
The Erdős Sumset Conjecture

Joel Moreira Florian Richter Donald Robertson
joel.moreira@northwestern.edu

Northwestern University

March 22, 2019



Definition
An infinite sumset in N is a set of the form
B + C := {b + c : b ∈ B, c ∈ C} where B and C are infinite
subsets of N.

Proposition

Any finite coloring of N has a monochromatic infinite sumset.

Proof.
Exercise. [Hint: use (the infinite) Ramsey’s theorem]

Conjecture (Erdős)

Any set A ⊂ N with positive density contains an infinite sumset.



Definition
A set A ⊂ N has positive upper Banach density (and we write
d(A) > 0) if there exists a sequence of intervals (IN)N∈N with
lengths |IN | → ∞ as N →∞ and such that

lim
N→∞

|A ∩ IN |
|IN |

> 0

Theorem (M-F. Richter-D. Robertson)

Every A ⊂ N with positive upper Banach density contains an
infinite sumset.

Notation
Let f : N→ C. We denote by

E
n∈N

f (n) := lim
N→∞

1

|IN |
∑
n∈IN

f (n)

for some sequence of intervals (IN)N∈N along which the limit exists.

J. M., F. Richter, D. Robertson, 2019, Ann. of Math.
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Fact
If A ⊂ N has d(A) > 0 then d(A ∩ (A− n)) > 0 for some n ∈ N.

I This implies that A contains B + C where B = {0, n} and
C = A ∩ (A− n) has positive density.

I (Nathanson) Iterating we get for every k ∈ N sets B and C
with |B| = k , d(C ) > 0 and B + C ⊂ A.

Lemma (Bergelson)

Let A ⊂ N have d(A) > 0. Then ∃L ⊂ N with d(L) ≥ d(A) such
that for every finite B ⊂ L, there exists C = C (B) ⊂ N with
d(C ) > 0 and B + C ⊂ A.
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Theorem
If A ⊂ N has d(A) > 1/2, then A contains an infinite sumset.

Proposition

Let A ⊂ N. If there exists L ⊂ N and ε > 0 such that for every
finite F ⊂ L⋂

`∈F
(A− `) ∩

{
n ∈ N : d

(
(A− n) ∩ L

)
> ε
}

is infinite

then A contains an infinite sumset.

Lemma (Bergelson, again)

Let A ⊂ N have d(A) > 0. Then ∃L ⊂ N with d(L) ≥ d(A) such
that for every finite F ⊂ L,

d

(⋂
`∈F

(A− `)

)
> 0

M. Di Nasso, I. Goldbring, R. Jin, S. Leth, M. Lupini, K. Mahlburg, 2015, Canad. J. Math.
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Reduced main theorem to

Theorem
For every A ⊂ N with d(A) > 0 there exist L ⊂ N and ε > 0 such
that for every finite F ⊂ L⋂

`∈F
(A− `) ∩

{
n ∈ N : d

(
(A− n) ∩ L

)
> ε
}

is infinite

Example

I If A is random, then take L = N and any ε < d(A).

I If A is a Bohr set, say A = {x ∈ N : ‖xα‖T < ρ}, take
L = {` ∈ N : ‖`α‖T < ρ/2}.



Definition
An ultrafilter is a collection p of subsets of N such that

I ∅ /∈ p, N ∈ p.

I If A ∈ p and A ⊂ B then B ∈ p.

I If A,B ∈ p then A ∩ B ∈ p.

I A /∈ p if and only if N \ A ∈ p.

For each n ∈ N, the collection pn := {A ⊂ N : n ∈ A} is a principal
ultrafilter.

A− p := {x ∈ N : A− x ∈ p}. Note that A− pn = A− n.

Let f : N→ C be bounded and p an ultrafilter.

lim
n

f (n) = y ⇐⇒ ∀ε > 0, {n : |f (n)− y | < ε} is cofinite.

p − lim
n

f (n) = y ⇐⇒ ∀ε > 0, {n : |f (n)− y | < ε} ∈ p.
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Theorem
For every A ⊂ N with d(A) > 0 there exist L ⊂ N and ε > 0 such
that for every finite F ⊂ L⋂

`∈F
(A− `) ∩

{
n ∈ N : d

(
(A− n) ∩ L

)
> ε
}

is infinite

Can be written as

Theorem
For every A ⊂ N with d(A) > 0 there exist a non-principal
ultrafilter p such that

p − lim
n

d
(
(A− n) ∩ (A− p)

)
> 0



For f : N→ [0, 1] define T nf (x) = f (x + n) and T pf : N→ [0, 1]
by

T pf (x) = p − lim
n

f (x + n).

Note that 1A−n = T n1A and 1A−p = T p1A.

The main theorem follows from:

Theorem (Final reduction)

For every bounded f : N→ [0, 1] and every ε > 0 there exists a
non principal ultrafilter p such that

p − lim
n

E
x∈N

T nf (x)T pf (x) ≥
(

E
x∈N

f (x)

)2

− ε.
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Definition
f : N→ C is weak mixing if ∀ g : N→ C,

E
n∈N

∣∣∣∣ E
x∈N

T nf (x)g(x)

∣∣∣∣ = 0

Definition
f : N→ C is (Besicovitch) almost periodic if ∀ε > 0 there exists a
trig. polynomial p(x) =

∑
j∈J cje(θjx) such that

E
x∈N

∣∣f (x)− p(x)
∣∣ < ε.

Remark
Unfortunately, it is not true that every bounded f : N→ R can be
decomposed as f = fwm + fbes !
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such that
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∣∣2 < ε.

B = {n ∈ N : ‖nα1‖T < ρ, . . . , ‖nαd‖T < ρ} for some αi ∈ R and
ρ > 0.

Theorem
Every bounded f : N→ C can be decomposed as f = fwm + fc
where fwm is weak mixing and fc is compact.



Definition
f : N→ C is weak mixing if ∀ g : N→ R,

E
n∈N

∣∣∣∣ E
x∈N

T nf (x)g(x)

∣∣∣∣ = 0

Definition
f : N→ C is compact if ∀ ε > 0 there exists a Bohr0 set B ⊂ N
such that

∀n ∈ B E
x∈N

∣∣T nf (x)− f (x)
∣∣2 < ε.

B = {n ∈ N : ‖nα1‖T < ρ, . . . , ‖nαd‖T < ρ} for some αi ∈ R and
ρ > 0.

Theorem
Every bounded f : N→ C can be decomposed as f = fwm + fc
where fwm is weak mixing and fc is compact.



Definition
f : N→ C is weak mixing if ∀ g : N→ R,

E
n∈N

∣∣∣∣ E
x∈N

T nf (x)g(x)

∣∣∣∣ = 0

Definition
f : N→ C is compact if ∀ ε > 0 there exists a Bohr0 set B ⊂ N
such that

∀n ∈ B E
x∈N

∣∣T nf (x)− f (x)
∣∣2 < ε.

B = {n ∈ N : ‖nα1‖T < ρ, . . . , ‖nαd‖T < ρ} for some αi ∈ R and
ρ > 0.

Theorem
Every bounded f : N→ C can be decomposed as f = fwm + fc
where fwm is weak mixing and fc is compact.



Definition
f : N → C is (Besicovitch) almost periodic if ∀ε > 0 there exists a
trig. polynomial p(x) =

∑
j∈J cje(θjx) such that

E
x∈N

∣∣f (x)− p(x)
∣∣ < ε.

Definition
f : N→ C is in Bes⊥ if for every θ ∈ R

E
x∈N

f (x)e(θx) = 0.

Theorem
Every bounded f : N→ C can be decomposed as f = fbes + f⊥.



Definition
f : N → C is (Besicovitch) almost periodic if ∀ε > 0 there exists a
trig. polynomial p(x) =

∑
j∈J cje(θjx) such that

E
x∈N

∣∣f (x)− p(x)
∣∣ < ε.

Definition
f : N→ C is in Bes⊥ if for every θ ∈ R

E
x∈N

f (x)e(θx) = 0.

Theorem
Every bounded f : N→ C can be decomposed as f = fbes + f⊥.



Theorem
For every bounded f : N→ [0, 1] and every ε > 0 there exists a
non principal ultrafilter p such that

p − lim
n

E
x∈N

T nf (x)T pf (x) ≥
(

E
x∈N

f (x)

)2

− ε.

Proof.

I Split f =fc + fwm=fbes + f⊥.

I T nfT pf = T nfwmT
pf + T nfcT

pfbes + T nfcT
pf⊥.

I En∈N |Ex∈N T nfwm(x)T pf (x)| = 0, so

p − lim
n

E
x∈N

T nfwm(x)T pf (x) = 0

as long as p contains no set with 0 density.

Such ultrafilters are called essential.
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Theorem
For every bounded f : N→ [0, 1] and every ε > 0 there exists an
essential ultrafilter p such that

p−lim
n

E
x∈N

T nfc(x)T pfbes(x)+T nfc(x)T pf⊥(x) ≥
(

E
x∈N

f (x)

)2

−ε.

Fact

I T pe(θx) = (p − limn e(nθ)) e(θx) = λe(θx).

I ∀δ > 0, there is a Bohr0 set B such that if B ∈ p then

|T pe(θx)− e(θx)| < δ for all x ∈ N.

I There exists a Bohr0 set B such that for almost every
ultrafilter p with B ∈ p,

E
x∈N

∣∣T pfbes(x)− fbes(x)
∣∣2 < ε/2
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Theorem
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ε > 0 there exists a (positive measure set of) essential ultrafilter p
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=
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E

x∈N
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)2
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(

E
x∈N

f (x)

)2

− ε.

I There is a Bohr0 set B̃ such that ∀n ∈ B̃,

E
x∈N

∣∣T nfc(x)− fc(x)
∣∣2 < ε2/4.

I If B̃ ∈ p then

p − lim
n

E
x∈N

T nfc(x)fbes(x) ≥ E
x∈N

fc(x)fbes(x)− ε/2

E
x∈N

fc(x)fbes(x) = E
x∈N

fbes(x)2 ≥
(

E
x∈N

fbes(x)

)2

=

(
E

x∈N
f (x)

)2



Theorem
Let f : N→ R be bounded and in Bes⊥. For every Bohr set B ⊂ N
and bounded h : N→ R there exists a (positive measure set of)
essential ultrafilter p such that B ∈ p and

E
x∈N

h(x)T pf (x) ≥ 0.

I Bergelson’s intersectivity: For all A ⊂ N, there is an
non-principal ultrafilter p such that

d(A− p) ≥ d(A).

I Beiglbock: For all A,B ⊂ N, there is an non-principal
ultrafilter p such that

d
(
B ∩ (A− p)

)
≥ d(A)d(B).
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Question
Is it true that every set A ⊂ N with positive density contains a set
of the form

t + B ⊕ B := {t + b1, b2 : b1, b2 ∈ B, b1 6= b2}?

Question
Is it true that every set A ⊂ N with positive density contains a set
of the form B + C + D?

Question
Do the primes contain an infinite sumset?

I Granville showed that yes conditionally on the
Hardy-Littlewood tuples conjecture!

I That the primes contain B + C where |C | =∞ and |B| = 2 is
equivalent to Zhang’s theorem that the primes have bounded
gaps infinitely often.
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