$

Theorem 1

If (Ω_n, \mathbb{P}_n) and $(\mathbb{R}^k, \mathbb{P})$ are such that $\lim_{n\to\infty} \mathbb{P}_n(B) = \mathbb{P}(B)$ for all $B \in \mathcal{B}(\mathbb{R}^k)$, and $f : \mathbb{R}^k \to \mathbb{R}$ is measurable, then

$$\lim_{m\to\infty}\lim_{n\to\infty}\int_{\Omega_n\cap\{|f|>m\}}|f|\,d\mathbb{P}_n=0\iff\lim_{n\to\infty}\int_{\Omega_n}\textit{fd}\mathbb{P}_n=\int_{\mathbb{R}^k}\textit{fd}\mathbb{P}.$$

Proof of \Rightarrow .

$$\mathbf{st}\left(^* \int_{\Omega_N} {}^* f d\mathbb{P}_N\right) = \int_{\Omega_N} \mathbf{st}(^* f) dL \mathbb{P}_N \stackrel{DCT}{=} \lim_{m \to \infty} \int_{\Omega_N} \mathbf{st}(^* f_m) dL \mathbb{P}_n$$
$$= \lim_{m \to \infty} \int_{\mathbb{R}^k} f_m d\mathbb{P} \stackrel{DCT}{=} \int_{\mathbb{R}^k} f d\mathbb{P}.$$

Theorem 2

If $f: \mathbb{R}^k \to \mathbb{R}$ is μ -integrable, then

$$\lim_{m\to\infty}\lim_{n\to\infty}\int_{S_n\cap\{|f|>m\}}|f|\,d\bar{\sigma}_n=0.$$

Thus,
$$\lim_{n\to\infty}\int_{\mathcal{S}_n}fd\bar{\sigma}_n=\int_{\mathbb{R}^k}fd\mu$$
 for all μ -integrable f .

Theorem 2

If $f: \mathbb{R}^k \to \mathbb{R}$ is μ -integrable, then

$$\lim_{m\to\infty}\lim_{n\to\infty}\int_{S_n\cap\{|f|>m\}}|f|\,d\bar{\sigma}_n=0.$$

Thus,
$$\lim_{n\to\infty}\int_{S_n}fd\bar{\sigma}_n=\int_{\mathbb{R}^k}fd\mu$$
 for all μ -integrable f .

We use the following lemma:

Lemma 1

There is an $n' \in \mathbb{N}$ and a $C \in \mathbb{R}_{>0}$ such that

$$\int_{\mathcal{S}_n} |g| \, d\bar{\sigma}_n \leq C \left(\mathbb{E}_{\mu}(|g|) + \sqrt{\mathbb{E}_{\mu}(g^2)} \right) \, \, \forall g \in L^2(\mathbb{R}^k, \mu), n \geq n'.$$

Lemma 1

There is an $n' \in \mathbb{N}$ and a $C \in \mathbb{R}_{>0}$ such that

$$\int_{\mathcal{S}_n} |g| \, d\bar{\sigma}_n \leq C \left(\mathbb{E}_{\mu}(|g|) + \sqrt{\mathbb{E}_{\mu}(g^2)} \right) \, \, \forall g \in L^2(\mathbb{R}^k, \mu), n \geq n'.$$

With $g_j = \sqrt{|f| \cdot \mathbb{1}_{|f| \in (j,j+1]}}$, we have

$$\int_{\mathcal{S}_n\cap\{m<|f|\leq m'\}}|f|\,d\bar{\sigma}_n\leq C\sum_{j=m}^{m'-1}\sqrt{j+1}\left(\mathbb{E}_{\mu}(\left|g_j\right|)+\sqrt{\mathbb{E}_{\mu}\left(\left|g_j\right|^2\right)}\right)$$

Lemma 1

There is an $n' \in \mathbb{N}$ and a $C \in \mathbb{R}_{>0}$ such that

$$\int_{\mathcal{S}_n} |g| \ d\bar{\sigma}_n \leq \textit{\textbf{C}}\left(\mathbb{E}_{\mu}(|g|) + \sqrt{\mathbb{E}_{\mu}(g^2)}\right) \ \forall g \in \textit{\textbf{L}}^2(\mathbb{R}^k, \mu), n \geq \textit{\textbf{n}}'.$$

With $g_j = \sqrt{|f| \cdot \mathbb{1}_{|f| \in (j,j+1]}}$, we have

$$\begin{split} \int_{\mathcal{S}_n \cap \{m < |f| \leq m'\}} |f| \, d\bar{\sigma}_n &\leq C \sum_{j=m}^{m'-1} \sqrt{j+1} \left(\mathbb{E}_{\mu}(\left|g_j\right|) + \sqrt{\mathbb{E}_{\mu}\left(\left|g_j\right|^2\right)} \right) \\ &\leq 2C \sum_{j=m}^{m'-1} \frac{\sqrt{j+1}}{\sqrt{j}} \cdot \mathbb{E}_{\mu}\left(|f| \cdot \mathbb{1}_{|f| \in (j,j+1]}\right) \end{split}$$

Lemma 1

There is an $n' \in \mathbb{N}$ and a $C \in \mathbb{R}_{>0}$ such that

$$\int_{\mathcal{S}_n} |g| \ d\bar{\sigma}_n \leq C \left(\mathbb{E}_{\mu}(|g|) + \sqrt{\mathbb{E}_{\mu}(g^2)} \right) \ \forall g \in L^2(\mathbb{R}^k, \mu), n \geq n'.$$

With $g_j = \sqrt{|f| \cdot \mathbb{1}_{|f| \in (j,j+1]}}$, we have

$$\begin{split} \int_{\mathcal{S}_n \cap \{m < |f| \leq m'\}} |f| \, d\bar{\sigma}_n &\leq C \sum_{j=m}^{m'-1} \sqrt{j+1} \left(\mathbb{E}_{\mu}(\left|g_j\right|) + \sqrt{\mathbb{E}_{\mu}\left(\left|g_j\right|^2\right)} \right) \\ &\leq 2C \sum_{j=m}^{m'-1} \frac{\sqrt{j+1}}{\sqrt{j}} \cdot \mathbb{E}_{\mu}\left(|f| \cdot \mathbb{1}_{|f| \in (j,j+1]}\right) \\ &\leq 4C \cdot \mathbb{E}_{\mu}\left(|f| \cdot \mathbb{1}_{m < |f| < m'}\right). \end{split}$$

• For any $f \in L^1(\mathbb{R}^k, \mu)$, we get

$$\lim_{m\to\infty}\limsup_{n\to\infty}\int_{\mathcal{S}_n\cap\{|f|>m\}}|f|\,d\bar{\sigma}_n\leq\lim_{m\to\infty}4C\cdot\mathbb{E}_{\mu}(|f|\cdot\mathbb{1}_{|f|>m})=0.$$

Lemma 1

There is an $n' \in \mathbb{N}$ and a $C \in \mathbb{R}_{>0}$ such that

$$\int_{\mathcal{S}_n} |g| \, d\bar{\sigma}_n \leq C\left(\mathbb{E}_{\mu}(|g|) + \sqrt{\mathbb{E}_{\mu}(g^2)}\right) \, \, \forall g \in L^2(\mathbb{R}^k, \mu), n \geq n'.$$

Lemma 1

There is an $n' \in \mathbb{N}$ and a $C \in \mathbb{R}_{>0}$ such that

$$\int_{\mathcal{S}_n} |g| \, d\bar{\sigma}_n \leq C \left(\mathbb{E}_{\mu}(|g|) + \sqrt{\mathbb{E}_{\mu}(g^2)} \right) \, \, \forall g \in L^2(\mathbb{R}^k, \mu), n \geq n'.$$

Idea of the proof of Lemma

$$\int\limits_{S^{n-1}(\sqrt{n})} g d\bar{\sigma}_n = a_n b_n \int\limits_{\mathbb{R}^k} \frac{1}{(\sqrt{2\pi})^k} \left(1 - \frac{||x||^2}{n}\right)^{\frac{n}{2}} \frac{\mathbb{1}_{B_k(\sqrt{n})}(x)g(x)}{\left(1 - \frac{||x||^2}{n}\right)^{\frac{k+2}{2}}} d\lambda(x),$$

Lemma 1

There is an $n' \in \mathbb{N}$ and a $C \in \mathbb{R}_{>0}$ such that

$$\int_{\mathcal{S}_n} |g| \, d\bar{\sigma}_n \leq C \left(\mathbb{E}_{\mu}(|g|) + \sqrt{\mathbb{E}_{\mu}(g^2)} \right) \, \, \forall g \in L^2(\mathbb{R}^k, \mu), n \geq n'.$$

Idea of the proof of Lemma

$$\int\limits_{S^{n-1}(\sqrt{n})} g d\bar{\sigma}_n = a_n b_n \int\limits_{\mathbb{R}^k} \frac{1}{(\sqrt{2\pi})^k} \left(1 - \frac{||x||^2}{n}\right)^{\frac{n}{2}} \frac{\mathbb{1}_{B_k(\sqrt{n})}(x)g(x)}{\left(1 - \frac{||x||^2}{n}\right)^{\frac{k+2}{2}}} d\lambda(x),$$

• Integrate over $\{||x||^2 \le \frac{n}{2}\}$ and $\{\frac{n}{2} < ||x||^2 < n\}$ separately.

Lemma 1

There is an $n' \in \mathbb{N}$ and a $C \in \mathbb{R}_{>0}$ such that

$$\int_{\mathcal{S}_n} |g| \, d\bar{\sigma}_n \leq C \left(\mathbb{E}_{\mu}(|g|) + \sqrt{\mathbb{E}_{\mu}(g^2)} \right) \, \, \forall g \in L^2(\mathbb{R}^k, \mu), n \geq n'.$$

Idea of the proof of Lemma

$$\textstyle\int\limits_{S^{n-1}(\sqrt{n})}gd\bar{\sigma}_n=a_nb_n\int\limits_{\mathbb{R}^k}\frac{1}{(\sqrt{2\pi})^k}\left(1-\frac{||x||^2}{n}\right)^{\frac{n}{2}}\frac{\mathbb{1}_{B_k(\sqrt{n})}(x)g(x)}{\left(1-\frac{||x||^2}{n}\right)^{\frac{k+2}{2}}}d\lambda(x),$$

- Integrate over $\{||x||^2 \le \frac{n}{2}\}$ and $\{\frac{n}{2} < ||x||^2 < n\}$ separately.
- DCT works in the first part. On the second part apply Cauchy-Schwarz/Hölder, and then use the following consequence of $L\bar{\sigma}_N\left(||x_{(k)}||^2 \leq \frac{N}{2}\right) = 1$:

Lemma 1

There is an $n' \in \mathbb{N}$ and a $C \in \mathbb{R}_{>0}$ such that

$$\int_{\mathcal{S}_n} |g| \, d\bar{\sigma}_n \leq C\left(\mathbb{E}_{\mu}(|g|) + \sqrt{\mathbb{E}_{\mu}(g^2)}\right) \, \, \forall g \in L^2(\mathbb{R}^k, \mu), n \geq n'.$$

Idea of the proof of Lemma

- Integrate over $\{||x||^2 \le \frac{n}{2}\}$ and $\{\frac{n}{2} < ||x||^2 < n\}$ separately.
- DCT works in the first part. On the second part apply Cauchy-Schwarz/Hölder, and then use the following consequence of $L\bar{\sigma}_N\left(\left|\left|x_{(k)}\right|\right|^2\leq \frac{N}{2}\right)=1$:

$$\lim_{n\to\infty}\int_{\{x\in\mathbb{R}^k:\frac{n}{2}<||x||^2< n\}}\left(1-\frac{||x||^2}{n}\right)^{\frac{n}{4}}d\lambda(x)=0.$$

A series of three papers in Journal of Functional Analysis:

- Irina Holmes and Ambar Sengupta (2012)
 A Gaussian Radon transform for Banach spaces
- Ambar Sengupta (2016)
 The Gaussian Radon transform as a limit of spherical transforms
- Amy Peterson and Ambar Sengupta (2019)
 The Gaussian mean for high-dimensional spherical means

• For a vector $x = (x_1, x_2, \ldots) \in \mathbb{R}^{\mathbb{N}}$ and $n \in \mathbb{N}$, we define

$$x_{(n)}:=(x_1,\ldots,x_n).$$

• For a vector $x = (x_1, x_2, ...) \in \mathbb{R}^{\mathbb{N}}$ and $n \in \mathbb{N}$, we define

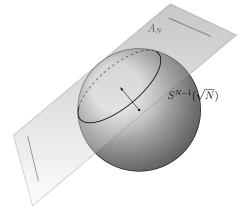
$$X_{(n)} := (x_1, \ldots, x_n).$$

Spheres intersected by affine subspaces

Let $u^{(1)}, \ldots, u^{(\gamma)}$ be mutually orthonormal vectors in $\ell^2(\mathbb{R})$. For $p_1, p_2, \ldots, p_{\gamma} \in \mathbb{R}$ and $n \in \mathbb{N}$, define:

$$S_{A_n} := S^{n-1}(\sqrt{n}) \cap \{x \in \mathbb{R}^n : \langle x, (u^{(i)})_{(n)} \rangle = p_i \text{ for } i = 1, \dots, \gamma\}.$$

$$S_{A_n} := S^{n-1}(\sqrt{n}) \cap \{x \in \mathbb{R}^n : \langle x, (u^{(i)})_{(n)} \rangle = p_i \text{ for } i = 1, \dots, \gamma\}.$$



The motivation behind this theory

• Originally (1917), for a two-dimensional function

 $f: \mathbb{R}^2 \to \mathbb{R}$, Radon defined a map

 $Rf: \{ \text{straight lines on the plane} \} \to \mathbb{R} \text{ by } Rf(L) = \int_L f.$

The motivation behind this theory

- Originally (1917), for a two-dimensional function f: R² → R, Radon defined a map
 Rf: {straight lines on the plane} → R by Rf(L) = ∫, f.
- There is an inverse transform, hence the Radon transform of a function completely characterizes that function.

The motivation behind this theory

- Originally (1917), for a two-dimensional function f: ℝ² → ℝ, Radon defined a map
 Rf: {straight lines on the plane} → ℝ by Rf(L) = ∫_L f.
- There is an inverse transform, hence the Radon transform of a function completely characterizes that function.
- Higher dimensional versions were developed: the Radon transform is now an important tool in Integral Geometry.

The motivation behind this theory

- Originally (1917), for a two-dimensional function f: R² → R, Radon defined a map
 Rf: {straight lines on the plane} → R by Rf(L) = ∫_I f.
- There is an inverse transform, hence the Radon transform of a function completely characterizes that function.
- Higher dimensional versions were developed: the Radon transform is now an important tool in Integral Geometry.
- No straightforward generalization of the transform to functions on infinite dimensions.

The motivation behind this theory (cont.)

• Sengupta defined the *Gaussian Radon transform* of an $f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$ to be the map that takes a hyperplane L in $\ell^2(\mathbb{R})$ to a Gaussian integral of f on L.

The motivation behind this theory (cont.)

- Sengupta defined the *Gaussian Radon transform* of an $f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$ to be the map that takes a hyperplane L in $\ell^2(\mathbb{R})$ to a Gaussian integral of f on L.
- If the function is only k-dimensional, then this integral is with respect to the marginal of the Gaussian on \mathbb{R}^k .

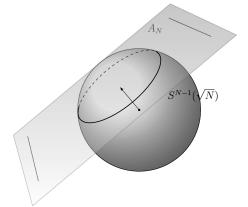
The motivation behind this theory (cont.)

- Sengupta defined the *Gaussian Radon transform* of an $f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$ to be the map that takes a hyperplane L in $\ell^2(\mathbb{R})$ to a Gaussian integral of f on L.
- If the function is only k-dimensional, then this integral is with respect to the marginal of the Gaussian on \mathbb{R}^k .
- Since integrals on the spheres $S^{n-1}(\sqrt{n})$ are known to approximate Gaussian integrals, one expects the integrals on $S^{n-1}(\sqrt{n}) \cap L_n$ (where L_n is the " n^{th} approximation" to L) to converge to the Gaussian Radon transform (at L).

The motivation behind this theory (cont.)

- Sengupta defined the Gaussian Radon transform of an $f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$ to be the map that takes a hyperplane L in $\ell^2(\mathbb{R})$ to a Gaussian integral of f on L.
- If the function is only k-dimensional, then this integral is with respect to the marginal of the Gaussian on \mathbb{R}^k .
- Since integrals on the spheres $S^{n-1}(\sqrt{n})$ are known to approximate Gaussian integrals, one expects the integrals on $S^{n-1}(\sqrt{n}) \cap L_n$ (where L_n is the " n^{th} approximation" to L) to converge to the Gaussian Radon transform (at L).
- Taking an affine subspace A of $\ell^2(\mathbb{R})$ instead of a hyperplane L is the next step of the generalization.

$$S_{A_n} := S^{n-1}(\sqrt{n}) \cap \{x \in \mathbb{R}^n : \langle x, (u^{(i)})_{(n)} \rangle = p_i \text{ for } i = 1, \dots, \gamma\}.$$



Theorem 3

Let $f: \mathbb{R}^k \to \mathbb{R}$ be bounded and Borel measurable. Then

$$\lim_{n\to\infty}\int_{\mathcal{S}_{A_n}} f d\bar{\sigma} = \int_{\mathbb{R}^k} f d\mu_{\bar{\eta},u^{(1)},\dots,u^{(\gamma)}}.$$

Here $\mu_{\bar{n},u^{(1)},...,u^{(\gamma)}}$ is the Gaussian measure on \mathbb{R}^k with

Mean

$$\bar{\eta} = p_1(u^{(1)})_{(k)} + \dots p_{\gamma}(u^{(\gamma)})_{(k)}.$$

Covariance

$$I - \left| \left| (u^{(1)})_{(k)} \right| \right|^2 P_{(u^{(1)})_{(k)}} - \ldots - \left| \left| (u^{(\gamma)})_{(k)} \right| \right|^2 P_{(u^{(\gamma)})_{(k)}}.$$

Some notation

• With the fixed $u^{(1)}, \ldots, u^{(\gamma)}$, we define

$$S_{H_N} := S^{N-1}(\sqrt{N}) \cap (u^{(1)})_{(N)}^{\perp} \cap \ldots \cap (u^{(\gamma)})_{(N)}^{\perp}.$$

• We write $S_{n,u^{(1)},...,u^{(\gamma)}}$ for the same set when the vectors are not clear from context.

Calculation in an easy case

Lemma 4

If $u^{(1)}, \ldots, u^{(\gamma)}$ are orthonormal in \mathbb{R}^k then:

$$\lim_{n\to\infty}\int_{S_n,u^{(1)},\dots,u^{(\gamma)}} f d\bar{\sigma}_n = \int_{\mathbb{R}^k} f d\mu_{0;u^{(1)},\dots u^{(\gamma)}}$$

for all bounded Borel $f: \mathbb{R}^k \to \mathbb{R}$.

Calculation in an easy case

Lemma 4

If $u^{(1)}, \ldots, u^{(\gamma)}$ are orthonormal in \mathbb{R}^k then:

$$\lim_{n\to\infty}\int_{S_n,u^{(1)},\dots,u^{(\gamma)}} \mathit{fd}\bar{\sigma}_n = \int_{\mathbb{R}^k} \mathit{fd}\mu_{0;u^{(1)},\dots u^{(\gamma)}}$$

for all bounded Borel $f: \mathbb{R}^k \to \mathbb{R}$.

Corollary 5

If $u^{(1)}, \dots, u^{(\gamma)}$ are orthonormal in \mathbb{R}^m for some $m \in \mathbb{N}$, then

$$\lim_{n\to\infty}\int_{\mathcal{S}_{n,u^{(1)},\ldots,u^{(\gamma)}}}fd\bar{\sigma}(x_1,\ldots,x_n)=\int_{\mathbb{R}^k}fd\mu_{0;(u^{(1)}),\ldots,(u^{(\gamma)})}$$

for all bounded Borel $f: \mathbb{R}^k \to \mathbb{R}$.

A hyperfinite approximation

• For a vector space V, we denote by $V^{[\gamma]}$ the set of all γ -tuples of orthonormal vectors from V.

A hyperfinite approximation

- For a vector space V, we denote by $V^{[\gamma]}$ the set of all γ -tuples of orthonormal vectors from V.
- For a bounded Borel $f: \mathbb{R}^k \to \mathbb{R}$, let $\theta_f: \cup_{m \geq k} (\mathbb{R}^m)^{[\gamma]} \to \mathbb{R}$ and $a_f: (\cup_{m \geq k} (\mathbb{R}^m)^{\gamma}) \times \mathbb{N}_{>k} \to \mathbb{R}$ be defined by

$$heta_f(v^{(1)},\ldots,v^{(\gamma)}) := \int_{\mathbb{R}^k} f d\mu_{0;v^{(1)},\ldots,v^{(\gamma)}}, \ a_f(v^{(1)},\ldots,v^{(\gamma)},n) := \int_{S_n,v^{(1)},\ldots,v^{(\gamma)}} f d\bar{\sigma}_n.$$

A hyperfinite approximation

- For a vector space V, we denote by $V^{[\gamma]}$ the set of all γ -tuples of orthonormal vectors from V.
- For a bounded Borel $f: \mathbb{R}^k \to \mathbb{R}$, let $\theta_f: \cup_{m \geq k} (\mathbb{R}^m)^{[\gamma]} \to \mathbb{R}$ and $a_f: (\cup_{m \geq k} (\mathbb{R}^m)^{\gamma}) \times \mathbb{N}_{\geq k} \to \mathbb{R}$ be defined by

$$heta_f(v^{(1)},\ldots,v^{(\gamma)}) := \int_{\mathbb{R}^k} f d\mu_{0;v^{(1)},\ldots,v^{(\gamma)}}, \ a_f(v^{(1)},\ldots,v^{(\gamma)},n) := \int_{S_n,v^{(1)},\ldots,v^{(\gamma)}} f d\bar{\sigma}_n.$$

$$\mathbb{N} \subseteq \left\{ m \in {}^*\mathbb{N} : m \leq N, \text{ and } \forall (v^{(1)}, \dots, v^{(\gamma)}) \in ({}^*\mathbb{R}^m)^{[\gamma]} \right.$$
$$\left. \left(\left| {}^*a_f(v^{(1)}, \dots, v^{(\gamma)}, N) - {}^*\theta_f(v^{(1)}, \dots, v^{(\gamma)}) \right| < \frac{1}{m} \right) \right\}.$$

• By overflow, there is an $M > \mathbb{N}$ such that

$$^*a_f(v^{(1)},\ldots,v^{(\gamma)},N)pprox^* heta_f(v^{(1)},\ldots,v^{(\gamma)}),$$
 for all $(v^{(1)},\ldots,v^{(\gamma)})\in(^*\mathbb{R}^M)^{[\gamma]}.$

• By overflow, there is an $M > \mathbb{N}$ such that

$$^*a_f(v^{(1)},\ldots,v^{(\gamma)},N)pprox^* heta_f(v^{(1)},\ldots,v^{(\gamma)}),$$
 for all $(v^{(1)},\ldots,v^{(\gamma)})\in(^*\mathbb{R}^M)^{[\gamma]}.$

• Let $w^{(1)}, \ldots, w^{(\gamma)}$ be the orthonormalization of $(u^{(1)})_{(M)}, \ldots, (u^{(\gamma)})_{(M)}$. Also, let $z^{(1)}, \ldots, z^{(\gamma)}$ be the orthonormalization of $(u^{(1)})_{(N)}, \ldots, (u^{(\gamma)})_{(N)}$. Then

• By overflow, there is an $M > \mathbb{N}$ such that

*
$$a_f(v^{(1)}, \dots, v^{(\gamma)}, N) \approx {}^*\theta_f(v^{(1)}, \dots, v^{(\gamma)}),$$

for all $(v^{(1)},\ldots,v^{(\gamma)})\in ({}^*\mathbb{R}^M)^{[\gamma]}$.

• Let $w^{(1)},\ldots,w^{(\gamma)}$ be the orthonormalization of $(u^{(1)})_{(M)},\ldots,(u^{(\gamma)})_{(M)}$. Also, let $z^{(1)},\ldots,z^{(\gamma)}$ be the orthonormalization of $(u^{(1)})_{(N)},\ldots,(u^{(\gamma)})_{(N)}$. Then

$$*a_f((u^{(1)})_{(N)},\ldots,(u^{(\gamma)})_{(N)},N)=*a_f(z^{(1)},\ldots,z^{(\gamma)},N)$$

• By overflow, there is an $M > \mathbb{N}$ such that

*
$$a_f(v^{(1)}, \dots, v^{(\gamma)}, N) \approx {}^*\theta_f(v^{(1)}, \dots, v^{(\gamma)}),$$

for all $(v^{(1)},\ldots,v^{(\gamma)})\in ({}^*\mathbb{R}^M)^{[\gamma]}$.

• Let $w^{(1)}, \ldots, w^{(\gamma)}$ be the orthonormalization of $(u^{(1)})_{(M)}, \ldots, (u^{(\gamma)})_{(M)}$. Also, let $z^{(1)}, \ldots, z^{(\gamma)}$ be the orthonormalization of $(u^{(1)})_{(N)}, \ldots, (u^{(\gamma)})_{(N)}$. Then

$$*a_f((u^{(1)})_{(N)},\ldots,(u^{(\gamma)})_{(N)},N) = *a_f(z^{(1)},\ldots,z^{(\gamma)},N)$$

 $\stackrel{\diamond}{pprox} *a_f(w^{(1)},\ldots,w^{(\gamma)},N)$

• By overflow, there is an $M > \mathbb{N}$ such that

$$*a_f(v^{(1)},...,v^{(\gamma)},N) \approx *\theta_f(v^{(1)},...,v^{(\gamma)}),$$

for all $(v^{(1)},\ldots,v^{(\gamma)})\in ({}^*\mathbb{R}^M)^{[\gamma]}$.

• Let $w^{(1)}, \ldots, w^{(\gamma)}$ be the orthonormalization of $(u^{(1)})_{(M)}, \ldots, (u^{(\gamma)})_{(M)}$. Also, let $z^{(1)}, \ldots, z^{(\gamma)}$ be the orthonormalization of $(u^{(1)})_{(N)}, \ldots, (u^{(\gamma)})_{(N)}$. Then

$$*a_f \left((u^{(1)})_{(N)}, \dots, (u^{(\gamma)})_{(N)}, N \right) = *a_f \left(z^{(1)}, \dots, z^{(\gamma)}, N \right)$$

$$\stackrel{\diamond}{\approx} *a_f (w^{(1)}, \dots, w^{(\gamma)}, N)$$

$$\approx *\theta_f (w^{(1)}, \dots, w^{(\gamma)})$$

By overflow, there is an $M > \mathbb{N}$ such that

$$*a_f(v^{(1)},...,v^{(\gamma)},N) \approx *\theta_f(v^{(1)},...,v^{(\gamma)}),$$

for all $(v^{(1)}, \dots, v^{(\gamma)}) \in ({}^*\mathbb{R}^M)^{[\gamma]}$.

• Let $w^{(1)}, \dots, w^{(\gamma)}$ be the orthonormalization of $(u^{(1)})_{(M)}, \ldots, (u^{(\gamma)})_{(M)}$. Also, let $z^{(1)}, \ldots, z^{(\gamma)}$ be the orthonormalization of $(u^{(1)})_{(N)}, \ldots, (u^{(\gamma)})_{(N)}$. Then

$$\begin{split} {}^*a_f\left((u^{(1)})_{(N)},\ldots,(u^{(\gamma)})_{(N)},N\right) &= {}^*a_f\left(z^{(1)},\ldots,z^{(\gamma)},N\right) \\ &\stackrel{\hat{\otimes}}{\approx} {}^*a_f(w^{(1)},\ldots,w^{(\gamma)},N) \\ &\approx {}^*\theta_f(w^{(1)},\ldots,w^{(\gamma)}) \\ &\stackrel{\hat{\otimes}}{\approx} \int_{\mathbb{R}^k} f d\mu_{0;u^{(1)},\ldots,u^{(\gamma)}}. \end{split}$$

Proof of \diamond requires the following result:

Proposition 6

Let $f: \mathbb{R}^k \to \mathbb{R}$ be bounded and uniformnly continuous. Fix $N > \mathbb{N}$. For all $i \in \{1, \dots, \gamma\}$ let $v^{(i)}, v'^{(i)} \in ({}^*\mathbb{R}_{fin})^N$ be such that:

- (i) $||v^{(i)}||, ||v'^{(i)}|| \in {}^*\mathbb{R}_{fin}$.
- (ii) st $(||v^{(i)}||)$ st $(||v'^{(i)}||) > 0$.
- (iii) $||v^{(i)}|| ||v'^{(i)}|| \approx 0.$

Further, assume that $\{v^{(1)}, \dots, v^{(\gamma)}\}$ and $\{v'^{(1)}, \dots, v'^{(\gamma)}\}$ are both $*\mathbb{R}$ -independent sets. Then

$$\int_{S_{N,v^{(1)},\ldots,v^{(\gamma)}}} \mathbf{st}(^*f(x)) dL \bar{\sigma}(x) = \int_{S_{N,v^{(1)},\ldots,v^{(\gamma)}}} \mathbf{st}(^*f(x)) dL \bar{\sigma}(x).$$

• Orthonormalize the two sets of vectors to get (say) $\{w^{(1)},\ldots,w^{(\gamma)}\}$ and $\{z^{(1)},\ldots,z^{(\gamma)}\}$ respectively. Define H and H' as the spaces orthogonal to the respective sets.

- Orthonormalize the two sets of vectors to get (say)
 {w⁽¹⁾,..., w^(γ)} and {z⁽¹⁾,..., z^(γ)} respectively. Define H
 and H' as the spaces orthogonal to the respective sets.
- dim $(H \cap H') \ge N 2\gamma$. Find $(N 2\gamma)$ orthonormal vectors in it; call them $w^{(i)} = z^{(i)}$ for $i \in \{\gamma + 1, \gamma + 2, ..., N \gamma\}$.

- Orthonormalize the two sets of vectors to get (say)
 {w⁽¹⁾,..., w^(γ)} and {z⁽¹⁾,..., z^(γ)} respectively. Define H
 and H' as the spaces orthogonal to the respective sets.
- dim $(H \cap H') \ge N 2\gamma$. Find $(N 2\gamma)$ orthonormal vectors in it; call them $w^{(i)} = z^{(i)}$ for $i \in \{\gamma + 1, \gamma + 2, \dots, N \gamma\}$.
- Extend $\{w^{(1)}, \ldots, w^{N-\gamma}\}$ to a full ONB $\{w^{(1)}, \ldots, w^{(N)}\}$. It is actually possible to extend $\{z^{(1)}, \ldots, z^{(N-\gamma)}\}$ as well in a way that $||w^{(i)} z^{(i)}|| \approx 0$ for all $i \in \{1, \ldots, N\}$.

- Orthonormalize the two sets of vectors to get (say)
 {w⁽¹⁾,..., w^(γ)} and {z⁽¹⁾,..., z^(γ)} respectively. Define H
 and H' as the spaces orthogonal to the respective sets.
- dim $(H \cap H') \ge N 2\gamma$. Find $(N 2\gamma)$ orthonormal vectors in it; call them $w^{(i)} = z^{(i)}$ for $i \in \{\gamma + 1, \gamma + 2, \dots, N \gamma\}$.
- Extend $\{w^{(1)}, \ldots, w^{N-\gamma}\}$ to a full ONB $\{w^{(1)}, \ldots, w^{(N)}\}$. It is actually possible to extend $\{z^{(1)}, \ldots, z^{(N-\gamma)}\}$ as well in a way that $||w^{(i)} z^{(i)}|| \approx 0$ for all $i \in \{1, \ldots, N\}$.
- Define $R: {}^*\mathbb{R}^N \to {}^*\mathbb{R}^N$ by $R(w^{(i)}) = z^{(i)}$ for all i.

- Orthonormalize the two sets of vectors to get (say)
 {w⁽¹⁾,..., w^(γ)} and {z⁽¹⁾,..., z^(γ)} respectively. Define H
 and H' as the spaces orthogonal to the respective sets.
- dim $(H \cap H') \ge N 2\gamma$. Find $(N 2\gamma)$ orthonormal vectors in it; call them $w^{(i)} = z^{(i)}$ for $i \in \{\gamma + 1, \gamma + 2, \dots, N \gamma\}$.
- Extend $\{w^{(1)},\ldots,w^{N-\gamma}\}$ to a full ONB $\{w^{(1)},\ldots,w^{(N)}\}$. It is actually possible to extend $\{z^{(1)},\ldots,z^{(N-\gamma)}\}$ as well in a way that $||w^{(i)}-z^{(i)}||\approx 0$ for all $i\in\{1,\ldots,N\}$.
- Define $R: {}^*\mathbb{R}^N \to {}^*\mathbb{R}^N$ by $R(w^{(i)}) = z^{(i)}$ for all i.
- R is an *-orthogonal transformation that takes the first sphere $S^{(1)}$ onto the second sphere $S^{(2)}$. By transfer. the measures are O(N)-invariant.

- Orthonormalize the two sets of vectors to get (say)
 {w⁽¹⁾,..., w^(γ)} and {z⁽¹⁾,..., z^(γ)} respectively. Define H
 and H' as the spaces orthogonal to the respective sets.
- dim $(H \cap H') \ge N 2\gamma$. Find $(N 2\gamma)$ orthonormal vectors in it; call them $w^{(i)} = z^{(i)}$ for $i \in \{\gamma + 1, \gamma + 2, \dots, N \gamma\}$.
- Extend $\{w^{(1)},\ldots,w^{N-\gamma}\}$ to a full ONB $\{w^{(1)},\ldots,w^{(N)}\}$. It is actually possible to extend $\{z^{(1)},\ldots,z^{(N-\gamma)}\}$ as well in a way that $||w^{(i)}-z^{(i)}||\approx 0$ for all $i\in\{1,\ldots,N\}$.
- Define $R: {}^*\mathbb{R}^N \to {}^*\mathbb{R}^N$ by $R(w^{(i)}) = z^{(i)}$ for all i.
- R is an *-orthogonal transformation that takes the first sphere S⁽¹⁾ onto the second sphere S⁽²⁾. By transfer, the measures are O(N)-invariant. Use a change of measures argument followed by properties of uniform continuity of f.

Lemma 7

Let $u^{(1)}, \ldots, u^{(\gamma)}$ be \mathbb{R} -linearly independent in $\mathbb{R}^{\mathbb{N}}$. Then $(u^{(1)})_{(m)}, \ldots, (u^{(\gamma)})_{(m)}$ are linearly independent for all large m.

Lemma 7

Let $u^{(1)}, \ldots, u^{(\gamma)}$ be \mathbb{R} -linearly independent in $\mathbb{R}^{\mathbb{N}}$. Then $(u^{(1)})_{(m)}, \ldots, (u^{(\gamma)})_{(m)}$ are linearly independent for all large m.

Proof.

• For $M > \mathbb{N}$, we show that $(u^{(1)})_{(M)}, \ldots, (u^{(\gamma)})_{(M)}$ are \mathbb{R} -linearly independent.

Lemma 7

Let $u^{(1)}, \ldots, u^{(\gamma)}$ be \mathbb{R} -linearly independent in $\mathbb{R}^{\mathbb{N}}$. Then $(u^{(1)})_{(m)}, \ldots, (u^{(\gamma)})_{(m)}$ are linearly independent for all large m.

Proof.

• For $M > \mathbb{N}$, we show that $(u^{(1)})_{(M)}, \ldots, (u^{(\gamma)})_{(M)}$ are $*\mathbb{R}$ -linearly independent. If not, get $a_1, \ldots, a_{\gamma} \in *\mathbb{R}$, not all zero such that $\sum_{i=1}^{\gamma} a_i(u^{(i)})_{(M)} = \mathbf{0} \in *\mathbb{R}^M$.

Lemma 7

Let $u^{(1)}, \ldots, u^{(\gamma)}$ be \mathbb{R} -linearly independent in $\mathbb{R}^{\mathbb{N}}$. Then $(u^{(1)})_{(m)}, \ldots, (u^{(\gamma)})_{(m)}$ are linearly independent for all large m.

Proof.

- For $M > \mathbb{N}$, we show that $(u^{(1)})_{(M)}, \ldots, (u^{(\gamma)})_{(M)}$ are $*\mathbb{R}$ -linearly independent. If not, get $a_1, \ldots, a_{\gamma} \in *\mathbb{R}$, not all zero such that $\sum_{i=1}^{\gamma} a_i(u^{(i)})_{(M)} = \mathbf{0} \in *\mathbb{R}^M$.
- Let $b_i = rac{a_i}{\max_{j \in \{1,...,\gamma\}} |a_j|}$. Then $\sum_{i=1}^{\gamma} \mathsf{st}(b_i) u^{(i)} = \mathbf{0} \in \mathbb{R}^{\mathbb{N}}$.

Lemma 7

Let $u^{(1)}, \ldots, u^{(\gamma)}$ be \mathbb{R} -linearly independent in $\mathbb{R}^{\mathbb{N}}$. Then $(u^{(1)})_{(m)}, \ldots, (u^{(\gamma)})_{(m)}$ are linearly independent for all large m.

Proof.

- For $M > \mathbb{N}$, we show that $(u^{(1)})_{(M)}, \ldots, (u^{(\gamma)})_{(M)}$ are ${}^*\mathbb{R}$ -linearly independent. If not, get $a_1, \ldots, a_{\gamma} \in {}^*\mathbb{R}$, not all zero such that $\sum_{i=1}^{\gamma} a_i(u^{(i)})_{(M)} = \mathbf{0} \in {}^*\mathbb{R}^M$.
- Let $b_i = rac{a_i}{\max_{j \in \{1, \dots, \gamma\}} |a_j|}$. Then $\sum_{i=1}^{\gamma} \mathsf{st}(b_i) u^{(i)} = \mathbf{0} \in \mathbb{R}^{\mathbb{N}}$.
- This contradicts the \mathbb{R} -independence of $u^{(1)}, \dots, u^{(\gamma)}$.

So far...

- We want a result on the limiting behavior of integrals over domains that depend on two things:
 - **1** A finite number of vectors $u^{(1)}, \ldots, u^{(\gamma)}$ in $\ell^2(\mathbb{R})$.
 - ② A function $f: \mathbb{R}^k \to \mathbb{R}$.
- And, we want the result for as many functions as possible.
- The result is easy for bounded functions if the vectors are eventually zero (as sequences).
- The n^{th} domain is the intersection of $S^{n-1}(\sqrt{n})$ with an affine subspace determined by the n^{th} truncation of $u^{(i)}$'s.
- For $N > \mathbb{N}$, Overflow approximates when the N^{th} sphere is intersected by the M^{th} affine space for some hyperfinite M.
- But this domain is separated from the Nth domain by an infinitesimal rotation! So we get the result for all bounded uniformly continuous f!

Recall
$$S_{H_N} := S^{N-1}(\sqrt{N}) \cap (u^{(1)})_{(N)}^{\perp} \cap \ldots \cap (u^{(\gamma)})_{(N)}^{\perp}$$
, and $S_{A_N} := \{x \in S^{N-1}(\sqrt{N}) : \langle x, (u^{(i)})_{(N)} \rangle = p_i \text{ for all } i\}.$

Recall
$$S_{H_N} := S^{N-1}(\sqrt{N}) \cap (u^{(1)})_{(N)}^{\perp} \cap \ldots \cap (u^{(\gamma)})_{(N)}^{\perp}$$
, and $S_{A_N} := \{x \in S^{N-1}(\sqrt{N}) : \langle x, (u^{(i)})_{(N)} \rangle = p_i \text{ for all } i\}$. Define $S := S_{H_N} + \left(\frac{p_1}{\|(u^{(1)})_{(N)}\|}\right) \frac{(u^{(1)})_{(N)}}{\|(u^{(1)})_{(N)}\|} + \ldots + \left(\frac{p_{\gamma}}{\|(u^{(\gamma)})_{(N)}\|}\right) \frac{(u^{(\gamma)})_{(N)}}{\|(u^{(\gamma)})_{(N)}\|}.$

Recall
$$S_{H_N} := S^{N-1}(\sqrt{N}) \cap (u^{(1)})_{(N)}^{\perp} \cap \ldots \cap (u^{(\gamma)})_{(N)}^{\perp}$$
, and $S_{A_N} := \{x \in S^{N-1}(\sqrt{N}) : \langle x, (u^{(i)})_{(N)} \rangle = p_i \text{ for all } i\}$. Define $S := S_{H_N} + \left(\frac{p_1}{\|(u^{(1)})_{(N)}\|}\right) \frac{(u^{(1)})_{(N)}}{\|(u^{(1)})_{(N)}\|} + \ldots + \left(\frac{p_{\gamma}}{\|(u^{(\gamma)})_{(N)}\|}\right) \frac{(u^{(\gamma)})_{(N)}}{\|(u^{(\gamma)})_{(N)}\|}.$

• S_{A_N} and S are $(N - \gamma - 1)$ -dimensional spheres with the same center.

$$\begin{aligned} & \text{Recall } S_{H_N} := S^{N-1}(\sqrt{N}) \cap (u^{(1)})_{(N)}^{\perp} \cap \ldots \cap (u^{(\gamma)})_{(N)}^{\perp}, \text{ and } \\ & S_{A_N} := \{x \in S^{N-1}(\sqrt{N}) : \langle x, (u^{(i)})_{(N)} \rangle = p_i \text{ for all } i\}. \text{ Define } \\ & S := S_{H_N} + \left(\frac{p_1}{||(u^{(1)})_{(N)}||}\right) \frac{(u^{(1)})_{(N)}}{||(u^{(1)})_{(N)}||} + \ldots + \left(\frac{p_{\gamma}}{||(u^{(\gamma)})_{(N)}||}\right) \frac{(u^{(\gamma)})_{(N)}}{||(u^{(\gamma)})_{(N)}||}. \end{aligned}$$

• S_{A_N} and S are $(N-\gamma-1)$ -dimensional spheres with the same center. If $\{z^{(1)},\ldots,z^{(\gamma)}\}$ is the orthonormalization of $\{(u^{(1)})_{(N)},\ldots,(u^{(\gamma)})_{(N)}\}$, then the common center is $q_1z^{(1)}+\ldots q_\gamma z^{(\gamma)}$ for some $q_i\approx p_i$.

$$\begin{aligned} & \text{Recall } S_{H_N} := S^{N-1}(\sqrt{N}) \cap (u^{(1)})_{(N)}^{\perp} \cap \ldots \cap (u^{(\gamma)})_{(N)}^{\perp}, \text{ and } \\ & S_{A_N} := \{x \in S^{N-1}(\sqrt{N}) : \langle x, (u^{(i)})_{(N)} \rangle = p_i \text{ for all } i\}. \text{ Define } \\ & S := S_{H_N} + \left(\frac{p_1}{||(u^{(1)})_{(N)}||}\right) \frac{(u^{(1)})_{(N)}}{||(u^{(1)})_{(N)}||} + \ldots + \left(\frac{p_{\gamma}}{||(u^{(\gamma)})_{(N)}||}\right) \frac{(u^{(\gamma)})_{(N)}}{||(u^{(\gamma)})_{(N)}||}. \end{aligned}$$

- S_{A_N} and S are $(N-\gamma-1)$ -dimensional spheres with the same center. If $\{z^{(1)},\ldots,z^{(\gamma)}\}$ is the orthonormalization of $\{(u^{(1)})_{(N)},\ldots,(u^{(\gamma)})_{(N)}\}$, then the common center is $q_1z^{(1)}+\ldots q_\gamma z^{(\gamma)}$ for some $q_i\approx p_i$.
- For $r=rac{\mathsf{Radius}\left(S_{A_N}\right)}{\mathsf{Radius}(S)}=rac{\sqrt{N-q_1^2-...-q_\gamma^2}}{\sqrt{N}}pprox 1$, we have $S_{A_N}=rS_{H_N}+q_1z^{(1)}+\dots q_\gamma z^{(\gamma)}$.

- S_{A_N} and S are $(N-\gamma-1)$ -dimensional spheres with the same center. If $\{z^{(1)},\ldots,z^{(\gamma)}\}$ is the orthonormalization of $\{(u^{(1)})_{(N)},\ldots,(u^{(\gamma)})_{(N)}\}$, then the common center is $q_1z^{(1)}+\ldots q_\gamma z^{(\gamma)}$ for some $q_i\approx p_i$.
- For $r=rac{\mathrm{Radius}\left(S_{A_N}\right)}{\mathrm{Radius}(S)}=rac{\sqrt{N-q_1^2-...-q_\gamma^2}}{\sqrt{N}}pprox 1$, we have $S_{A_N}=rS_{H_N}+q_1z^{(1)}+\dots q_\gamma z^{(\gamma)}$.

Recall
$$S_{H_N} := S^{N-1}(\sqrt{N}) \cap (u^{(1)})_{(N)}^{\perp} \cap \ldots \cap (u^{(\gamma)})_{(N)}^{\perp}$$
, and $S_{A_N} := \{x \in S^{N-1}(\sqrt{N}) : \langle x, (u^{(i)})_{(N)} \rangle = p_i \text{ for all } i\}$. Define $S := S_{H_N} + \left(\frac{p_1}{||(u^{(1)})_{(N)}||}\right) \frac{(u^{(1)})_{(N)}}{||(u^{(1)})_{(N)}||} + \ldots + \left(\frac{p_{\gamma}}{||(u^{(\gamma)})_{(N)}||}\right) \frac{(u^{(\gamma)})_{(N)}}{||(u^{(\gamma)})_{(N)}||}.$

- S_{A_N} and S are $(N-\gamma-1)$ -dimensional spheres with the same center. If $\{z^{(1)},\ldots,z^{(\gamma)}\}$ is the orthonormalization of $\{(u^{(1)})_{(N)},\ldots,(u^{(\gamma)})_{(N)}\}$, then the common center is $q_1z^{(1)}+\ldots q_\gamma z^{(\gamma)}$ for some $q_i\approx p_i$.
- For $r=rac{\mathrm{Radius}\left(S_{A_N}\right)}{\mathrm{Radius}(S)}=rac{\sqrt{N-q_1^2-...-q_\gamma^2}}{\sqrt{N}}pprox 1$, we have $S_{A_N}=rS_{H_N}+q_1z^{(1)}+\ldots q_\gamma z^{(\gamma)}$.

Recall
$$S_{H_N} := S^{N-1}(\sqrt{N}) \cap (u^{(1)})_{(N)}^{\perp} \cap \ldots \cap (u^{(\gamma)})_{(N)}^{\perp}$$
, and $S_{A_N} := \{x \in S^{N-1}(\sqrt{N}) : \langle x, (u^{(i)})_{(N)} \rangle = p_i \text{ for all } i\}$. Define $S := S_{H_N} + \left(\frac{p_1}{||(u^{(1)})_{(N)}||}\right) \frac{(u^{(1)})_{(N)}}{||(u^{(1)})_{(N)}||} + \ldots + \left(\frac{p_{\gamma}}{||(u^{(\gamma)})_{(N)}||}\right) \frac{(u^{(\gamma)})_{(N)}}{||(u^{(\gamma)})_{(N)}||}.$

- S_{A_N} and S are $(N-\gamma-1)$ -dimensional spheres with the same center. If $\{z^{(1)},\ldots,z^{(\gamma)}\}$ is the orthonormalization of $\{(u^{(1)})_{(N)},\ldots,(u^{(\gamma)})_{(N)}\}$, then the common center is $q_1z^{(1)}+\ldots q_\gamma z^{(\gamma)}$ for some $q_i\approx p_i$.
- For $r=rac{\mathrm{Radius}\left(S_{A_N}\right)}{\mathrm{Radius}(S)}=rac{\sqrt{N-q_1^2-...-q_\gamma^2}}{\sqrt{N}}pprox 1$, we have $S_{A_N}=rS_{H_N}+q_1z^{(1)}+\ldots q_\gamma z^{(\gamma)}$.
- S is a translate of S_{H_N} , while S_{A_N} is "infinitesimally close" to S. So the result for bounded uniformly continuous functions on S_{H_N} generalizes to S_{A_N} .

Theorem 8

Let $\{\mathbb{P}_n\}_{n\in\mathbb{N}}$ be Borel measures on \mathbb{R}^k that are absolutely continuous with respect to Lebesgue measure. If their densities are uniformly bounded by some $B \in \mathbb{R}$ and \mathbb{P} is Radon, then

Theorem 8

Let $\{\mathbb{P}_n\}_{n\in\mathbb{N}}$ be Borel measures on \mathbb{R}^k that are absolutely continuous with respect to Lebesgue measure. If their densities are uniformly bounded by some $B \in \mathbb{R}$ and \mathbb{P} is Radon, then

 \mathbb{P}_n converges to \mathbb{P} weakly $\iff \mathbb{P}_n$ converges to \mathbb{P} strongly.

Theorem 8

Let $\{\mathbb{P}_n\}_{n\in\mathbb{N}}$ be Borel measures on \mathbb{R}^k that are absolutely continuous with respect to Lebesgue measure. If their densities are uniformly bounded by some $B \in \mathbb{R}$ and \mathbb{P} is Radon, then

 \mathbb{P}_n converges to \mathbb{P} weakly $\iff \mathbb{P}_n$ converges to \mathbb{P} strongly.

Sketch of Proof of \Rightarrow .

• Weak conv. $\Rightarrow \mathbb{P}(C) \geq L\mathbb{P}_N(^*C)$ for all closed C.

Theorem 8

Let $\{\mathbb{P}_n\}_{n\in\mathbb{N}}$ be Borel measures on \mathbb{R}^k that are absolutely continuous with respect to Lebesgue measure. If their densities are uniformly bounded by some $B \in \mathbb{R}$ and \mathbb{P} is Radon, then

 \mathbb{P}_n converges to \mathbb{P} weakly $\iff \mathbb{P}_n$ converges to \mathbb{P} strongly.

- Weak conv. $\Rightarrow \mathbb{P}(C) \geq L\mathbb{P}_N(^*C)$ for all closed C.
- Let $U = \mathbb{R}^k \setminus C$. Get closed sets $\{C_m\}$ such that $C_m \subseteq C_{m+1} \subseteq U$ for all m and $\lambda(U \setminus C_m) < \frac{1}{mB}$.

Theorem 8

Let $\{\mathbb{P}_n\}_{n\in\mathbb{N}}$ be Borel measures on \mathbb{R}^k that are absolutely continuous with respect to Lebesgue measure. If their densities are uniformly bounded by some $B \in \mathbb{R}$ and \mathbb{P} is Radon, then

 \mathbb{P}_n converges to \mathbb{P} weakly $\iff \mathbb{P}_n$ converges to \mathbb{P} strongly.

- Weak conv. $\Rightarrow \mathbb{P}(C) \geq L\mathbb{P}_N(^*C)$ for all closed C.
- Let $U = \mathbb{R}^k \setminus C$. Get closed sets $\{C_m\}$ such that $C_m \subseteq C_{m+1} \subseteq U$ for all m and $\lambda(U \setminus C_m) < \frac{1}{mB}$.
- Due to the bound on density, transfer implies $L\mathbb{P}_N(^*U \setminus ^*C_m) \leq \frac{1}{m}$ for all $N > \mathbb{N}$.

Theorem 8

Let $\{\mathbb{P}_n\}_{n\in\mathbb{N}}$ be Borel measures on \mathbb{R}^k that are absolutely continuous with respect to Lebesgue measure. If their densities are uniformly bounded by some $B \in \mathbb{R}$ and \mathbb{P} is Radon, then

 \mathbb{P}_n converges to \mathbb{P} weakly $\iff \mathbb{P}_n$ converges to \mathbb{P} strongly.

- Weak conv. $\Rightarrow \mathbb{P}(C) \geq L\mathbb{P}_N(^*C)$ for all closed C.
- Let $U = \mathbb{R}^k \setminus C$. Get closed sets $\{C_m\}$ such that $C_m \subseteq C_{m+1} \subseteq U$ for all m and $\lambda(U \setminus C_m) < \frac{1}{mB}$.
- Due to the bound on density, transfer implies $L\mathbb{P}_N(^*U \setminus ^*C_m) \leq \frac{1}{m}$ for all $N > \mathbb{N}$.
- Thus $\lim_{m\to\infty} L\mathbb{P}_N(^*C_m) = L\mathbb{P}_N(^*U)$.

Theorem 8

Let $\{\mathbb{P}_n\}_{n\in\mathbb{N}}$ be Borel measures on \mathbb{R}^k that are absolutely continuous with respect to Lebesgue measure. If their densities are uniformly bounded by some $B \in \mathbb{R}$ and \mathbb{P} is Radon, then

 \mathbb{P}_n converges to \mathbb{P} weakly $\iff \mathbb{P}_n$ converges to \mathbb{P} strongly.

- Weak conv. $\Rightarrow \mathbb{P}(C) \geq L\mathbb{P}_N(^*C)$ for all closed C.
- Let $U = \mathbb{R}^k \setminus C$. Get closed sets $\{C_m\}$ such that $C_m \subseteq C_{m+1} \subseteq U$ for all m and $\lambda(U \setminus C_m) < \frac{1}{mB}$.
- Due to the bound on density, transfer implies $L\mathbb{P}_N(^*U \setminus ^*C_m) \leq \frac{1}{m}$ for all $N > \mathbb{N}$.
- Thus $\lim_{m\to\infty} L\mathbb{P}_N(^*C_m) = L\mathbb{P}_N(^*U)$. Then $\mathbb{P}(U) \geq \lim_{m\to\infty} \mathbb{P}(C_m) \geq L\mathbb{P}_N(^*U)$.

Extending beyond bounded functions...

Theorem 1

If (Ω_n, \mathbb{P}_n) and $(\mathbb{R}^k, \mathbb{P})$ are such that $\lim_{n\to\infty} \mathbb{P}_n(B) = \mathbb{P}(B)$ for all $B \in \mathcal{B}(\mathbb{R}^k)$, and $f : \mathbb{R}^k \to \mathbb{R}$ is measurable, then

$$\lim_{m\to\infty}\lim_{n\to\infty}\int_{\Omega_n\cap\{|f|>m\}}|f|\,d\mathbb{P}_n=0\iff\lim_{n\to\infty}\int_{\Omega_n}fd\mathbb{P}_n=\int_{\mathbb{R}^k}fd\mathbb{P}.$$

Ongoing work on characterizing the functions satisfying the double limit condition:

 Trying to appropriately bound the nth expectation of a Gaussian square integrable function, as in the lemma for full spheres.

Extending beyond bounded functions...

Theorem 1

If (Ω_n, \mathbb{P}_n) and $(\mathbb{R}^k, \mathbb{P})$ are such that $\lim_{n \to \infty} \mathbb{P}_n(B) = \mathbb{P}(B)$ for all $B \in \mathcal{B}(\mathbb{R}^k)$, and $f : \mathbb{R}^k \to \mathbb{R}$ is measurable, then

$$\lim_{m\to\infty}\lim_{n\to\infty}\int_{\Omega_n\cap\{|f|>m\}}|f|\,d\mathbb{P}_n=0\iff\lim_{n\to\infty}\int_{\Omega_n}fd\mathbb{P}_n=\int_{\mathbb{R}^k}fd\mathbb{P}.$$

Ongoing work on characterizing the functions satisfying the double limit condition:

- Trying to appropriately bound the nth expectation of a Gaussian square integrable function, as in the lemma for full spheres.
- Have some results for continuous functions, and decent progress to generalize to Gaussian integrable functions.

Possibilities of future work

 Methods potentially applicable to a lot of situations when the measure spaces are evolving over time.

Possibilities of future work

- Methods potentially applicable to a lot of situations when the measure spaces are evolving over time.
- Work on "truly infinite-dimensional Gaussian Radon transform." Also, spheres intersected with truncations of an infinite-codimensional affine space of $\ell^2(\mathbb{R})$, where nonstandard methods seem very appropriate.

Possibilities of future work

- Methods potentially applicable to a lot of situations when the measure spaces are evolving over time.
- Work on "truly infinite-dimensional Gaussian Radon transform." Also, spheres intersected with truncations of an infinite-codimensional affine space of $\ell^2(\mathbb{R})$, where nonstandard methods seem very appropriate.
- Physical interpretations of the results on sections of spheres (for instance, interpretations in the Kinetic Theory of Gases).

Possibilities of future work(cont.)

 Some seemingly powerful existence results that come out of the nonstandard machinery and might have applications in standard measure theory. An example:

Possibilities of future work(cont.)

 Some seemingly powerful existence results that come out of the nonstandard machinery and might have applications in standard measure theory. An example:

Theorem 9

Let \mathbb{P} be a Radon probability on E^k . Let (Ω_n, ν_n) be a sequence of probability spaces such that Ω_n eventually lives in spaces containing E^k . Let $f: E^k \to \mathbb{R}$ be \mathbb{P} -integrable. Given any $\epsilon, \delta, \theta \in \mathbb{R}_{>0}$ there exist an $n_0 \in \mathbb{N}$ and functions $g_n: E^k \to \mathbb{R}$ for all $n \in \mathbb{N}_{\geq n_0}$ such that the following hold:

- (i) $|g_n|$ is bounded by n for all $n \in \mathbb{N}_{\geq n_0}$.
- (ii) $\nu_n(|g_n f| > \delta) < \epsilon \text{ for all } n \in \mathbb{N}_{\geq n_0}.$
- (iii) $\left| \int_{\Omega_n} g_n d\nu_n \int_{E^k} f d\mathbb{P} \right| < \theta \text{ for all } n \in \mathbb{N}_{\geq n_0}.$

Thank You!

- Thank you!
- An early preprint of the first paper "Limiting Probability Measures" available on arXiv.
- A preprint of the second paper (currently tentatively titled "The Gaussian Radon Transform as an Integral over an Infinite Sphere") should be up in the coming weeks.
- Questions or comments?