Goals:

1. Finish $\text{CEP} \Rightarrow \text{QWEP}$
2. Start Complexity Theory

Last time:

Theorem (Kirchberg) $\left(C^*(1B_0), B(H) \right)$ is a **nuclear pair**:

\[C^*(1B_0) \otimes \min B(H) = C^*(1B_0) \otimes \max B(H). \]

Exercise: If $A \leq B$, then

\[A \otimes \min C \leq B \otimes \min C \text{ for any } C. \]

Issue: In general not true for $\otimes \max$,

\[A \otimes \max C \rightarrow B \otimes \max C \text{ need not be isometric.} \]
One instance when it does hold: $A \subseteq A^{**}$?

Universal representation $\text{Tiu}: A \rightarrow B(\mathcal{H})$

A^{**} = von Neumann subalgebra of $B(\mathcal{H})$

generated $\text{Tiu}(A)$.

$A \otimes \text{max } C \subseteq A^{**} \otimes \text{max } C$.

Fact: If $A \subseteq B$ and there is a ucp $B \rightarrow A^{**}$ that restricts to the identity on A, then $A \otimes \text{max } C \subseteq B \otimes \text{max } C$.

Thm For $A \subseteq B$, TFAE:

\begin{enumerate}
 \item \text{(A)} $A \otimes \text{max } C \subseteq B \otimes \text{max } C$
\end{enumerate}
There is a weak conditional map $B \to A^{**}$ weakly cp-complemented.

When A is weakly cp-comp in $B(\mathcal{H})$, say A has the weak expectation property (WEP).

Thm (Kirchberg) A has WEP iff $(A, C^*(1\mathcal{F}_0))$ nuclear pair.

Q Does $C^*(1\mathcal{F}_0)$ have WEP?
I.e. Is $(C^*(1\mathcal{F}_0), C^*(1\mathcal{F}_0))$ a nuclear pair?

Tautology: If $C^*(1\mathcal{F}_0)$ has WEP, then every separable C^*-algebra has QWEP, that is, is a quotient of something with WEP.
Converse is true: If $C^*(1F_0)$ has QWEP, then it actually has WEP.

Reason: $C^*(1F_0)$ has \textbf{lifting property}:

\[\exists \text{ucp} \rightarrow \mathcal{B} \]
\[\downarrow \]
\[C^*(1F_0) \xrightarrow{\text{hom}} \mathcal{B}/J \]

LLP + QWEP \Rightarrow WEP

\[\text{Lemma (Kirchberg) TFAE:} \]

1. $C^*(1F_0)$ has WEP
2. $(C^*(1F_0), C^*(1F_0))$ nuclear pair for some (equivalency) $k \in \{2, 3, \ldots, \infty\}$.

Kirchberg's QWEP Problem
3. Every sep C*-alg has QWEP
4. LLP \Rightarrow WEP.

Now: CEP \Rightarrow QWEP

(i) R has WEP (R is "injective")
(ii) $\ell^\infty(R)$ has WEP
(iii) R^\ast has QWEP: $R^\ast = \ell^\infty(\mathbb{N})/\mathbb{N}$
(iv) If M is a tracial vNa and $M \subseteq R^\ast$, then M is weakly cp-comp in R^\ast and so M has QWEP.

Moral: CEP \Rightarrow all tracial vNas have QWEP.

Since A is weakly cp-comp in the vNa $A^{\text{**}}$, to show A has QWEP,
Enough to show A^{**} has QWEP.

Issue: A^{**} probably doesn't have a trace.

(v) For a general vNa M, there is a 1-parameter subgroup σ_t of automorphisms of M (modular group) so that $M\rtimes_\sigma R$ is semifinite. (Takesaki)

Finite vNas have QWEP \implies semifinite ones.

(vi) M is weakly cp-compact in $M\rtimes_\sigma R$.

Complexity Theory

Turing machine
If M is a Turing machine, let $f^M : \{0,1\}^* \to \{0,1\}$ denote the partial function it computes.
$\{0,1\}^*$ = set of finite binary sequences

If $T : \mathbb{N} \to \mathbb{N}$ is a function, say M runs in time $T(n)$ if: for every $z \in \{0,1\}^*$, upon input z, the machine halts in $\leq T(|z|)$ many steps.

M runs in polynomial time if...

exponential time $\sim 2^{12}$

doubly exponential time

language $L \subseteq \{0,1\}^*$
"codes for problem instances"
Complexity class set of languages

Least complex \(P = \) set of languages \(L \) so that there is a poly time Turing machine that computes \(X_L \) = char. function of \(L \)

\(\text{EXP} = \) same but w/ exp time machine \(P \subseteq \text{EXP} \)

\(\subseteq \) Time Hierarchy Thm

\(\text{NP} = \) set of languages \(L \) for which there is a poly time machine \(M \) and poly. \(p(n) \) so that: "witness"

- if \(z \in L \), then there is \(w \in \Sigma^* \) such that \(M(z,w) = 1 \).
- if \(z \notin L \), then for every \(w \in \Sigma^* \), \(M(z,w) = 0 \)
Verifier & prover

Input: z

Prover: Trying to convince verifier z is her proof ("All powerful")

Verifier: Checks if z is a valid proof that z is L using M

Example

Graph isomorphism

$L = \{ (G_1, G_2) : G_1, G_2 \text{ finite graphs, } G_1 \cong G_2 \}$

Belongs to NP

$P \subseteq NP \subseteq EXP$

$\exists P = NP?$
Also NEXP, NEEXP...

$\text{NP \neq NEXP \neq NEEXP}$

$\text{PSPACE = set of languages } L \text{ that can be decided using machines that use a poly. amount of space.}$

$\text{P \subseteq PSPACE}$

$\text{NP \subseteq PSPACE \subseteq \text{Exp} \subseteq \text{NEXP}}$

PSPACE = NEXP?

$\text{BPP: Just like NP except for a randomly chosen } r \in \{0,1\}^P(\text{121}),$

$\text{Prob}(M(z,r) = \chi_L(z)) \geq \frac{2}{3}.$
Interactive proofs

\[
\begin{align*}
V(z) &= a_1 \\
P(z, a_1) &= a_2 \\
V(z, a_1, a_2) &= a_3 \\
P(z, a_1, a_2, a_3) &= a_4 \\
\vdots
\end{align*}
\]

Then \(V(z, a_1, \ldots, a_{2k}) = \text{yes or no} \)

This is just NP in disguise.

\[
\begin{align*}
V(z, r) &= a_1 \\
P(z, a_1) &= a_2 \\
V(z, r, a_1, a_2) &= a_3 \\
P(z, a_1, a_2, a_3) &= a_4 \\
\vdots
\end{align*}
\]
\[V(z, r, a_1, \ldots, a_{2k}) = \text{yes or no} \]

\[L \text{ belongs to IP if there is such } V \]

\[\text{and } p \text{ so that:} \]

\[\text{If } z \in L, \text{ then there is a function } P \]

\[\text{so that } \Pr(\text{prob}(V(z, r, a_1, \ldots, a_{2k}) = 1)) \geq \frac{2}{3} \]

\[\text{If } z \notin L, \text{ then for every such } P, \]

\[\Pr(\text{prob}(V(z, r, a_1, \ldots, a_{2k}) = 1)) \leq \frac{1}{3} \]

Example Graph non-isom. is in IP.

Protocol: Input \((G_1, G_2)\).

Verifier flips a coin, getting \(i \in \{1, 2\}\).

Randomly picks a permutation \(\sigma\) of vertices of \(G_i\), obtaining \(H \cong G_i\)

Prover returns \(a \in \{1, 2\}\).
If $G_1 \not\cong G_2$, prover can always get it right.
If $G_1 \cong G_2$, prover can do no better than guessing.

Graph: $G = (V, E)$
V vertex set
$E \subseteq V \times V$

$(v, w) \in E$

$(v, v) \notin E$

$(v, w) \in E$

$(w, v) \notin E$