Ultraproducts as a tool in the model theory of metric structures

C. Ward Henson University of Illinois

These slides are posted at faculty.math.illinois.edu/~henson

Preliminary comments

- Ultraproducts play a more significant role in model theory of metric structures than in classical model theory of discrete, algebraic structures.
- In the metric setting, ultraproducts do more than proving compactness.
- They provide an important experimental tool for studying metric structures model theoretically.
- Especially toward verifying axiomatizability of classes of structures and clarifying what is definable.

Early uses of ultraproducts

- hints in work of Skolem (1934) and von Neumann (1942).
- a metric ultraproduct occurs in work of Wright, a student of Kaplansky (1954; Ann. of Math.)
- for discrete structures, the work of Łoś was published in 1955; Robinson's nonstandard analysis in 1961.
- ultraproducts of some operator algebras in Sakkai (1962),
 McDuff (1969), Connes (1974),
- Banach space ultraproducts in Krivine (1967), nonstandard hulls in Luxemburg (1968); used extensively by Lindenstrauss, Pisier, Johnson, ... and studied by Stern, Heinrich,
- metric geometry: (ultralimits) Gromov (1981), (asymptotic cones) van den Dries-Wilkie (1984).

A crash course in continuous logic

- Signatures \mathcal{L} specify moduli of uniform continuity for their function symbols F and predicate symbols P.
- L-structures: complete metric spaces equipped with constants, functions, and predicates that interpret the symbols of L.
- predicates are [0, 1]-valued; predicates and functions must satisfy the given moduli.
- L-terms: built as usual from constants and function symbols.
- Atomic \mathcal{L} -formulas: of the form $P(t_1, \ldots, t_n)$ and $d(t_1, t_2)$.
- \mathcal{L} -formulas: obtained by closing under continuous connectives $u:[0,1]^n \to [0,1]$ and quantifiers sup and inf.
- A theory T in $\mathcal L$ is a set of axioms, which are expressions of the form " $\sigma=0$ " where σ is an $\mathcal L$ -sentence (formula with no free variables). We identify T with the set of sentences σ .

Ultraproducts defined

- $(M_i \mid i \in I)$ are \mathcal{L} -structures, \mathcal{U} an ultrafilter on I.
- We let $N_0 = \prod_{i \in I} M_i$ as a set; its members are $(a) = (a_i \mid i \in I), a_i \in M_i$.
- We interpret the symbols on N_0 :

$$F^{N_0}((a_i \mid i \in I), \dots) = (F^{M_i}(a_i, \dots) \mid i \in I) \in N_0$$

$$P^{N_0}((a_i \mid i \in I), \dots) = \lim_{i \to \mathcal{U}} P^{M_i}(a_i, \dots) \in [0, 1]$$

- d^{N_0} is only a pseudometric; $E((a),(b)):\Leftrightarrow d^{N_0}((a),(b))=0$ is an equivalence relation and the quotient N_0/E has canonical metric and interpretations of the symbols of \mathcal{L} .
- We define the ultraproduct to be N_0/E (which is complete) and denote it by $N := \prod_{i \in I} M_i/\mathcal{U}$.
- The image of $(a) \in N_0$ in N is denoted $(a)_{\mathcal{U}}$; note that

$$(a)_{\mathcal{U}}=(b)_{\mathcal{U}}\Leftrightarrow 0=\lim_{i\to\mathcal{U}}d(a_i,b_i)\quad \Big[=d^{N_0}\big((a),(b)\big)\Big].$$

Properties of ultraproducts

• Łoś's Theorem: for every \mathcal{L} -formula $\varphi(x, y, ...)$ and elements $(a)_{\mathcal{U}}, (b)_{\mathcal{U}}, ... \in \mathcal{N} = \prod M_i/\mathcal{U}$:

$$\varphi^{N}\big((a)_{\mathcal{U}},(b)_{\mathcal{U}},\dots\big)=\lim_{i\to\mathcal{U}}\varphi^{M_{i}}(a_{i},b_{i},\dots).$$

 Corollary The Compactness Theorem for continuous logic of metric structures.

Elementary

Let M, N be \mathcal{L} -structures. Let $A \subseteq M, B \subseteq N$ and $f : A \to B$.

Definition

- (a) M and N are elementarily equivalent if $\sigma^M = \sigma^N$ for all \mathcal{L} -sentences σ . We write $M \equiv N$.
- (b) The map f is elementary if $(M, \langle a \mid a \in A \rangle) \equiv (N, \langle f(a) \mid a \in A \rangle).$

Examples

Any isomorphism from M onto N is elementary.

The diagonal map $D_M \colon M \to M_{\mathcal{U}}$ is elementary.

Any restriction of an elementary map is elementary

The composition of elementary maps is elementary.

The inverse of an elementary map is elementary.

Let M, N be \mathcal{L} -structures. Let $A \subseteq M, B \subseteq N$ and $f : A \to B$.

- Keisler-Shelah Theorem $M \equiv N$ if and only if there is an ultrafilter \mathcal{U} such that $M_{\mathcal{U}} \cong N_{\mathcal{U}}$.
- Corollary The map f is elementary iff there is an ultrafilter \mathcal{U} and an isomorphism J from $M_{\mathcal{U}}$ onto $N_{\mathcal{U}}$ such that $J \circ D_M = D_N \circ f$ on A.

Definition

A class $\mathcal C$ of $\mathcal L$ -structures is axiomatizable if there is an $\mathcal L$ -theory T such that $\mathcal C$ is the class of all models of T; that is,

$$C = \{M \mid M \text{ is an } \mathcal{L}\text{-structure and } \sigma^M = 0 \text{ for all } \sigma \in T\}.$$

Theorem

For any class $\mathcal C$ of $\mathcal L$ -structures, the following are equivalent:

- (a) C is axiomatizable.
- (b) ${\cal C}$ is closed under isomorphisms, ultraproducts, and ultraroots.

M is an ultraroot of N if there is an ultrafilter \mathcal{U} such that N is isomorphic to $M_{\mathcal{U}}$.

T-formulas

Let T be an \mathcal{L} -theory and $x = x_1, \dots, x_n$ a tuple of distinct variables.

- A T-formula $\varphi(x)$ is a sequence $(\varphi_n(x))$ of \mathcal{L} -formulas such that $\varphi_n^M(a)$ converges as $n \to \infty$, uniformly for all models M of T and all $a \in M^{\times}$.
- The interpretation φ^M of a T-formula $\varphi(x) = (\varphi_n(x))$ in a model M of T is defined by $\varphi^M(a) := \lim_n \varphi_n^M(a) \text{ for all } a \in M^\times.$
- We refer to the interpretations of T-formulas in the models of T (as above) as T-predicates.
- Example: for any \mathcal{L} -formulas $(\theta_n(x))$, the weighted sum $\sum_n 2^{-n} \theta_n^M(x)$ is a T-predicate.

Uniform asssignments of sets to models of a theory

Let T be an \mathcal{L} -theory; fix a tuple of distinct variables $x = x_1, \dots, x_n$.

We will denote by \mathbb{X} any operation that assigns a subset $\mathbb{X}(M) \subseteq M^{\times}$ to each model M of T. We refer to such an \mathbb{X} as a uniform assignment of sets to models of T.

For example, if $\varphi(x)$ is a T-formula, we consider \mathbb{X}_{φ} defined by $\mathbb{X}_{\varphi}(M) := \{ a \in M^x \mid \varphi^M(a) = 0 \}.$

Such an operation will be referred to as a T-zeroset in the variables x.

We note the following properties of T-zerosets $\mathbb{X} = \mathbb{X}_{\varphi}$:

(iso) If M, N are models of T and J is an isomorphism of M onto N, then $J(\mathbb{X}(M)) = \mathbb{X}(N)$.

(diag) If M is a model of T and \mathcal{U} is an ultrafilter, with $D \colon M \to M_{\mathcal{U}}$ the diagonal embedding, then $D(\mathbb{X}(M)) = D(M^{\times}) \cap \mathbb{X}(M_{\mathcal{U}}).$

These two conditions yield that if M, N are models of T and J is any elementary embedding from M into N, then

$$J(\mathbb{X}(M))=J(M^{\times})\cap\mathbb{X}(N).$$

For model theorists: a uniform assignment \mathbb{X} satisfies (iso) and (diag) if and only if there is a set X of x-types over the theory T such that for any model M of T we have

$$\mathbb{X}(M) = \{ a \in M^{\times} \mid \mathsf{tp}_{M}(a) \in X \}.$$

Properties of \mathbb{X} that we discuss later correspond to properties of X in the topometric space $S_x(T)$.

Characterization of *T*-zerosets

Let T be a theory in a countable signature \mathcal{L} and let $x = x_1, \dots, x_n$ be a tuple of distinct variables. Let \mathbb{X} be a uniform assignment of sets to models of T.

Theorem

The following are equivalent:

- (1) There exists a T-formula $\varphi(x)$ such that $\mathbb{X} = \mathbb{X}_{\varphi}$.
- (2) $\mathbb X$ satisfies (iso) and (diag), and the containment

$$\prod \mathbb{X}(M_i)/\mathcal{U} \subseteq \mathbb{X}(\prod M_i/\mathcal{U})$$

holds for every ultraproduct $\prod M_i/\mathcal{U}$ of models of T.

Note that the conditions in (2) can be verified by understanding how the assignment \mathbb{X} behaves under isomorphisms and on ultraproducts of models of T; this will not generally require a full understanding of the behavior of $\mathbb{X}(M)$ for arbitrary models of T.

T-Definable sets

Let T be a theory in a countable signature $\mathcal L$ and let $x=x_1,\ldots,x_n$ be a tuple of distinct variables. Let $\mathbb X$ be a uniform assignment of sets to models of T.

Definition

We say \mathbb{X} is T-definable if the class of T-predicates is closed under the quantifiers $\sup_{x \in \mathbb{X}(M)}$ and $\inf_{x \in \mathbb{X}(M)}$.

For a T-definable assignment \mathbb{X} , the central idea is that we have a natural concept of induced model theoretic structure on $\mathbb{X}(M)$ that is obtained uniformly from \mathcal{L} -formulas applied to M. Among other things, this can assist in providing an explicit axiomatization of the models of T.

Characterization of *T*-definable sets

Let T be a theory in a countable signature \mathcal{L} and let $x=x_1,\ldots,x_n$ be a tuple of distinct variables. Let \mathbb{X} be a uniform assignment of sets to models of T.

Theorem

The following are equivalent:

- (1) \mathbb{X} is T-definable.
- (2) \mathbb{X} satisfies (iso), and the equality

$$\prod \mathbb{X}(M_i)/\mathcal{U} = \mathbb{X}(\prod M_i/\mathcal{U})$$

holds for every ultraproduct $\prod M_i/\mathcal{U}$ of models of T.

(3) The predicate P(x) defined by $P^M(a) := dist(a, \mathbb{X}(M))$ for all models M of T and all $a \in M^x$ is a T-predicate.

Note that condition (diag) is omitted in (2); it follows from the ultraproduct equality in (2), applied to ultrapowers.

Let T be a theory in a countable signature \mathcal{L} and let $x = x_1, \ldots, x_n$ be a tuple of distinct variables. Let \mathbb{X} be a uniform assignment of sets to models of T.

Corollary

The following are equivalent:

- (1) \mathbb{X} is T-definable.
- (2) \mathbb{X} is a T-zeroset and some T-predicate P(x) with \mathbb{X} as its zeroset has the almost-near property;

namely, for all epsilon > 0 there exists $\delta > 0$ such that for all models M of T and all $a \in M^{\times}$, we have

$$P^{M}(a) < \delta \text{ implies } \operatorname{dist}(a, \mathbb{X}(M)) \leq \epsilon.$$

(3) \mathbb{X} is a T-zeroset and every T-predicate P(x) with \mathbb{X} as its zeroset has the almost-near property.

Example 1

Let $\mathcal C$ be the class of pointed metric spaces (M,c) of diameter ≤ 1 in which the metric d is an ultrametric (i.e., d satisfies $d(x,z) \leq \max(d(x,y),d(y,z))$). Let $\mathcal T$ be the theory of $\mathcal C$.

Fix r in the interval 0 < r < 1 and for every (M, c) in C let $\mathbb{X}(M) = \{a \in M \mid d(c, a) \leq r\}$.

Obviously $\mathbb X$ is a T-zeroset. However, $\mathbb X$ is not T-definable.

Proof: Let (M,c) be a member of $\mathcal C$ in which there exist elements (a_n) such that $\inf_n d(c,a_n)=r$ and $r< d(c,a_n)$ for all $n\in\mathbb N$. Let $\mathcal U$ be a nonprincipal ultrafilter on $\mathbb N$. The element $a=(a_n)_{\mathcal U}$ of the ultrapower $(M,c)_{\mathcal U}$ satisfies d(c,a)=r. However, the ultrametric inequality prevents the existence of any sequence (b_n) from M that satisfies $a=(b_n)_{\mathcal U}$ and $d(c,b_n)\leq r$ for all $n\in\mathbb N$.

Example 2

Let $\mathcal L$ be a countable signature and T an $\mathcal L$ -theory. Recall that we say T is ω -categorical if T has a unique separable model, which is not compact.

Proposition

The following are equivalent:

- (1) T is ω -categorical.
- (2) Every T-zeroset is T-definable.

Proof.

For each model M_0 of T and $a_0 \in M_0^{\times}$, let X be defined on models M of T by

$$X(M) := \{ a \in M^{\times} \mid (M, a) \equiv (M_0, a_0) \}.$$

Obviously $\mathbb X$ is a T-zeroset. The omitting types theorem for continuous logic implies that $\mathbb X$ is T-definable iff $\mathbb X(M) \neq \varnothing$ for all models M of T. The characterization of separable categoricity then implies the equivalence of (1) and (2).

Example 3

This example comes from work in progress with Yves Raynaud, in which we are constructing new families of uncountably categorical Banach spaces. These spaces are asymptotically hilbertian in a strong sense.

Definition

A Banach space E is asymptotically 2-hilbertian if every ultrapower of E has the form $E_{\mathcal{U}} = D(E) \oplus_2 H$ for some Hilbert space $H \subseteq E_{\mathcal{U}}$, where D is the diagonal embedding of E into $E_{\mathcal{U}}$.

Here we only have time to discuss how the Hilbert part of $E_{\mathcal{U}}$ can be identified.

Let T_b denote a theory that axiomatizes the class of all unit balls of Banach spaces over \mathbb{R} . For each such Banach space E, let B(E) denote the unit ball of E, considered as a model of T_b .

For each $a \in B(E)$ we let $\langle a \rangle$ denote the linear subspace of E generated by a. We call $\langle a \rangle$ a 2-summand of E if there is a subspace F of E such that $E = F \oplus_2 \langle a \rangle$; note that if this equation holds, then F is uniquely determined by a. Note further that if $E = F \oplus_2 H$ and H is a Hilbert space, then $\langle a \rangle$ is a 2-summand of E for every $a \in H$.

For each model B(E) of T_b , we define $\mathbb{X}(B(E)) := \{a \in B(E) \mid \langle a \rangle \text{ is a 2-summand of E} \}.$

Proposition

The set assignment X is a T_b -zeroset but it is not T_b -definable.

To prove that $\mathbb X$ is a T_b -zeroset, we verify the conditions in the ultraproduct characterization of zerosets. Condition (iso) is obvious. Condition (diag) follows from the easy stronger fact that if $a \in B(E_1)$ and $E_1 \subseteq E_2$, and if $E_2 = F \oplus_2 \langle a \rangle$, then $E_1 = (F \cap E_1) \oplus_2 \langle a \rangle$. The ultraproduct containment condition holds because the \oplus_2 direct sum operation commutes with the ultraproduct construction.

To prove that $\mathbb X$ is not T_b -definable, consider $E=\oplus_2(E_n\mid n\in\mathbb N)$, where each E_n is polyhedral and 2-dimensional, with the unit sphere of E_n approximating the unit circle more and more closely as $n\to\infty$. Then $\mathbb X(B(E))=\{0\}$, whereas E is asymptotically 2-hilbertian, so $\mathbb X(B(E_\mathcal U))$ will be very large. Thus the ultraproduct equality condition fails to hold.