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1. Book overview

The book under review (based primarily on the author’s lecture notes and blog
posts) centers around threemajor theorems: the positive resolution ofHilbert’s
fifth problem, due to the combined efforts of Gleason, Montgomery, and Zip-
pin [7] and [13]; the structure theorem for finite approximate groups, in its full
generality due to Breuillard, Green, and Tao [1], building upon a major break-
through by Hrushovski [12]; and Gromov’s theorem for polynomial growth
[10]. Each of these theorems are widely considered to be jewels in their respec-
tive areas of mathematics: the theory of locally compact groups, additive com-
binatorics, and geometric group theory respectively. The book proves these the-
orems in full details, draws analogies and connections between them, and, most
importantly to the logic audience, explains the use of ultraproduct/nonstandard
techniques in deriving these results.
The cornerstone around which the rest of the book revolves is the positive so-
lution to Hilbert’s fifth problem. Recall that a Lie group is a smooth manifold
G endowed with the structure of a group for which the group operations are
smooth functions. (In other words, a Lie group is a group object in the cate-
gory of smooth manifolds.) In particular, a Lie group is a locally euclidean
topological group, that is, a topological space equipped with a group structure
for which the group operations are continuous and which further possesses an
open neighborhood of the identity homeomorphic to some open subset of some
(finite-dimensional) euclidean space. Perhaps the most common interpretation
of Hilbert’s fifth problem asks whether or not this a priori weaker structure,
namely that of being a locally euclidean topological group, already implies the
stronger structure of being a Lie group, that is, whether or not the locally eu-
clidean group can be equipped with the structure of a smooth manifold (com-
patible with the given topology on the group) for which the group operations
are nowupgraded from beingmere continuous functions to being smooth func-
tions. The positive resolution to Hilbert’s fifth problem can be stated as follows:
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Theorem 1.1 (Gleason, Montgomery, and Zippin). IfG is a locally compact group,
the following are equivalent:

(1) G is locally euclidean.
(2) G is a Lie group.
(3) G has the no small subgroups (NSS) property: there is an open neighborhood

of the identity in G containing no nontrivial subgroup.

The proof of Theorem 1.1 uses a combination of analytic and representation the-
oretic techniques (amongst other things). A beautiful simplification of part of
the story is due toHirschfeld [11], whoused techniques fromnonstandard anal-
ysis to give an elegant reinterpretation of the technical Gleason-Yamabe lemmas
used to prove the hardest direction in Theorem 1.1, namely the implication that
the NSS property implies being a Lie group. In particular, given some infinite
hypernatural number N P ˚N, Hirschfeld considered the following two subsets
of the nonstandard extension ˚G of G:

GrNs :“

"

a P
˚G : ai

« e for all i P
˚Zwith i

N
« 0

*

,

and
G0

rNs :“

"

a P
˚G : ai

« e for all i P
˚Zwith i

N
finite

*

.

Here, we use the « symbol to mean “infinitely close.” Hirschfeld’s nonstandard
interpretation of the Gleason-Yamabe lemmas is that GrNs is a subgroup of G˚,
G0rNs is a normal subgroup ofGrNs, andGrNs{G0rNs is an abelian groupwhich
one can further enrich with the structure of a Lie algebra which can in turn be
used to equipGwith the structure of a Lie group. (Hirschfeld carried this line of
reasoning out under the assumption thatG has theNSS property; van denDries
andGoldbring showhow toprove these facts solely under the local compactness
assumption in [4].) Hirschfeld mentions that the idea of giving a nonstandard
analysis account of Hilbert’s 5th problem was was passed on to him by Moshe
Machover as a possible topic for an M.Sc. thesis.
An interesting sidenote for logicians is to recall one use of Theorem 1.1 inmodel
theory. In [14], Anand Pillay showed how to construct, for any group G de-
finable in an o-minimal structure pM,ă, . . .q, a topology on G (called the t-
topology)whichmakesG a topological group andwhich has an open neighbor-
hood of the identity homeomorphic to some open neighborhood of Mn (with
the product topology). In particular, when pM,ă, . . .q “ pR,ă, . . .q is an o-
minimal expansion of the reals, this topological group is locally euclidean and
thus a Lie group.
Perhaps even more important to the rest of mathematics than the positive res-
olution of Hilbert’s fifth problem is the more general structure theorem for an
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arbitrary locally compact group, which roughly says that an arbitrary locally
compact group can be “approximated” by Lie groups:
Theorem 1.2 (Gleason and Yamabe). Suppose that G is a locally compact group.
Then for every open neighborhood U of the identity in G, there is an open subgroup G 1

of G and a compact subgroup N of G 1 contained in U such that G 1{N is a Lie group.

Before moving on, we relay an attractive heuristic that Tao uses to tie together
all of the major theorems discussed in this book. Namely, each of the theorems
presented involve some “group-like” object satisfying some “weak regularity”
assumption. In the case of the two theorems above, the group-like assumption
is thatG is a topological group; in Theorem 1.1, the weak regularity assumption
is that the group is locally euclidean, while in the case of Theorem 1.2, the weak
regularity assumption is that the group is locally compact. The conclusion in
each of the major theorems in the book is that the input object (or some related
object) is then “close” to (or perhaps even equal to) some object possessing ei-
ther “Lie-type” structure in the continuous case or “nilpotent-type” structure
in the discrete cases to follow. It is clear how these conclusions manifest them-
selves in the two theorems presented above.
The next major topic discussed is the overall structure theorem for approximate
groups. Given a groupG and a natural numberK P N, a subsetA ofG is called a
K-approximate group ifA is symmetric (that is, 1 P A “ A´1q andA ¨A Ď X ¨A
for some X Ď G with |X| ď K. It is clear that a 1-approximate subgroup of G is
the same as an actual subgroup of G, whence, for K small compared to the size
of A, being a K-approximate group is one vague way of asking that A “almost”
be a subgroup of G. The study of approximate groups is of central interest in
additive combinatorics. Approximate groups have applications to a wide va-
riety of areas of mathematics, including number theory and the construction
of expander graphs. The definitive word on approximate subgroups of abelian
groups is known as Freiman’s theorem:
Theorem 1.3 (Green and Rusza [9]). Suppose thatA is a finite K-approximate sub-
group of the abelian groupG. Then there is a finite subgroupH ofG and a generalized
arithmetic progression P Ď G{H such that π´1pPq Ď 4A :“ A`A`A`A, where
π : G Ñ G{H is the usual quotient map, and with |P| "K

|A|

|H|
.

Here, given any abelian group G (which is G{H in the statement of the theo-
rem above), any v1, . . . , vr P G, and any N1, . . . , Nr P N, one can consider the
generalized arithmetic progression

ta1v1 ` ¨ ¨ ¨ ` arvr : ai P Z, |ai| ď Ni for all i “ 1, . . . , ru,

which is easily seen to be a 2r-approximate subgroup of G. Thus Theorem 1.3
shows that any finite K-approximate group is “close to” (in the precise sense
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described above) to a particular kind of approximate group. Thus, the previous
theorem once again fits the scheme suggested by Tao appearing in Theorems 1.1
and 1.2, this time the Lie-theoretic structure being replaced by the “nilpotent-
type” structure of a generalized arithmetic progression.
Progress on the structure of approximate subgroups of nonabelian groups had
stalled somewhat until Hrushovski’s breakthrough work in [12]. Of particu-
lar importance was Hrushovski’s idea that an ultraproduct of finite approximate
groups, naturally termed an ultra-approximate group, can naturally be “mod-
elled” by a locally compact group. (This idea is reminiscent of the asymptotic
cone construction appearing in the proof of Gromov’s theorem, that we discuss
next.) Slightly more precisely, if A˚ is such an ultra-approximate subgroup of
the (nonstandard) group G˚ and we setH˚ to be the subgroup of G˚ generated
by A˚ (a so-called

Ž

-definable group, that is, a subgroup of G˚ that is a count-
able union of definable sets), then Hrushovski’s stabilizer theorem (adapting
methods from stability theory) produces a normal subgroup N˚ of H˚ which
is

Ź

-definable (that is, a normal subgroup of H˚ that is a countable intersec-
tion of definable sets) and of “small” index in H˚. General model theory then
provides the quotient groupH˚{N˚ with a locally compact topology compatible
with the group structure, and it is this locally compact group that models the
original ultra-approximate group A˚ in an appropriate manner. By using the
Gleason-Yamabe theorem (Theorem 1.2 above), one can then approximate this
locally compact groupby aLie-group (whilst simultaneously replacing the orig-
inal ultra-approximate group by a closely related one), allowing one to bring in
tools from Lie theory and, in particular, allowing one to prove facts about ultra-
approximate groups by induction on the dimension of the corresponding Lie
model.
Breuillard, Green, and Tao [1] reworked this construction using ideas coming
from additive combinatorics (what they call Sanders-Croot-Sisask theory) and
at the same time completed the project of the structure theory of finite approx-
imate groups, obtaining the desired noncommutative analog of Freiman’s the-
orem:

Theorem 1.4 (Breuillard, Green, and Tao, informally stated). If A is a finite K-
approximate subgroup of G, then there is a finite subgroup H of G and a noncommu-
tative progression P Ď NpHq{H (where NpHq denotes the normalizer of H in G) of
rank OKp1q and which generates a nilpotent subgroup of G of nilpotency class OKp1q

such that π´1pPq is “close to” A4 (in essentially the same sense as in Theorem 1.3).

Anice treatment of the above theorem can also be found in van denDries’ Bour-
baki seminar notes [3].



BOOK REVIEW: “HILBERT’S FIFTH PROBLEM AND RELATED TOPICS” BY TERENCE TAO 5

It is interesting to note that the proof of Theorem 1.4 uses the “local” version
of Hilbert’s fifth problem and the Gleason-Yamabe theorem, that is, the ver-
sions of these results for the class of local groups, which are topological spaces
equipped with continuous, partially defined group operations satisfying natu-
ral axioms. The local version of these results was first established by Goldbring
[8] using nonstandard analysis.
The final major theorem discussed in this book is Gromov’s theorem on poly-
nomial growth. Suppose now that G is a finitely generated group with finite
generating set S, which we assume is symmetric for simplicity. Associated to
the pair pG, Sq is a metric d “ dG,S on G given by defining dpg, hq to be the min-
imalm P N for which there are s1, . . . , sm P S such that g “ hs1 ¨ ¨ ¨ sm. For r P N,
we then let Bprq :“ tg P G : dpg, eq ď ru denote the closed ball in G centered at
the identity of radius rwith respect to this metric. Of course, |Bprq| ď |S|r; how-
ever, for certain groups, this exponential upper bound is far from being sharp.
In fact, we say that G has polynomial growth if there is d P N and C ą 0 such
that |Bprq| ď Crd for all r P N. (A priori this notion looks like it depends on the
choice of generating set, but one can show that in fact it does not.) A theorem of
Wolf shows that any finitely generated nilpotent group has polynomial growth
as does any finitely generated group that contains a finite-index nilpotent sub-
group (that is, any virtually nilpotent group) as a group that is virtually of
polynomial growth is in fact of polynomial growth. A remarkable theorem of
Gromov is that the converse holds:

Theorem 1.5 (Gromov). IfG is a finitely generated group of polynomial growth, then
G is virtually nilpotent.

Once again, this theorem fits the general mold suggested by Tao: the group-like
object this time is a finitely generated group, the weak regularity assumption is
the polynomial growth assumption, and the conclusion shows that a nilpotent-
like object exists, namely a nilpotent subgroup, that is close to the original object
in that it is of finite index un the original group.
Historically, Gromov’s theorempredates the theoremon approximate subgroups
and has nontrivial connections with logic as well as the Gleason-Yamabe theo-
rem. Indeed, after Gromov’s initial proof, van den Dries and Wilkie [6] gave a
precise account of the proof while developing the machinery behind the asym-
potic cone construction that is now ubiquitous throughout geometric group
theory. Given an infinite hypernatural number N P ˚N, they consider those
elements g P ˚G such that dpg,eq

N
is finite. Denoting this set by GN, they consid-

ered the standard metric space CN whose underlying set is the quotient of GN

by the pseudometric given by pg, hq ÞÑ stpdpg, hqq, where st denotes the stan-
dard part operation. While the cone CN is always a homogeneous, connected,
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locally connected metric space, the assumption of polynomial growth allows
one to find an infinite N P ˚N such that CN is furthermore proper (closed balls
are compact) and “finite-dimensional” in an appropriate sense. An extension
of the work on Hilbert’s fifth problem described above allows one to conclude
that the isometry group of CN is in fact a Lie group. Since elements of G are
naturally isometries of CN, this allows one to bring in the structure theory of
Lie groups in order to conclude that G is virtually nilpotent.
In the book under review, Tao shows how to instead derive Gromov’s theorem
from the structure theory of approximate groups (as was first established by
Hrushovski in [12]). Indeed, a simple pigeonhole argument allows one to show
that, given a finitely generated group G, there is a K ą 1 such that, for some
sequence prnq from N tending to infinity, the the sets Bprnq are K-approximate
subgroups of G. In fact, using the techniques established in the proof of the
approximate group theorem, one can prove the following stronger version of
Gromov’s theorem:
Theorem 1.6. For everyC ą 0 and d P N, there existsM P N such that: for any group
G with finite generating set S, if there is m ě M such that |Sm| ď Cmd|S|, then G is
virtually nilpotent.

Note that this theorem does not require full polynomial growth but only the a
priori weaker condition that the growth rate is bounded for a sufficiently large
scale which, furthmerore, only depends on the constants C and d (but impor-
tantly not on |S|).

2. A brief tour of the book

Readers familiar with the author’s blog posts will recognize the usual traits
whichmake reading his blogs so enjoyable: the exposition is casual yet simulta-
neously precise, guiding examples are plentiful and extremely useful in forming
one’s intuitions, and examples (varying in difficulty) appear to complement the
main text, fleshing out details of earlier arguments as well as providing further
elaborations on topics appearing throughout the text.
The book attempts to be fairly self-contained and for that reason, after a lengthy
introductory section (akin to the summary occurring in the previous section of
this review, but much longer and with many more elucidating examples), the
book begins with a section on preliminaries needed from Lie theory. Sections
1.3-1.6 form the technical core of the solution of Hilbert’s fifth problem and the
Gleason-Yamabe theorem. This portion of the book iswritten purely in standard
language (much to this author’s chagrin); the reader interested in seeing the
nonstandard point of view can consult the survey article [4] by van den Dries
and Goldbring.
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Before moving on to the theory of approximate groups and its consequences
(including the aforementioned approach to Gromov’s theorem as well as other
consequences in the theory of Riemannianmanifolds), the authormakes a lengthy
segue into the use of ultraproduct arguments as a “bridge” between “soft” and
“hard” analysis. The main use of this technique is the aformentioned use of
ultraproducts of finite approximate groups (a subject fitting in the “hard” cate-
gory) to obtain Liemodels (a subject fitting in the “soft” category). This section
should be extremely useful to someone who has never before seen these tech-
niques so ubiquitous in applications of nonstandard analysis. While the reader
already familiar with nonstandard techniques might be a bit put off by Tao’s
choice of notation, this section is a lovely introduction to basic ultraproduct
techniques, including discussions of saturation, Łos’ theorem, and nonstandard
hulls of metric spaces.
The secondpart of the book contains a handful of “miscellaneous” topics related
to themain thread of the text appearing in the first part. Of particular interest to
logicianswill be Tao’s discussion of a nonstandard proof of the triangle-removal
lemma (a key result used in the graph-theoretic proof of Roth’s theorem on
arithmetic progressions in positive density sets), which uses the “ultraproduct
of counterexamples” technique discussed above together with the Loeb mea-
sure construction, which is developed from scratch.
Another topic of interest to logicians is the section on polynomial bounds via
nonstandard analysis. Many logicians are aware of the approach of using non-
standard analysis to derive (albeit nonexplicit) bounds in polynomial rings as
discussed at length in the paper of van den Dries and Schmidt [5]. In this book,
Tao provides another example of this technique by giving such a soft proof of a
recent (at the time of writing) result in this area:

Theorem 2.1 (Chang [2]). Given polynomials P1, . . . , Pr : Cn Ñ C of degree at most
d and with rational coefficients of height at most h, if there is a solution to the system

P1 “ ¨ ¨ ¨ “ Pr “ 0

in Cn, then there is a solution in Qn (the algebraic numbers) of degree at most C and
height at most ChC, where C is a universal constant that depends only on r, n, and d.

The proof of this theorem without the bounds is a simple application of the
Nullstellensatz and Tao proceeds to show how the previous theorem is proven,
once again using a “compactness and contradiction” argument, showing that if
no such C existed, then one could take an ultraproduct of counterexamples and
contradict the corresponding qualitative version of the theorem (applied to the
algebraic closure of a particular external subfield of the hypercomplex field ˚C).
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3. Concluding remarks

The material presented in this book covers a wide landscape of extraordinarily
breathtaking mathematics as presented in a manner that only Tao could. The
reader taking the time to make their way through this book, attempting the
exercises as they proceed, will feel infinitely rewarded. Logicians looking for
interesting applications of their techniques will appreciate Tao’s fresh take and
advocacy for the nonstandard method. This book is a must-read!
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