MODEL THEORY OF OPERATOR ALGEBRAS WORKSHOP SCHEDULE SEPTEMBER 20-22, 2017

Wednesday, September 20

Moss Cove Ballroom

8:30-Breakfast

9-Sinclair I

10-Coffee Break

10:30-Hart I

11:30-Lunch

1:30-Ioana I

2:30-Sinclair II

3:30-Coffee break

4:00-Discussion

Thursday, September 21

Doheny Beach Ballroom

8:30-Breakfast

9-Ioana II

10-Coffee

10:30-Hart II

11:30-Sinclair III

12:30-Lunch

2:30-Hart III

3:30-Coffee break

4:00-Discussion

Friday, September 22

Doheny Beach Ballroom

8:30-Breakfast

9-Ioana III

10-Coffee

10:30-Sinclair IV

11:30-Ioana IV

12:30-Lunch

2:30-Hart IV

3:30-Discussion

5-Afternoon gathering (Los Trancos BBQ area)

TENTATIVE LIST OF TOPICS

Thomas Sinclair (Purdue University)

C*-algebras

- Lecture 1: Concrete C*-algebras, examples, concrete functional calculus, states, classification of abelian C*-algebras
- Lecture 2: Universal C*-algebras, stable relations, purely infinite algebras, stably finite algebras
- Lecture 3: Cpc maps, approximation properties, nuclearity
- Lecture 4: Strongly self-absorbing algebras

Bradd Hart (McMaster University)

Continuous Model Theory

- Lecture 1: Ultraproducts, metric languages and structures, C*-algebras as an example, Los' theorem
- Lecture 2: Elementary classes, type spaces and their topologies, II₁ factors as an example
- Lecture 3: Definability and Beth definability, application to nuclearity
- Lecture 4: Model theoretic characterization of nuclearity and the Henkin construction, numbers of ultrapowers of separable II_1 factors and their central sequence algebras.

Adrian Ioana (UC San Diego)

von Neumann algebras

- Lecture 1: Definition of von Neumann (vN) algebras; vN's bicommutant theorem, L^{∞} algebras as vN algebras.
- Lecture 2: Review of classification into types; definition of tracial vN algebras; group vN algebras and group measure space vN algebras
- Lecture 3: Property Gamma, McDuff factors, hyperfinite II₁ factor
- Lecture 4: Amenable groups and amenable vN algebras, equivalence of G amenable and L(G) amenable, statement of Connes' uniqueness theorem for amenable II_1 factors, sample of results and open problems for non-amenable vN algebras.