Def A tracial vNa M is **existentially closed** (e.c.) if:

whenever $M \leq N$, any quantifier-free formula $\varphi(x,y)$, any $a \in M$, we have

$$\inf_{b \in M} \varphi(a,b)^M = \inf_{c \in N} \varphi(a,c)^N.$$

Lemma M is e.c. iff: whenever $M \leq N$, then there is $N \leftrightarrow M^n$ restricting to the diagonal embedding $M \rightarrow M^n$.

Facts

- Ec tracial vNas exist.
- If M is a tracial vNa, there is an
e.c. tracial vNa \(N \cong M \).
If \(M \) is sep., can take \(N \) sep.

- E.c. tracial vNas are II_1 factors. Extra properties: McDuff, all autos approx inner, ...

Def. Call a tracial vNa embeddable if it embeds in \(\mathbb{M}^n \), i.e. if it's a model of \(\text{Th}_{\text{v}}(\mathbf{M}) \).

Prop. \(\mathbf{R} \) is an e.c. embeddable factor.

Pf 1: \(\mathbf{R} \subseteq M \hookrightarrow \mathbb{M}^n \)

\[\text{may not be the diagonal embedding} \]

Fact: any embedding of \(\mathbf{R} \hookrightarrow \mathbb{M}^n \)
is unitarily conjugate to the diagonal embedding, i.e. \(\exists U \in \mathbb{U}(\mathbb{R}^n) \) s.t. \(u \varphi(x) u^* = x \forall x \in \mathbb{R} \).

Digression Kenley Jung: If \(N \to \mathbb{R}^n \) is s.t. any two embeddings are unit. conj, then \(N \cong \mathbb{R} \).

Atkinson-Elayavalli: If \(N \) is emb. and any two embeddings \(N \to \mathbb{R}^n \) are unit conj, then \(N \cong \mathbb{R} \).

AE-G.: If \(N \) is emb. and any two embeddings \(N \to \mathbb{R}^n \) are conj. by an auto, then \(N \cong \mathbb{R} \). (Model theory!)
Def. A tracial $vN\alpha^\wedge$ is \underline{locally universal} if for any N, $N \rightarrow M^\mu$.

CEP: R is locally universal.

\underline{Lemma} An e.c. tracial $vN\alpha^\wedge$ is locally universal.

\textbf{Lt}: Given any N, want $N \rightarrow M^\mu$.

\[N \leq N \otimes M \rightarrow M^\mu \]
\[U \overset{\alpha}{\rightarrow} \text{blc} \]
\[M \overset{\text{blc}}{\rightarrow} M \text{ is e.c.} \]

\underline{Cor} CEP $\iff R$ is an e.c. factor.

\textbf{Lt} (\(\Rightarrow\)) Know R is an e.c. emb. factor.
CEP \Rightarrow everything is emb.
\[(\equiv)\text{A e.c. } \Rightarrow \text{R loc univ } \Leftrightarrow \text{CEP}\]

Back to games
- 2 players
- Play finite sets of conditions of the form \(\exists (C) \leq r, \text{satisfiable}\)
- Extend each other's play.
- At the end, built a separable tracial \(\text{vN}\), called the compiled algebra.

Said a property \(P\) of tracial \(\text{vN}\) as \textbf{enforceable} if \(\exists\) (player II) has a strategy that forces the compiled algebra to have property \(P\).
Last time: being a l1 factor is enforceable.

Proof Being e.c. is enforceable.

Pf: Enough to show: given any g.t.
(\(\mathcal{L}(x,y)\)) constants c, and rational \(r > 0\), either the compiled structure has no extension with \(\inf y \mathcal{L}(c,y) < r\) or else there are \(c'\) s.t. \(\mathcal{L}(c,c') < r\).

Player A opens the game with \(P_0\).

If there is a trivial \(\nu Na\) satisfying \(P_0\) and \(\inf y \mathcal{L}(c,y) < r\), then there are constants \(c'\) s.t. \(P_0 \land \mathcal{L}(c,c') < r\)

is a condition and \(E\) plays it.

Otherwise, every model of \(P_0\) thinks \(\inf y \mathcal{L}(c,y) \geq r\) and so the compiled
0 structure thinks that as well.

Def A separable tracial rN\(\mathcal{A}\) is **enforceable** if the property of being \(\cong \mathcal{M}\) is an enforceable property.

Q: Is there an enforceable II\(_1\) factor?

Examples

- The random graph is the enforceable graph.
- The enforceable field of char \(p\) is \(\mathbb{F}_p\).
Note: If T is VF and has JEP, then M is enforceable iff it is e.c and embeds in all other e.c models (e-atomic).

Thm: There is no enforceable group.

Pf: If G is the enforceable group, then G embeds in every e.c group.

By a theorem of Macintyre, every f.g. subgroup of G has solvable word problem. But every e.c. group has a f.g. subgroup w/ unsolv. word problem.

Example: There is an enf. Banach space, Gurarij Banach space.
Thm R is the enforceable embeddable factor.

Pr Model theory reason: If P is a $\forall \forall \exists$-axiomatizable property

$$\forall x \exists y \exists z \exists w \forall u \forall v \forall w \forall x \exists y \exists z \exists w \forall u \forall v \forall w \forall x$$

and there is existential

a locally universal object with property P, then P is enforceable.

Us: $P =$ hyperfinite
Player A opens with p satisfiable
in some emb. M.

Since $M \models R^n$, p is satisfied in M.
I can respond with approximate $p \cup \{e_{ij}\}$ are matrix units and C_n is
Close to some l_1 comb e_{ij}'s \exists Being hyperfinite is enf.

But being a l_1 factor is enf.

Use $\mathcal{R} \alpha$ is the unique sep. hyperfinite l_1 factor (Murray - von Neumann).

Cor TFAE:

1. CEP
2. $\mathcal{R} \alpha$ is the enf. l_1 factor
3. Being embeddable is enforceable.

Proof: 1 \Rightarrow 2

2 \Rightarrow 3 obvious.

3 \Rightarrow 1 By 3, there is an $e.c.$ factor that is embeddable. This is $e.c.$ factor is locally universal, so CEP is true. \square
Fact If σ is a sentence, then there is a unique σEIR s.t. $\sigma|=\sigma$ is enforceable.

If $\sigma E = \sigma^R$ for every universal σ, then being embeddable would be enforceable.

:: Exist universal σ s.t. $\sigma E \neq \sigma^R$ and $\sigma|=\sigma E$ is enforceable, i.e. one can enforce the compiled algebra M to satisfy $\sigma M \neq \sigma^R$, so $M \neq \mathbb{M}$.

Open Question Does the enforceable 11 factor E s.t.?

\[\text{yes} / \text{No} \]

\[\text{REP.} \]
E vs. R

Improvement of E every ec ll_1 factor

R every ll_1 factor

$R \cong \mathbb{R} \circ \mathbb{R}$

$E \neq E \circ E$

$E \neq 3 \circ 3$

Atkinson: every emb $R \rightarrow \mathbb{R}^n$ has a lift $\psi_0: R \rightarrow R$ that induce $R \rightarrow \mathbb{R}^n$.

Atkinson proved that characterizes R amongst emb. factors.

$G. \ E$ has that property.

$R \cong L(C^1)$ for any ctbl, infinite, ICC amenable group
Is being a group via an enforceable property?