

The Erdős Sumset Conjecture

Joel Moreira Florian Richter Donald Robertson
joel.moreira@northwestern.edu

Northwestern University

March 22, 2019

Definition

An *infinite sumset* in \mathbb{N} is a set of the form

$B + C := \{b + c : b \in B, c \in C\}$ where B and C are infinite subsets of \mathbb{N} .

Proposition

Any finite coloring of \mathbb{N} has a monochromatic infinite sumset.

Proof.

Exercise. [Hint: use (the infinite) Ramsey's theorem]

□

Conjecture (Erdős)

Any set $A \subset \mathbb{N}$ with positive density contains an infinite sumset.

Definition

A set $A \subset \mathbb{N}$ has positive upper Banach density (and we write $d(A) > 0$) if there exists a sequence of intervals $(I_N)_{N \in \mathbb{N}}$ with lengths $|I_N| \rightarrow \infty$ as $N \rightarrow \infty$ and such that

$$\lim_{N \rightarrow \infty} \frac{|A \cap I_N|}{|I_N|} > 0$$

Theorem (M-F. Richter-D. Robertson)

Every $A \subset \mathbb{N}$ with positive upper Banach density contains an infinite sumset.

Definition

A set $A \subset \mathbb{N}$ has positive upper Banach density (and we write $d(A) > 0$) if there exists a sequence of intervals $(I_N)_{N \in \mathbb{N}}$ with lengths $|I_N| \rightarrow \infty$ as $N \rightarrow \infty$ and such that

$$\lim_{N \rightarrow \infty} \frac{|A \cap I_N|}{|I_N|} > 0$$

Theorem (M-F. Richter-D. Robertson)

Every $A \subset \mathbb{N}$ with positive upper Banach density contains an infinite sumset.

Notation

Let $f : \mathbb{N} \rightarrow \mathbb{C}$. We denote by

$$\mathbb{E}_{n \in \mathbb{N}} f(n) := \lim_{N \rightarrow \infty} \frac{1}{|I_N|} \sum_{n \in I_N} f(n)$$

for some sequence of intervals $(I_N)_{N \in \mathbb{N}}$ along which the limit exists.

Fact

If $A \subset \mathbb{N}$ has $d(A) > 0$ then $d(A \cap (A - n)) > 0$ for some $n \in \mathbb{N}$.

Fact

If $A \subset \mathbb{N}$ has $d(A) > 0$ then $d(A \cap (A - n)) > 0$ for some $n \in \mathbb{N}$.

- ▶ This implies that A contains $B + C$ where $B = \{0, n\}$ and $C = A \cap (A - n)$ has positive density.
- ▶ (Nathanson) Iterating we get for every $k \in \mathbb{N}$ sets B and C with $|B| = k$, $d(C) > 0$ and $B + C \subset A$.

Fact

If $A \subset \mathbb{N}$ has $d(A) > 0$ then $d(A \cap (A - n)) > 0$ for some $n \in \mathbb{N}$.

- ▶ This implies that A contains $B + C$ where $B = \{0, n\}$ and $C = A \cap (A - n)$ has positive density.
- ▶ (Nathanson) Iterating we get for every $k \in \mathbb{N}$ sets B and C with $|B| = k$, $d(C) > 0$ and $B + C \subset A$.

Lemma (Bergelson)

Let $A \subset \mathbb{N}$ have $d(A) > 0$. Then $\exists L \subset \mathbb{N}$ with $d(L) \geq d(A)$ such that for every finite $B \subset L$, there exists $C = C(B) \subset \mathbb{N}$ with $d(C) > 0$ and $B + C \subset A$.

Theorem

If $A \subset \mathbb{N}$ has $d(A) > 1/2$, then A contains an infinite sumset.

Theorem

If $A \subset \mathbb{N}$ has $d(A) > 1/2$, then A contains an infinite sumset.

Proposition

Let $A \subset \mathbb{N}$. If there exists $L \subset \mathbb{N}$ and $\varepsilon > 0$ such that for every finite $F \subset L$

$$\bigcap_{\ell \in F} (A - \ell) \cap \left\{ n \in \mathbb{N} : d((A - n) \cap L) > \varepsilon \right\} \quad \text{is infinite}$$

then A contains an infinite sumset.

Theorem

If $A \subset \mathbb{N}$ has $d(A) > 1/2$, then A contains an infinite sumset.

Proposition

Let $A \subset \mathbb{N}$. If there exists $L \subset \mathbb{N}$ and $\varepsilon > 0$ such that for every finite $F \subset L$

$$\bigcap_{\ell \in F} (A - \ell) \cap \left\{ n \in \mathbb{N} : d((A - n) \cap L) > \varepsilon \right\} \quad \text{is infinite}$$

then A contains an infinite sumset.

Lemma (Bergelson, again)

Let $A \subset \mathbb{N}$ have $d(A) > 0$. Then $\exists L \subset \mathbb{N}$ with $d(L) \geq d(A)$ such that for every finite $F \subset L$,

$$d \left(\bigcap_{\ell \in F} (A - \ell) \right) > 0$$

Reduced main theorem to

Theorem

For every $A \subset \mathbb{N}$ with $d(A) > 0$ there exist $L \subset \mathbb{N}$ and $\varepsilon > 0$ such that for every finite $F \subset L$

$$\bigcap_{\ell \in F} (A - \ell) \cap \left\{ n \in \mathbb{N} : d((A - n) \cap L) > \varepsilon \right\} \quad \text{is infinite}$$

Example

- ▶ If A is random, then take $L = \mathbb{N}$ and any $\varepsilon < d(A)$.
- ▶ If A is a Bohr set, say $A = \{x \in \mathbb{N} : \|x\alpha\|_{\mathbb{T}} < \rho\}$, take $L = \{\ell \in \mathbb{N} : \|\ell\alpha\|_{\mathbb{T}} < \rho/2\}$.

Definition

An *ultrafilter* is a collection p of subsets of \mathbb{N} such that

- ▶ $\emptyset \notin p, \mathbb{N} \in p$.
- ▶ If $A \in p$ and $A \subset B$ then $B \in p$.
- ▶ If $A, B \in p$ then $A \cap B \in p$.
- ▶ $A \notin p$ if and only if $\mathbb{N} \setminus A \in p$.

Definition

An *ultrafilter* is a collection p of subsets of \mathbb{N} such that

- ▶ $\emptyset \notin p, \mathbb{N} \in p$.
- ▶ If $A \in p$ and $A \subset B$ then $B \in p$.
- ▶ If $A, B \in p$ then $A \cap B \in p$.
- ▶ $A \notin p$ if and only if $\mathbb{N} \setminus A \in p$.

For each $n \in \mathbb{N}$, the collection $p_n := \{A \subset \mathbb{N} : n \in A\}$ is a *principal ultrafilter*.

$A - p := \{x \in \mathbb{N} : A - x \in p\}$. Note that $A - p_n = A - n$.

Definition

An *ultrafilter* is a collection p of subsets of \mathbb{N} such that

- $\emptyset \notin p, \mathbb{N} \in p$.
- If $A \in p$ and $A \subset B$ then $B \in p$.
- If $A, B \in p$ then $A \cap B \in p$.
- $A \notin p$ if and only if $\mathbb{N} \setminus A \in p$.

For each $n \in \mathbb{N}$, the collection $p_n := \{A \subset \mathbb{N} : n \in A\}$ is a *principal ultrafilter*.

$A - p := \{x \in \mathbb{N} : A - x \in p\}$. Note that $A - p_n = A - n$.

Let $f : \mathbb{N} \rightarrow \mathbb{C}$ be bounded and p an ultrafilter.

$\lim_n f(n) = y \iff \forall \varepsilon > 0, \{n : |f(n) - y| < \varepsilon\}$ is cofinite.

$p - \lim_n f(n) = y \iff \forall \varepsilon > 0, \{n : |f(n) - y| < \varepsilon\} \in p$.

Theorem

For every $A \subset \mathbb{N}$ with $d(A) > 0$ there exist $L \subset \mathbb{N}$ and $\varepsilon > 0$ such that for every finite $F \subset L$

$$\bigcap_{\ell \in F} (A - \ell) \cap \left\{ n \in \mathbb{N} : d((A - n) \cap L) > \varepsilon \right\} \quad \text{is infinite}$$

Theorem

For every $A \subset \mathbb{N}$ with $d(A) > 0$ there exist $L \subset \mathbb{N}$ and $\varepsilon > 0$ such that for every finite $F \subset L$

$$\bigcap_{\ell \in F} (A - \ell) \cap \left\{ n \in \mathbb{N} : d((A - n) \cap L) > \varepsilon \right\} \quad \text{is infinite}$$

Can be written as

Theorem

For every $A \subset \mathbb{N}$ with $d(A) > 0$ there exist a non-principal ultrafilter p such that

$$p - \lim_n d((A - n) \cap (A - p)) > 0$$

For $f : \mathbb{N} \rightarrow [0, 1]$ define $T^n f(x) = f(x + n)$ and $T^p f : \mathbb{N} \rightarrow [0, 1]$ by

$$T^p f(x) = p - \lim_n f(x + n).$$

Note that $1_{A-n} = T^n 1_A$ and $1_{A-p} = T^p 1_A$.

For $f : \mathbb{N} \rightarrow [0, 1]$ define $T^n f(x) = f(x + n)$ and $T^p f : \mathbb{N} \rightarrow [0, 1]$ by

$$T^p f(x) = p - \lim_n f(x + n).$$

Note that $1_{A-n} = T^n 1_A$ and $1_{A-p} = T^p 1_A$.

The main theorem follows from:

Theorem (Final reduction)

For every bounded $f : \mathbb{N} \rightarrow [0, 1]$ and every $\varepsilon > 0$ there exists a non principal ultrafilter p such that

$$p - \lim_n \mathbb{E}_{x \in \mathbb{N}} T^n f(x) T^p f(x) \geq \left(\mathbb{E}_{x \in \mathbb{N}} f(x) \right)^2 - \varepsilon.$$

Definition

$f : \mathbb{N} \rightarrow \mathbb{C}$ is *weak mixing* if $\forall g : \mathbb{N} \rightarrow \mathbb{C}$,

$$\mathbb{E}_{n \in \mathbb{N}} \left| \mathbb{E}_{x \in \mathbb{N}} T^n f(x) g(x) \right| = 0$$

Definition

$f : \mathbb{N} \rightarrow \mathbb{C}$ is *weak mixing* if $\forall g : \mathbb{N} \rightarrow \mathbb{C}$,

$$\mathbb{E}_{n \in \mathbb{N}} \left| \mathbb{E}_{x \in \mathbb{N}} T^n f(x) g(x) \right| = 0$$

Definition

$f : \mathbb{N} \rightarrow \mathbb{C}$ is (*Besicovitch*) *almost periodic* if $\forall \varepsilon > 0$ there exists a trig. polynomial $p(x) = \sum_{j \in J} c_j e(\theta_j x)$ such that

$$\mathbb{E}_{x \in \mathbb{N}} |f(x) - p(x)| < \varepsilon.$$

Definition

$f : \mathbb{N} \rightarrow \mathbb{C}$ is *weak mixing* if $\forall g : \mathbb{N} \rightarrow \mathbb{C}$,

$$\mathbb{E}_{n \in \mathbb{N}} \left| \mathbb{E}_{x \in \mathbb{N}} T^n f(x) g(x) \right| = 0$$

Definition

$f : \mathbb{N} \rightarrow \mathbb{C}$ is (*Besicovitch*) *almost periodic* if $\forall \varepsilon > 0$ there exists a trig. polynomial $p(x) = \sum_{j \in J} c_j e(\theta_j x)$ such that

$$\mathbb{E}_{x \in \mathbb{N}} |f(x) - p(x)| < \varepsilon.$$

Remark

Unfortunately, it is not true that every bounded $f : \mathbb{N} \rightarrow \mathbb{R}$ can be decomposed as $f = f_{wm} + f_{bes}$!

Definition

$f : \mathbb{N} \rightarrow \mathbb{C}$ is *weak mixing* if $\forall g : \mathbb{N} \rightarrow \mathbb{R}$,

$$\mathbb{E}_{n \in \mathbb{N}} \left| \mathbb{E}_{x \in \mathbb{N}} T^n f(x) g(x) \right| = 0$$

Definition

$f : \mathbb{N} \rightarrow \mathbb{C}$ is *compact* if $\forall \varepsilon > 0$ there exists a Bohr₀ set $B \subset \mathbb{N}$ such that

$$\forall n \in B \quad \mathbb{E}_{x \in \mathbb{N}} |T^n f(x) - f(x)|^2 < \varepsilon.$$

Definition

$f : \mathbb{N} \rightarrow \mathbb{C}$ is *weak mixing* if $\forall g : \mathbb{N} \rightarrow \mathbb{R}$,

$$\mathbb{E}_{n \in \mathbb{N}} \left| \mathbb{E}_{x \in \mathbb{N}} T^n f(x) g(x) \right| = 0$$

Definition

$f : \mathbb{N} \rightarrow \mathbb{C}$ is *compact* if $\forall \varepsilon > 0$ there exists a Bohr₀ set $B \subset \mathbb{N}$ such that

$$\forall n \in B \quad \mathbb{E}_{x \in \mathbb{N}} |T^n f(x) - f(x)|^2 < \varepsilon.$$

$B = \{n \in \mathbb{N} : \|n\alpha_1\|_{\mathbb{T}} < \rho, \dots, \|n\alpha_d\|_{\mathbb{T}} < \rho\}$ for some $\alpha_i \in \mathbb{R}$ and $\rho > 0$.

Definition

$f : \mathbb{N} \rightarrow \mathbb{C}$ is *weak mixing* if $\forall g : \mathbb{N} \rightarrow \mathbb{R}$,

$$\mathbb{E}_{n \in \mathbb{N}} \left| \mathbb{E}_{x \in \mathbb{N}} T^n f(x) g(x) \right| = 0$$

Definition

$f : \mathbb{N} \rightarrow \mathbb{C}$ is *compact* if $\forall \varepsilon > 0$ there exists a Bohr₀ set $B \subset \mathbb{N}$ such that

$$\forall n \in B \quad \mathbb{E}_{x \in \mathbb{N}} |T^n f(x) - f(x)|^2 < \varepsilon.$$

$B = \{n \in \mathbb{N} : \|n\alpha_1\|_{\mathbb{T}} < \rho, \dots, \|n\alpha_d\|_{\mathbb{T}} < \rho\}$ for some $\alpha_i \in \mathbb{R}$ and $\rho > 0$.

Theorem

Every bounded $f : \mathbb{N} \rightarrow \mathbb{C}$ can be decomposed as $f = f_{wm} + f_c$ where f_{wm} is weak mixing and f_c is compact.

Definition

$f : N \rightarrow \mathbb{C}$ is (Besicovitch) almost periodic if $\forall \varepsilon > 0$ there exists a trig. polynomial $p(x) = \sum_{j \in J} c_j e(\theta_j x)$ such that

$$\mathbb{E}_{x \in \mathbb{N}} |f(x) - p(x)| < \varepsilon.$$

Definition

$f : \mathbb{N} \rightarrow \mathbb{C}$ is in Bes^\perp if for every $\theta \in \mathbb{R}$

$$\mathbb{E}_{x \in \mathbb{N}} f(x) e(\theta x) = 0.$$

Definition

$f : \mathbb{N} \rightarrow \mathbb{C}$ is (Besicovitch) almost periodic if $\forall \varepsilon > 0$ there exists a trig. polynomial $p(x) = \sum_{j \in J} c_j e(\theta_j x)$ such that

$$\mathbb{E}_{x \in \mathbb{N}} |f(x) - p(x)| < \varepsilon.$$

Definition

$f : \mathbb{N} \rightarrow \mathbb{C}$ is in Bes^\perp if for every $\theta \in \mathbb{R}$

$$\mathbb{E}_{x \in \mathbb{N}} f(x) e(\theta x) = 0.$$

Theorem

Every bounded $f : \mathbb{N} \rightarrow \mathbb{C}$ can be decomposed as $f = f_{bes} + f_\perp$.

Theorem

For every bounded $f : \mathbb{N} \rightarrow [0, 1]$ and every $\varepsilon > 0$ there exists a non principal ultrafilter p such that

$$p - \lim_n \mathbb{E}_{x \in \mathbb{N}} T^n f(x) T^p f(x) \geq \left(\mathbb{E}_{x \in \mathbb{N}} f(x) \right)^2 - \varepsilon.$$

Theorem

For every bounded $f : \mathbb{N} \rightarrow [0, 1]$ and every $\varepsilon > 0$ there exists a non principal ultrafilter p such that

$$p - \lim_n \mathbb{E}_{x \in \mathbb{N}} T^n f(x) T^p f(x) \geq \left(\mathbb{E}_{x \in \mathbb{N}} f(x) \right)^2 - \varepsilon.$$

Proof.

- ▶ Split $f = f_c + f_{wm} = f_{bes} + f_{\perp}$.
- ▶ $T^n f T^p f = T^n f_{wm} T^p f + T^n f_c T^p f_{bes} + T^n f_c T^p f_{\perp}$.

Theorem

For every bounded $f : \mathbb{N} \rightarrow [0, 1]$ and every $\varepsilon > 0$ there exists a non principal ultrafilter p such that

$$p - \lim_n \mathbb{E}_{x \in \mathbb{N}} T^n f(x) T^p f(x) \geq \left(\mathbb{E}_{x \in \mathbb{N}} f(x) \right)^2 - \varepsilon.$$

Proof.

- ▶ Split $f = f_c + f_{wm} = f_{bes} + f_{\perp}$.
- ▶ $T^n f T^p f = T^n f_{wm} T^p f + T^n f_c T^p f_{bes} + T^n f_c T^p f_{\perp}$.
- ▶ $\mathbb{E}_{n \in \mathbb{N}} |\mathbb{E}_{x \in \mathbb{N}} T^n f_{wm}(x) T^p f(x)| = 0$, so

$$p - \lim_n \mathbb{E}_{x \in \mathbb{N}} T^n f_{wm}(x) T^p f(x) = 0$$

as long as p contains no set with 0 density.

Theorem

For every bounded $f : \mathbb{N} \rightarrow [0, 1]$ and every $\varepsilon > 0$ there exists a non principal ultrafilter p such that

$$p - \lim_n \mathbb{E}_{x \in \mathbb{N}} T^n f(x) T^p f(x) \geq \left(\mathbb{E}_{x \in \mathbb{N}} f(x) \right)^2 - \varepsilon.$$

Proof.

- ▶ Split $f = f_c + f_{wm} = f_{bes} + f_{\perp}$.
- ▶ $T^n f T^p f = T^n f_{wm} T^p f + T^n f_c T^p f_{bes} + T^n f_c T^p f_{\perp}$.
- ▶ $\mathbb{E}_{n \in \mathbb{N}} |\mathbb{E}_{x \in \mathbb{N}} T^n f_{wm}(x) T^p f(x)| = 0$, so

$$p - \lim_n \mathbb{E}_{x \in \mathbb{N}} T^n f_{wm}(x) T^p f(x) = 0$$

as long as p contains no set with 0 density.

Such ultrafilters are called *essential*.

Theorem

For every bounded $f : \mathbb{N} \rightarrow [0, 1]$ and every $\varepsilon > 0$ there exists an essential ultrafilter p such that

$$p\text{-}\lim_n \mathbb{E}_{x \in \mathbb{N}} T^n f_c(x) T^p f_{bes}(x) + T^n f_c(x) T^p f_{\perp}(x) \geq \left(\mathbb{E}_{x \in \mathbb{N}} f(x) \right)^2 - \varepsilon.$$

Theorem

For every bounded $f : \mathbb{N} \rightarrow [0, 1]$ and every $\varepsilon > 0$ there exists an essential ultrafilter p such that

$$p\text{-}\lim_n \mathbb{E}_{x \in \mathbb{N}} T^n f_c(x) T^p f_{bes}(x) + T^n f_c(x) T^p f_\perp(x) \geq \left(\mathbb{E}_{x \in \mathbb{N}} f(x) \right)^2 - \varepsilon.$$

Fact

- ▶ $T^p e(\theta x) = (p - \lim_n e(n\theta)) e(\theta x) = \lambda e(\theta x).$

Theorem

For every bounded $f : \mathbb{N} \rightarrow [0, 1]$ and every $\varepsilon > 0$ there exists an essential ultrafilter p such that

$$p\text{-}\lim_n \mathbb{E}_{x \in \mathbb{N}} T^n f_c(x) T^p f_{bes}(x) + T^n f_c(x) T^p f_{\perp}(x) \geq \left(\mathbb{E}_{x \in \mathbb{N}} f(x) \right)^2 - \varepsilon.$$

Fact

- ▶ $T^p e(\theta x) = (p - \lim_n e(n\theta)) e(\theta x) = \lambda e(\theta x).$
- ▶ $\forall \delta > 0$, there is a Bohr₀ set B such that if $B \in p$ then

$$|T^p e(\theta x) - e(\theta x)| < \delta \text{ for all } x \in \mathbb{N}.$$

Theorem

For every bounded $f : \mathbb{N} \rightarrow [0, 1]$ and every $\varepsilon > 0$ there exists an essential ultrafilter p such that

$$p\text{-}\lim_n \mathbb{E}_{x \in \mathbb{N}} T^n f_c(x) T^p f_{bes}(x) + T^n f_c(x) T^p f_{\perp}(x) \geq \left(\mathbb{E}_{x \in \mathbb{N}} f(x) \right)^2 - \varepsilon.$$

Fact

- ▶ $T^p e(\theta x) = (p - \lim_n e(n\theta)) e(\theta x) = \lambda e(\theta x).$
- ▶ $\forall \delta > 0$, there is a Bohr₀ set B such that if $B \in p$ then

$$|T^p e(\theta x) - e(\theta x)| < \delta \text{ for all } x \in \mathbb{N}.$$

- ▶ There exists a Bohr₀ set B such that for almost every ultrafilter p with $B \in p$,

$$\mathbb{E}_{x \in \mathbb{N}} |T^p f_{bes}(x) - f_{bes}(x)|^2 < \varepsilon/2$$

Theorem

For every bounded $f : \mathbb{N} \rightarrow [0, 1]$, every Bohr₀ set B and every $\varepsilon > 0$ there exists a (positive measure set of) essential ultrafilter p such that $B \in p$ and

$$p - \lim_n \mathbb{E}_{x \in \mathbb{N}} T^n f_c(x) f_{bes}(x) + T^n f_c(x) T^p f_{\perp}(x) \geq \left(\mathbb{E}_{x \in \mathbb{N}} f(x) \right)^2 - \varepsilon.$$

Theorem

For every bounded $f : \mathbb{N} \rightarrow [0, 1]$, every Bohr₀ set B and every $\varepsilon > 0$ there exists a (positive measure set of) essential ultrafilter p such that $B \in p$ and

$$p - \lim_n \mathbb{E}_{x \in \mathbb{N}} T^n f_c(x) f_{bes}(x) + T^n f_c(x) T^p f_{\perp}(x) \geq \left(\mathbb{E}_{x \in \mathbb{N}} f(x) \right)^2 - \varepsilon.$$

- ▶ There is a Bohr₀ set \tilde{B} such that $\forall n \in \tilde{B}$,

$$\mathbb{E}_{x \in \mathbb{N}} |T^n f_c(x) - f_c(x)|^2 < \varepsilon^2/4.$$

Theorem

For every bounded $f : \mathbb{N} \rightarrow [0, 1]$, every Bohr₀ set B and every $\varepsilon > 0$ there exists a (positive measure set of) essential ultrafilter p such that $B \in p$ and

$$p - \lim_n \mathbb{E}_{x \in \mathbb{N}} T^n f_c(x) f_{bes}(x) + T^n f_c(x) T^p f_{\perp}(x) \geq \left(\mathbb{E}_{x \in \mathbb{N}} f(x) \right)^2 - \varepsilon.$$

- ▶ There is a Bohr₀ set \tilde{B} such that $\forall n \in \tilde{B}$,

$$\mathbb{E}_{x \in \mathbb{N}} |T^n f_c(x) - f_c(x)|^2 < \varepsilon^2/4.$$

- ▶ If $\tilde{B} \in p$ then

$$p - \lim_n \mathbb{E}_{x \in \mathbb{N}} T^n f_c(x) f_{bes}(x) \geq \mathbb{E}_{x \in \mathbb{N}} f_c(x) f_{bes}(x) - \varepsilon/2$$

Theorem

For every bounded $f : \mathbb{N} \rightarrow [0, 1]$, every Bohr₀ set B and every $\varepsilon > 0$ there exists a (positive measure set of) essential ultrafilter p such that $B \in p$ and

$$p - \lim_n \mathbb{E}_{x \in \mathbb{N}} T^n f_c(x) f_{bes}(x) + T^n f_c(x) T^p f_{\perp}(x) \geq \left(\mathbb{E}_{x \in \mathbb{N}} f(x) \right)^2 - \varepsilon.$$

- ▶ There is a Bohr₀ set \tilde{B} such that $\forall n \in \tilde{B}$,

$$\mathbb{E}_{x \in \mathbb{N}} |T^n f_c(x) - f_c(x)|^2 < \varepsilon^2/4.$$

- ▶ If $\tilde{B} \in p$ then

$$p - \lim_n \mathbb{E}_{x \in \mathbb{N}} T^n f_c(x) f_{bes}(x) \geq \mathbb{E}_{x \in \mathbb{N}} f_c(x) f_{bes}(x) - \varepsilon/2$$

$$\mathbb{E}_{x \in \mathbb{N}} f_c(x) f_{bes}(x) = \mathbb{E}_{x \in \mathbb{N}} f_{bes}(x)^2 \geq \left(\mathbb{E}_{x \in \mathbb{N}} f_{bes}(x) \right)^2 = \left(\mathbb{E}_{x \in \mathbb{N}} f(x) \right)^2$$

Theorem

Let $f : \mathbb{N} \rightarrow \mathbb{R}$ be bounded and in Bes^\perp . For every Bohr set $B \subset \mathbb{N}$ and bounded $h : \mathbb{N} \rightarrow \mathbb{R}$ there exists a (positive measure set of) essential ultrafilter p such that $B \in p$ and

$$\mathbb{E}_{x \in \mathbb{N}} h(x) T^p f(x) \geq 0.$$

Theorem

Let $f : \mathbb{N} \rightarrow \mathbb{R}$ be bounded and in Bes^\perp . For every Bohr set $B \subset \mathbb{N}$ and bounded $h : \mathbb{N} \rightarrow \mathbb{R}$ there exists a (positive measure set of) essential ultrafilter p such that $B \in p$ and

$$\mathbb{E}_{x \in \mathbb{N}} h(x) T^p f(x) \geq 0.$$

- ▶ Bergelson's intersectivity: For all $A \subset \mathbb{N}$, there is an non-principal ultrafilter p such that

$$d(A - p) \geq d(A).$$

- ▶ Beiglbock: For all $A, B \subset \mathbb{N}$, there is an non-principal ultrafilter p such that

$$d(B \cap (A - p)) \geq d(A)d(B).$$

Question

Is it true that every set $A \subset \mathbb{N}$ with positive density contains a set of the form

$$t + B \oplus B := \{t + b_1, b_2 : b_1, b_2 \in B, b_1 \neq b_2\}?$$

Question

Is it true that every set $A \subset \mathbb{N}$ with positive density contains a set of the form $B + C + D$?

Question

Do the primes contain an infinite sumset?

- ▶ Granville showed that yes conditionally on the Hardy-Littlewood tuples conjecture!
- ▶ That the primes contain $B + C$ where $|C| = \infty$ and $|B| = 2$ is equivalent to Zhang's theorem that the primes have bounded gaps infinitely often.

The Erdős Sumset Conjecture

Joel Moreira Florian Richter Donald Robertson
joel.moreira@northwestern.edu

Northwestern University

March 22, 2019