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Roth’s Theorem

Let X ⊆ N. The upper Banach density of X is defined by

BD(X ) = lim
n→∞

sup
k∈N

|(X ∩ [k , k + n − 1])|
n

.

A k-term AP (arithmetic progression), denoted by P for, is a set of
the form

P := {a + id | i = 0, 1, . . . , k − 1}

for some integer a and positive integer d .

Roth’s Theorem If X ⊆ N and BD(X ) > 0, then X contains a
3-term AP.

Renling Jin, College of Charleston, SC A Nonstandard Proof of Roth’s Theorem



Roth’s Theorem

Let X ⊆ N. The upper Banach density of X is defined by

BD(X ) = lim
n→∞

sup
k∈N

|(X ∩ [k , k + n − 1])|
n

.

A k-term AP (arithmetic progression), denoted by P for, is a set of
the form

P := {a + id | i = 0, 1, . . . , k − 1}

for some integer a and positive integer d .

Roth’s Theorem If X ⊆ N and BD(X ) > 0, then X contains a
3-term AP.

Renling Jin, College of Charleston, SC A Nonstandard Proof of Roth’s Theorem



Roth’s Theorem

Let X ⊆ N. The upper Banach density of X is defined by

BD(X ) = lim
n→∞

sup
k∈N

|(X ∩ [k , k + n − 1])|
n

.

A k-term AP (arithmetic progression), denoted by P for, is a set of
the form

P := {a + id | i = 0, 1, . . . , k − 1}

for some integer a and positive integer d .

Roth’s Theorem If X ⊆ N and BD(X ) > 0, then X contains a
3-term AP.

Renling Jin, College of Charleston, SC A Nonstandard Proof of Roth’s Theorem



Nonstandard Interpretations

The letter A,B,C ,V represent internal subsets of integers,
H,K , L,M,N represent hyperfinite integers, and [n] := [0, n − 1]
for any nonnegative integer n. All sets considered from now on are
either standard sets in N or hyperfinite sets in ∗N.

For any hyperfinite set A and hyperfinite integer N we will use

the notation µN(A) := st

(
|A|
N

)
.

Thus if A ⊆ Ω and |Ω| = H, then µH(A) is the Loeb measure of A
in Ω.

Proposition Let X ⊆ N. Then BD(X ) ≥ α if and only if there
exists a hyperfinite interval a + [H] := [a, a + H − 1] in ∗N such
that µH(∗X ∩ (a + [H])) ≥ α.

Proposition Let X ⊆ N. Then X contains a 3-term AP if and
only if ∗X contains a 3-term AP.
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Contraposition

Blank Assumption We assume now that Roth’s Theorem is not
true and will derive a contradiction.

Let α be the standard real number defined by

α := sup {µH(A) | A ⊆ [H], A contains no 3 -term AP} .

Proposition There exists A ⊆ [H] such that µH(A) = α, A
contains no 3-term AP, and for any K -term AP, say PK ⊆ [H] for
some hyperfinite integer K , it must be true that µK (A ∩ PK ) ≤ α.

We now fix this A in [H] and derive a contradiction by locating a
3-term AP in A.

Without loss of generality we can assume that H = NL with
L/N ≈ 0 and consider [H] as [L]× [N] with a lexicographical order.
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Proof

Lemma There is an internal set S ⊆ [N] such that µN(S) = 1
and µL(A ∩ ([L]× {s})) = α for every s ∈ S .

Lemma There exist x ∈ S , N ′ < N/4, and M < N ′ such that
x + N ′ + [M] ⊆ S and x + 2N ′ + 2[M] ⊆ S where
2[M] := {2m | m ∈ [M]}.

Proof: Fix an N ′ < N/4. For any standard m ∈ N

S ∩
m⋂
i=0

(S − N ′ − i) ∩
m⋂
i=0

(S − 2N ′ − 2i) 6= ∅

by the fact that µN(S) = 1. Now the lemma follows from
countable saturation and the fact that S is internal.

Without loss of generality we can assume that x = 0.
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Proof continued

For each h ∈ [2L/3, L− 1] ⊆ [L] define

Eh := {x ∈ [L] | a, x , h is a 3-term AP and (a, 0) ∈ A}.

Then µL(Eh) > 0. (Note that µL(Eh) is at least α/6.)
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Consequence of Szemerédi’s Regularity Lemma

Mixing Lemma

(i) (double counting) If V ⊆ [L], then there is an m ∈ [M] with

µL(A ∩ (V × {N ′ + m})) ≥ αµL(V );

(ii) (Van der Waerden) If {Vl ⊆ [L] | l ∈ [n]} is a finite collection
of internal sets with µL(Vl) > 0 for each l < n, then there
exists a K -term AP P in N ′ + [M] such that for all p ∈ P and
all l ∈ [n],

µL(A ∩ (Vl × {p})) = αµL(Vl).

(iii) (Szemerédi) There is a K -term AP P ⊆ N ′ + [M] and a
Tp ⊆ [2L/3, L− 1] with µL(Tp) = 1/3 for each p ∈ P such
that

µL(A ∩ (Eh × {p})) = αµL(Eh)

for all h ∈ Tp.
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Last Step

Let P ⊆ [M] and Tp ⊆ [2L/3, L− 1] for each p ∈ P be obtained in
(iii) of the mixing lemma. Fix an p ∈ P. For each h ∈ Tp recall
the following.

1 µL(A ∩ (Eh × {p})) = αµL(Eh) and hence
A ∩ (A ∩ (Eh × {p})) 6= ∅,

2 x ∈ Eh implies that there is an a ∈ [L] and d such that
(a, 0) ∈ A, a + d = x , and a + 2d = h.

Since 2p ∈ S , we have µL(A ∩ ([2L/3, L− 1]× {2p}) = α/3 > 0
by the maximality of α.

Since µL(Tp) = 1/3, we have that A ∩ (Tp × {2p}) 6= ∅.
Fix (h, 2p) ∈ A ∩ (Tp × {2p}). Since A ∩ (Eh × {p}) 6= ∅, we can
find (x , p) ∈ A∩ (Eh ×{p}). Since x ∈ Eh, we can find a ∈ [L] and
d such that (a, 0) ∈ A, a + d = x , and a + 2d = h. Finally, we
conclude that (a, 0), (a + d , p), and (a + 2d , 2p) form a 3-term AP
in A.

Renling Jin, College of Charleston, SC A Nonstandard Proof of Roth’s Theorem



Last Step

Let P ⊆ [M] and Tp ⊆ [2L/3, L− 1] for each p ∈ P be obtained in
(iii) of the mixing lemma. Fix an p ∈ P. For each h ∈ Tp recall
the following.

1 µL(A ∩ (Eh × {p})) = αµL(Eh) and hence
A ∩ (A ∩ (Eh × {p})) 6= ∅,

2 x ∈ Eh implies that there is an a ∈ [L] and d such that
(a, 0) ∈ A, a + d = x , and a + 2d = h.

Since 2p ∈ S , we have µL(A ∩ ([2L/3, L− 1]× {2p}) = α/3 > 0
by the maximality of α.

Since µL(Tp) = 1/3, we have that A ∩ (Tp × {2p}) 6= ∅.
Fix (h, 2p) ∈ A ∩ (Tp × {2p}). Since A ∩ (Eh × {p}) 6= ∅, we can
find (x , p) ∈ A∩ (Eh ×{p}). Since x ∈ Eh, we can find a ∈ [L] and
d such that (a, 0) ∈ A, a + d = x , and a + 2d = h. Finally, we
conclude that (a, 0), (a + d , p), and (a + 2d , 2p) form a 3-term AP
in A.

Renling Jin, College of Charleston, SC A Nonstandard Proof of Roth’s Theorem



Last Step

Let P ⊆ [M] and Tp ⊆ [2L/3, L− 1] for each p ∈ P be obtained in
(iii) of the mixing lemma. Fix an p ∈ P. For each h ∈ Tp recall
the following.

1 µL(A ∩ (Eh × {p})) = αµL(Eh) and hence
A ∩ (A ∩ (Eh × {p})) 6= ∅,

2 x ∈ Eh implies that there is an a ∈ [L] and d such that
(a, 0) ∈ A, a + d = x , and a + 2d = h.

Since 2p ∈ S , we have µL(A ∩ ([2L/3, L− 1]× {2p}) = α/3 > 0
by the maximality of α.

Since µL(Tp) = 1/3, we have that A ∩ (Tp × {2p}) 6= ∅.
Fix (h, 2p) ∈ A ∩ (Tp × {2p}). Since A ∩ (Eh × {p}) 6= ∅, we can
find (x , p) ∈ A∩ (Eh ×{p}). Since x ∈ Eh, we can find a ∈ [L] and
d such that (a, 0) ∈ A, a + d = x , and a + 2d = h. Finally, we
conclude that (a, 0), (a + d , p), and (a + 2d , 2p) form a 3-term AP
in A.

Renling Jin, College of Charleston, SC A Nonstandard Proof of Roth’s Theorem



Last Step

Let P ⊆ [M] and Tp ⊆ [2L/3, L− 1] for each p ∈ P be obtained in
(iii) of the mixing lemma. Fix an p ∈ P. For each h ∈ Tp recall
the following.

1 µL(A ∩ (Eh × {p})) = αµL(Eh) and hence
A ∩ (A ∩ (Eh × {p})) 6= ∅,

2 x ∈ Eh implies that there is an a ∈ [L] and d such that
(a, 0) ∈ A, a + d = x , and a + 2d = h.

Since 2p ∈ S , we have µL(A ∩ ([2L/3, L− 1]× {2p}) = α/3 > 0
by the maximality of α.

Since µL(Tp) = 1/3, we have that A ∩ (Tp × {2p}) 6= ∅.
Fix (h, 2p) ∈ A ∩ (Tp × {2p}). Since A ∩ (Eh × {p}) 6= ∅, we can
find (x , p) ∈ A∩ (Eh ×{p}). Since x ∈ Eh, we can find a ∈ [L] and
d such that (a, 0) ∈ A, a + d = x , and a + 2d = h. Finally, we
conclude that (a, 0), (a + d , p), and (a + 2d , 2p) form a 3-term AP
in A.

Renling Jin, College of Charleston, SC A Nonstandard Proof of Roth’s Theorem



Last Step

Let P ⊆ [M] and Tp ⊆ [2L/3, L− 1] for each p ∈ P be obtained in
(iii) of the mixing lemma. Fix an p ∈ P. For each h ∈ Tp recall
the following.

1 µL(A ∩ (Eh × {p})) = αµL(Eh) and hence
A ∩ (A ∩ (Eh × {p})) 6= ∅,

2 x ∈ Eh implies that there is an a ∈ [L] and d such that
(a, 0) ∈ A, a + d = x , and a + 2d = h.

Since 2p ∈ S , we have µL(A ∩ ([2L/3, L− 1]× {2p}) = α/3 > 0
by the maximality of α.

Since µL(Tp) = 1/3, we have that A ∩ (Tp × {2p}) 6= ∅.
Fix (h, 2p) ∈ A ∩ (Tp × {2p}). Since A ∩ (Eh × {p}) 6= ∅, we can
find (x , p) ∈ A∩ (Eh ×{p}). Since x ∈ Eh, we can find a ∈ [L] and
d such that (a, 0) ∈ A, a + d = x , and a + 2d = h. Finally, we
conclude that (a, 0), (a + d , p), and (a + 2d , 2p) form a 3-term AP
in A.

Renling Jin, College of Charleston, SC A Nonstandard Proof of Roth’s Theorem



Last Step

Let P ⊆ [M] and Tp ⊆ [2L/3, L− 1] for each p ∈ P be obtained in
(iii) of the mixing lemma. Fix an p ∈ P. For each h ∈ Tp recall
the following.

1 µL(A ∩ (Eh × {p})) = αµL(Eh) and hence
A ∩ (A ∩ (Eh × {p})) 6= ∅,

2 x ∈ Eh implies that there is an a ∈ [L] and d such that
(a, 0) ∈ A, a + d = x , and a + 2d = h.

Since 2p ∈ S , we have µL(A ∩ ([2L/3, L− 1]× {2p}) = α/3 > 0
by the maximality of α.

Since µL(Tp) = 1/3, we have that A ∩ (Tp × {2p}) 6= ∅.
Fix (h, 2p) ∈ A ∩ (Tp × {2p}). Since A ∩ (Eh × {p}) 6= ∅, we can
find (x , p) ∈ A∩ (Eh ×{p}). Since x ∈ Eh, we can find a ∈ [L] and
d such that (a, 0) ∈ A, a + d = x , and a + 2d = h. Finally, we
conclude that (a, 0), (a + d , p), and (a + 2d , 2p) form a 3-term AP
in A.

Renling Jin, College of Charleston, SC A Nonstandard Proof of Roth’s Theorem



Last Step

Let P ⊆ [M] and Tp ⊆ [2L/3, L− 1] for each p ∈ P be obtained in
(iii) of the mixing lemma. Fix an p ∈ P. For each h ∈ Tp recall
the following.

1 µL(A ∩ (Eh × {p})) = αµL(Eh) and hence
A ∩ (A ∩ (Eh × {p})) 6= ∅,

2 x ∈ Eh implies that there is an a ∈ [L] and d such that
(a, 0) ∈ A, a + d = x , and a + 2d = h.

Since 2p ∈ S , we have µL(A ∩ ([2L/3, L− 1]× {2p}) = α/3 > 0
by the maximality of α.

Since µL(Tp) = 1/3, we have that A ∩ (Tp × {2p}) 6= ∅.
Fix (h, 2p) ∈ A ∩ (Tp × {2p}). Since A ∩ (Eh × {p}) 6= ∅, we can
find (x , p) ∈ A∩ (Eh ×{p}). Since x ∈ Eh, we can find a ∈ [L] and
d such that (a, 0) ∈ A, a + d = x , and a + 2d = h. Finally, we
conclude that (a, 0), (a + d , p), and (a + 2d , 2p) form a 3-term AP
in A.

Renling Jin, College of Charleston, SC A Nonstandard Proof of Roth’s Theorem



Last Step

Let P ⊆ [M] and Tp ⊆ [2L/3, L− 1] for each p ∈ P be obtained in
(iii) of the mixing lemma. Fix an p ∈ P. For each h ∈ Tp recall
the following.

1 µL(A ∩ (Eh × {p})) = αµL(Eh) and hence
A ∩ (A ∩ (Eh × {p})) 6= ∅,

2 x ∈ Eh implies that there is an a ∈ [L] and d such that
(a, 0) ∈ A, a + d = x , and a + 2d = h.

Since 2p ∈ S , we have µL(A ∩ ([2L/3, L− 1]× {2p}) = α/3 > 0
by the maximality of α.

Since µL(Tp) = 1/3, we have that A ∩ (Tp × {2p}) 6= ∅.
Fix (h, 2p) ∈ A ∩ (Tp × {2p}). Since A ∩ (Eh × {p}) 6= ∅, we can
find (x , p) ∈ A∩ (Eh ×{p}). Since x ∈ Eh, we can find a ∈ [L] and
d such that (a, 0) ∈ A, a + d = x , and a + 2d = h. Finally, we
conclude that (a, 0), (a + d , p), and (a + 2d , 2p) form a 3-term AP
in A.
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Last Step
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Mixing Lemma 1

Recall that L,N are hyperfinite integers, H = LN and
[H] = [L]× [N] with the lexicographical order, L/N ≈ 0, A ⊆ [H]
contains no 3-term AP, µH(A) = α is maximal, S ⊆ [N] with
µN(S) = 1, µL(A ∩ ([L]× {s}) = α for all s ∈ S , 0 ∈ S ,
N ′ + [M] ⊆ S , and 2N ′ + 2[M] ⊆ S .

Mixing Lemma 1 (double counting)

If V ⊆ [L], then there is an p ∈ N ′ + [M] with

µL(A ∩ (V × {p})) ≥ αµL(V ).

Proof For µL-almost all v ∈ V , µM(A∩ ({v}× (N ′+ [M]))) = α.
Let B = A ∩ (V × (N ′ + [M])). Now applying Fubini’s Theorem,∫

N′+[M]

∫
V
χB(v , p)dµLdµM = α

∫
V
dµL = αµL(V ).
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Mixing Lemma 2

Mixing Lemma 2 (Van der Waerden)

Let n be a finite positive integer and {Vl ⊆ [L] | l ∈ [n]} is a
collection of internal sets with µL(Vl) > 0, then there exists a
K -term AP P in N ′ + [M] such that for all p ∈ P and all l ∈ [n],

µL(A ∩ (Vl × {p})) = αµL(Vl).

Proof For a finite positive integer k we color each p ∈ N ′ + [M]
by one of 3n colors depending on whether µL(A ∩ (Vl × {p})) is
greater than (i) αµL(Vl) + 1/k , (ii) less than αµL(Vl)− 1/k , or
(iii) between αµL(Vl)± 1/k . By Mixing Lemma 1 we can find a
homogeneous Kk -term AP in N ′ + [M] with the color of the type
(iii) for all l ∈ [n]. Now repeat the process with N ′ + [M] being
replaced by Kk for k = 1, 2, . . . and use countable saturation to
obtain the final K -term AP P for some hyperfinite integer K .
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Szemerédi’s Regularity Lemma

Regularity Lemma Given standard real ε > 0, one can find a

partition [L] =
n−1⊔
l=0

Vl for some finite n = Oε(1) and constants

0 ≤ cl ,h ≤ 1 such that for any F ⊆ [L], there exists

TF ,ε ⊆ [2L/3, L− 1] with µL(TF ,ε) >
1−ε
3 L such that for any

h ∈ TF ,ε ∣∣∣∣∣|F ∩ Eh| −
∑
l<n

cl ,h|F ∩ Vl |

∣∣∣∣∣ ≤ εL.
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Mixing lemma 3

Mixing Lemma 3

There is a K -term AP P ⊆ N ′ + [M] and a Tp ⊆ [2L/3, L− 1]
with µL(Tp) = 1/3 for each p ∈ P such that for all h ∈ Tp

µL(A ∩ (Eh × {p})) = αµL(Eh).

Proof Given a standard real ε > 0, let [L] =
n−1⊔
l=0

Vl and constants

0 ≤ cl ,h ≤ 1 obtained in the regularity lemma. Without loss of
generality we assume that µL(Vl) > 0 for all l < n. By Mixing
Lemma 2 there is a Kε-term AP Pε ⊆ N ′ + [M] such that
µL(A ∩ (Vl × {p})) = αµL(Vl) for each p ∈ Pε. For a fixed p ∈ Pε
there is a Tp,ε ⊆ [2L/3, L− 1] with µL(Tp,ε) >

1−ε
3 L such that for

every h ∈ Tp,ε∣∣∣∣∣|A ∩ (Eh × {p})| −
∑
l<n

cl ,h|A ∩ (Vl × {p})|

∣∣∣∣∣ ≤ εL
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Now for every h ∈ Tp,2ε = T ′p,ε ∩ T ′′p,ε (T ′p,ε = TF ,ε for
F = A ∩ ([L]× {p}) and T ′′p,ε = T[L],ε in the regularity lemma)

||A ∩ (Eh × {p})| − α|Eh||

≤

∣∣∣∣∣|A ∩ (Eh × {p})| −
∑
l<n

cl ,h|A ∩ (Vl × {p})|

∣∣∣∣∣
+

∣∣∣∣∣∑
l<n

cl ,h(|A ∩ (Vl × {p})| − α|Vl |)

∣∣∣∣∣+ α

∣∣∣∣∣∑
l<n

cl ,h|Vl | − |Eh|

∣∣∣∣∣
≤ εL +

∑
l<n

cl ,hιl |Vl |+ εL

where ιl ≈ 0. Hence |µL(A ∩ (Eh × {p}))− αµL(Eh)| ≤ 2ε for
every h ∈ Tp,2ε. Now let ε = 1/k and k →∞. Note that Pε can
be made nested. By countable saturation one has a K -term AP P
inside these Pε’s and Tp as nonstandard extension of Tp,ε’s with
µL measure 1/3 for each p ∈ P such that
µL(A ∩ (Eh × {p})) = αµL(Eh) for every h ∈ Tp.
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The End

Thank you for your attention.
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