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Roth's Theorem

Let X € N. The upper Banach density of X is defined by

BD(X) = lim sup [k k0= 1)

n—oo keN n
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Roth's Theorem

Let X € N. The upper Banach density of X is defined by

BD(X) = lim sup [k k0= 1)

n—oo keN n

A k-term AP (arithmetic progression), denoted by P for, is a set of
the form
P:={a+id|i=0,1,... k—1}

for some integer a and positive integer d.
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Roth's Theorem

Let X € N. The upper Banach density of X is defined by

BD(X) = lim sup [k k0= 1)

n—oo keN n

A k-term AP (arithmetic progression), denoted by P for, is a set of

the form
P:={a+id|i=0,1,...,k—1}

for some integer a and positive integer d.

Roth’s Theorem If X C N and BD(X) > 0, then X contains a
3-term AP.
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Nonstandard Interpretations

The letter A, B, C, V represent internal subsets of integers,
H,K,L, M, N represent hyperfinite integers, and [n] := [0, n — 1]
for any nonnegative integer n. All sets considered from now on are
either standard sets in N or hyperfinite sets in *N.
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Nonstandard Interpretations

The letter A, B, C, V represent internal subsets of integers,
H,K,L, M, N represent hyperfinite integers, and [n] := [0, n — 1]
for any nonnegative integer n. All sets considered from now on are
either standard sets in N or hyperfinite sets in *N.

For any hyperfinite set A and hyperfinite integer N we will use

A
the notation py(A) := st <’N’>
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Nonstandard Interpretations

The letter A, B, C, V represent internal subsets of integers,
H,K,L, M, N represent hyperfinite integers, and [n] := [0, n — 1]
for any nonnegative integer n. All sets considered from now on are
either standard sets in N or hyperfinite sets in *N.

For any hyperfinite set A and hyperfinite integer N we will use

A
the notation py(A) := st <’N’
Thus if AC Q and || = H, then puy(A) is the Loeb measure of A
in €.
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Nonstandard Interpretations

The letter A, B, C, V represent internal subsets of integers,
H,K,L, M, N represent hyperfinite integers, and [n] := [0, n — 1]
for any nonnegative integer n. All sets considered from now on are
either standard sets in N or hyperfinite sets in *N.

For any hyperfinite set A ’an’d hyperfinite integer N we will use
A
N
Thus if AC Q and || = H, then puy(A) is the Loeb measure of A
in Q.

the notation py(A) := st <

Proposition Let X C N. Then BD(X) > « if and only if there
exists a hyperfinite interval a + [H] :=[a,a+ H — 1] in "N such
that py(*X N (a+ [H])) > «a.
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Nonstandard Interpretations

The letter A, B, C, V represent internal subsets of integers,
H,K,L, M, N represent hyperfinite integers, and [n] := [0, n — 1]
for any nonnegative integer n. All sets considered from now on are
either standard sets in N or hyperfinite sets in *N.

For any hyperfinite set A ’an’d hyperfinite integer N we will use
A
N
Thus if AC Q and || = H, then puy(A) is the Loeb measure of A
in Q.

the notation py(A) := st <

Proposition Let X C N. Then BD(X) > « if and only if there
exists a hyperfinite interval a + [H] :=[a,a+ H — 1] in "N such
that py(*X N (a+ [H])) > «a.

Proposition Let X C N. Then X contains a 3-term AP if and
only if *X contains a 3-term AP.
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Contraposition

Blank Assumption We assume now that Roth's Theorem is not
true and will derive a contradiction.
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Contraposition

Blank Assumption We assume now that Roth's Theorem is not
true and will derive a contradiction.

Let o be the standard real number defined by

a:=sup{un(A) | AC[H], A contains no 3-term AP}.
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Contraposition

Blank Assumption We assume now that Roth's Theorem is not
true and will derive a contradiction.

Let o be the standard real number defined by

a:=sup{un(A) | AC[H], A contains no 3-term AP}.

Proposition There exists A C [H] such that uy(A) =, A
contains no 3-term AP, and for any K-term AP, say Pk C [H] for
some hyperfinite integer K, it must be true that ux (AN Pk) < a.
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Contraposition

Blank Assumption We assume now that Roth's Theorem is not
true and will derive a contradiction.

Let o be the standard real number defined by

a:=sup{un(A) | AC[H], A contains no 3-term AP}.

Proposition There exists A C [H] such that uy(A) =, A
contains no 3-term AP, and for any K-term AP, say Pk C [H] for
some hyperfinite integer K, it must be true that ux (AN Pk) < a.

We now fix this A in [H] and derive a contradiction by locating a
3-term AP in A.
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Contraposition

Blank Assumption We assume now that Roth's Theorem is not
true and will derive a contradiction.

Let o be the standard real number defined by

a:=sup{un(A) | AC[H], A contains no 3-term AP}.

Proposition There exists A C [H] such that uy(A) =, A
contains no 3-term AP, and for any K-term AP, say Pk C [H] for
some hyperfinite integer K, it must be true that ux (AN Pk) < a.

We now fix this A in [H] and derive a contradiction by locating a
3-term AP in A.

Without loss of generality we can assume that H = NL with
L/N = 0 and consider [H] as [L] x [N] with a lexicographical order.

Renling Jin, College of Charleston, SC A Nonstandard Proof of Roth's Theorem



Lemma There is an internal set S C [N] such that uy(S) =1
and p (AN ([L] x {s})) = a for every s € S.
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Lemma There is an internal set S C [N] such that uy(S) =1
and p (AN ([L] x {s})) = a for every s € S.

Lemma There exist x € S, N' < N/4, and M < N’ such that
x+ N +[M]CS and x + 2N’ 4+ 2[M] C S where
2[M] :={2m | m € [M]}.
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Lemma There is an internal set S C [N] such that uy(S) =1
and p (AN ([L] x {s})) = a for every s € S.

Lemma There exist x € S, N' < N/4, and M < N’ such that
x+ N +[M]CS and x + 2N’ 4+ 2[M] C S where
2[M] :={2m | m € [M]}.

Proof.  Fix an N’ < N /4. For any standard m € N

Sﬂﬁ(S—N’—i)mﬁ(5—2N’—2i)7&(b
i=0 i=0

by the fact that pupn(S) = 1. Now the lemma follows from
countable saturation and the fact that S is internal.
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Lemma There is an internal set S C [N] such that uy(S) =1
and p (AN ([L] x {s})) = a for every s € S.

Lemma There exist x € S, N' < N/4, and M < N’ such that
x+ N +[M]CS and x + 2N’ 4+ 2[M] C S where
2[M] :={2m | m € [M]}.

Proof.  Fix an N’ < N /4. For any standard m € N

m m

SN(S=N=i)n[)(S—2N —2i) #0

i=0 i=0

by the fact that pupn(S) = 1. Now the lemma follows from
countable saturation and the fact that S is internal.

Without loss of generality we can assume that x = 0.
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Proof continued

For each h € [2L/3,L — 1] C [L] define
Ep:={xe[L]|a,x,h isa3-term AP and (a,0) € A}.

Then pr(Ep) > 0. (Note that uy(Ep) is at least /6.)
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Consequence of Szemerédi's Regularity Lemma

Mixing Lemma
(i) (double counting) If V C [L], then there is an m € [M] with

p(AN(V < AN+ m})) = ap(V);
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Consequence of Szemerédi's Regularity Lemma

Mixing Lemma
(i) (double counting) If V C [L], then there is an m € [M] with

p(AN(V < AN+ m})) = ap(V);

(ii) (Van der Waerden) If {V; C [L] | | € [n]} is a finite collection
of internal sets with 1 (V}) > 0 for each / < n, then there
exists a K-term AP P in N/ + [M] such that for all p € P and
all 1 € [n],

pL(AN (Vi < {p})) = ap(V)).
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Consequence of Szemerédi's Regularity Lemma

Mixing Lemma
(i) (double counting) If V C [L], then there is an m € [M] with

p(AN(V < AN+ m})) = ap(V);

(ii) (Van der Waerden) If {V; C [L] | | € [n]} is a finite collection
of internal sets with 1 (V}) > 0 for each / < n, then there
exists a K-term AP P in N/ + [M] such that for all p € P and
all 1 € [n],

pL(AN (Vi < {p})) = ap(V)).

(iii) (Szemerédi) There is a K-term AP P C N’ + [M] and a
T, C[2L/3,L — 1] with p;(T,) = 1/3 for each p € P such
that

ne(AN (Ep x {p})) = apr(En)

forall h e Tp.

Renling Jin, College of Charleston, SC A Nonstandard Proof of Roth's Theorem



Let P C [M] and T, C [2L/3, L — 1] for each p € P be obtained in
(iii) of the mixing lemma. Fix an p € P. For each h € T, recall
the following.
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Let P C [M] and T, C [2L/3, L — 1] for each p € P be obtained in
(iii) of the mixing lemma. Fix an p € P. For each h € T, recall
the following.
Q i (AN (En x {p})) = apr(En) and hence
AN (AN (E, x {p})) #0,
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Let P C [M] and T, C [2L/3, L — 1] for each p € P be obtained in
(iii) of the mixing lemma. Fix an p € P. For each h € T, recall
the following.

Q i (AN (En x {p})) = apr(En) and hence
AN (AN (E, x {p})) #0,

@ x € Ep, implies that there is an a € [L] and d such that
(a,0) € A, a+d=x,and a+2d = h.
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Let P C [M] and T, C [2L/3, L — 1] for each p € P be obtained in
(iii) of the mixing lemma. Fix an p € P. For each h € T, recall
the following.
Q i (AN (En x {p})) = apr(En) and hence
AN (AN (E, x {p})) #0,
@ x € Ep, implies that there is an a € [L] and d such that
(a,0) € A, a+d=x,and a+2d = h.
Since 2p € S, we have u; (AN ([2L/3,L — 1] x {2p}) = /3 >0
by the maximality of «.
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Let P C [M] and T, C [2L/3, L — 1] for each p € P be obtained in
(iii) of the mixing lemma. Fix an p € P. For each h € T, recall
the following.
Q i (AN (En x {p})) = apr(En) and hence
AR (AN (B x (p))) # 0
@ x € Ep, implies that there is an a € [L] and d such that
(a,0) € A, a+d=x,and a+2d = h.
Since 2p € S, we have u; (AN ([2L/3,L — 1] x {2p}) = /3 >0
by the maximality of «.
Since ui(Tp) = 1/3, we have that AN (T, x {2p}) # 0.
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Let P C [M] and T, C [2L/3, L — 1] for each p € P be obtained in
(iii) of the mixing lemma. Fix an p € P. For each h € T, recall
the following.
Q i (AN (En x {p})) = apr(En) and hence
AR (AN (B x (p))) # 0
@ x € Ep, implies that there is an a € [L] and d such that
(a,0) € A, a+d=x,and a+2d = h.
Since 2p € S, we have u; (AN ([2L/3,L — 1] x {2p}) = /3 >0
by the maximality of «.
Since ui(Tp) = 1/3, we have that AN (T, x {2p}) # 0.
Fix (h,2p) € AN (T, x {2p}).
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Let P C [M] and T, C [2L/3, L — 1] for each p € P be obtained in
(iii) of the mixing lemma. Fix an p € P. For each h € T, recall
the following.
Q i (AN (En x {p})) = apr(En) and hence
AR (AN (B x (p))) # 0
@ x € Ep, implies that there is an a € [L] and d such that
(a,0) € A, a+d=x,and a+2d = h.
Since 2p € S, we have u; (AN ([2L/3,L — 1] x {2p}) = /3 >0
by the maximality of «.
Since ui(Tp) = 1/3, we have that AN (T, x {2p}) # 0.
Fix (h,2p) € AN (T, x {2p}). Since AN (Ep x {p}) # 0, we can
find (x,p) € AN(E, x {p}).
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Let P C [M] and T, C [2L/3, L — 1] for each p € P be obtained in
(iii) of the mixing lemma. Fix an p € P. For each h € T, recall
the following.
Q i (AN (En x {p})) = apr(En) and hence
AR (AN (B x (p))) # 0
@ x € Ep, implies that there is an a € [L] and d such that
(a,0) € A, a+d=x,and a+2d = h.
Since 2p € S, we have u; (AN ([2L/3,L — 1] x {2p}) = /3 >0
by the maximality of «.
Since ui(Tp) = 1/3, we have that AN (T, x {2p}) # 0.
Fix (h,2p) € AN (T, x {2p}). Since AN (Ep x {p}) # 0, we can
find (x,p) € AN(E, x {p}). Since x € Ep, we can find a € [L] and
d such that (a,0) € A, a+d = x, and a+ 2d = h.
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Let P C [M] and T, C [2L/3, L — 1] for each p € P be obtained in
(iii) of the mixing lemma. Fix an p € P. For each h € T, recall
the following.

Q i (AN (En x {p})) = apr(En) and hence
AN(AN(Er x {p})) # 0
@ x € Ep, implies that there is an a € [L] and d such that
(a,0) € A, a+d=x,and a+2d = h.
Since 2p € S, we have u; (AN ([2L/3,L — 1] x {2p}) = /3 >0
by the maximality of «.
Since ui(Tp) = 1/3, we have that AN (T, x {2p}) # 0.
Fix (h,2p) € AN (T, x {2p}). Since AN (Ep x {p}) # 0, we can
find (x,p) € AN(E, x {p}). Since x € Ep, we can find a € [L] and
d such that (a,0) € A, a+ d = x, and a+ 2d = h. Finally, we
conclude that (a,0), (a+d, p), and (a+ 2d,2p) form a 3-term AP
in A.
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Mixing Lemma 1

Recall that L, N are hyperfinite integers, H = LN and

[H] = [L] x [N] with the lexicographical order, L/N ~ 0, A C [H]
contains no 3-term AP, py(A) = v is maximal, S C [N] with
un(S) =1, p(AN([L] x {s})=aforallse€ S, 0€eS,

N’ +[M] C S, and 2N +2[M] C S.
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Mixing Lemma 1

Recall that L, N are hyperfinite integers, H = LN and

[H] = [L] x [N] with the lexicographical order, L/N ~ 0, A C [H]
contains no 3-term AP, py(A) = v is maximal, S C [N] with
un(S) =1, p(AN([L] x {s})=aforallse€ S, 0€eS,

N’ +[M] C S, and 2N +2[M] C S.

Mixing Lemma 1 (double counting)

If V C[L], then there is an p € N' + [M] with

uL(AN(V x{p})) = ap (V).
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Mixing Lemma 1

Recall that L, N are hyperfinite integers, H = LN and

[H] = [L] x [N] with the lexicographical order, L/N ~ 0, A C [H]
contains no 3-term AP, py(A) = v is maximal, S C [N] with
un(S) =1, p(AN([L] x {s})=aforallse€ S, 0€eS,

N’ +[M] C S, and 2N +2[M] C S.

Mixing Lemma 1 (double counting)

If V C[L], then there is an p € N' + [M] with

uL(AN(V x{p})) = ap (V).

Proof For pi-almost all v € V, up(AN({v} x (N +[M]))) = a.
Let B=AN(V x (N"+[M])). Now applying Fubini's Theorem,

/ / xs(v, p)dpidum = Oé/ dur = apr(V).
My Jv v
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Mixing Lemma 2

Mixing Lemma 2 (Van der Waerden)

Let n be a finite positive integer and {V; C [L] |/ € [n]} is a
collection of internal sets with p;(V)) > 0, then there exists a
K-term AP P in N' + [M] such that for all p € P and all / € [n],

pL(AN (Vi x{p})) = ap (V).
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Mixing Lemma 2

Mixing Lemma 2 (Van der Waerden)

Let n be a finite positive integer and {V; C [L] |/ € [n]} is a
collection of internal sets with p;(V)) > 0, then there exists a
K-term AP P in N' + [M] such that for all p € P and all / € [n],

n(AN (Vi x {p})) = apc(V)).

Proof For a finite positive integer k we color each p € N' + [M]
by one of 3" colors depending on whether 1, (AN (V) x {p})) is
greater than (i) aur (V) + 1/k, (i) less than au (Vi) — 1/k, or
(iii) between ap;(V)) £+ 1/k. By Mixing Lemma 1 we can find a
homogeneous Ki-term AP in N’ + [M] with the color of the type
(iii) for all / € [n]. Now repeat the process with N' + [M] being
replaced by Kj for k =1,2,... and use countable saturation to
obtain the final K-term AP P for some hyperfinite integer K.
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Szemerédi's Regularity Lemma

Regularity Lemma Given standard real ¢ > 0, one can find a
n—1

partition [L] = |_| V) for some finite n = O.(1) and constants

1=0
0 < ¢, < 1 such that for any F C [L], there exists

Tre C [2L/3,L — 1] with 11y (TF ) > 155L such that for any
he T[:76

|Fﬂ Eh| — ch’h“: N V/| <el.

I<n
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Mixing lemma 3

Mixing Lemma 3

There is a K-term AP P C N’ + [M] and a T, C [2L/3,L — 1]
with p(Tp) = 1/3 for each p € P such that for all he T,

pL(AN (Ep x {p})) = apr(Ep).
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Mixing lemma 3

Mixing Lemma 3

There is a K-term AP P C N’ + [M] and a T, C [2L/3,L — 1]
with p(Tp) = 1/3 for each p € P such that for all he T,

n(AN (En x {p})) = apuc(En).
n—1
Proof Given a standard real € > 0, let [L] = |_| V) and constants

=0
0 < ¢ < 1 obtained in the regularity lemma. Without loss of

generality we assume that p(V;) > 0 for all / < n. By Mixing
Lemma 2 there is a K.-term AP P. C N’ 4 [M] such that

uL (AN (Vy x {p})) = apr(V)) for each p € P.. For a fixed p € P,
there is a T, C [2L/3,L — 1] with 11/ (Tp,) > 5L such that for
every he T,

AN (En x {p})| = Y crnlAn (Vi x {p})]| < eL

I<n
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Now for every h€ Tpoe =T, N T, (T, = T for
F=An([L] x {p}) and T] = Ty, in the regularity lemma)

|AN (En x {p}) — af Enll

< AN (En x {p})| =D anlAn (V) x {P})||
I<n
+ 1) an(AN (Vi x {p})] = alVi))| + > calVi| — |l
I<n I<n
<el+ Z C/7hL/|V/‘ + el
I<n

where ¢ =~ 0. Hence |u (AN (En x {p})) — ap(Ep)| < 2€ for
every h € Tpo.. Now let € =1/k and k — oco. Note that P, can
be made nested. By countable saturation one has a K-term AP P
inside these P.'s and T, as nonstandard extension of T, .'s with
i measure 1/3 for each p € P such that

pL(AN (Ep x {p})) = apr(Ep) for every h € Tp,.
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The End

Thank you for your attention.
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