On the Krupa-Zawisza ultraproduct of self-adjoint operators

Hiroshi Ando

Model theory of operator algebras @ UC Irvine

September 24, 2017

Fix $H \cong \ell^2$, SA(H)=self-adjoint operators on H (possibly unbounded). Ongoing project aimed at understanding $U(H) \curvearrowright SA(H)$.

Why $\mathcal{U}(H)$ actions?

- Satisfactory non- \leq_{B} criterion to $S_{\infty} \curvearrowright X$ by Hjorth's turbulence theory.
- Very often classification problems (=equivalence relations) E are beyond S_{∞} -action.
- Many E's in operator algebras are related to $\mathcal{U}(H)$. (Törnquist suggests to find a "turbulence theory" of $\mathcal{U}(H)$)
- Ultimately we want to understand $\mathcal{U}(H) \curvearrowright vN(H)$. (cf. Sasyk–Törnquist).
- One of the most important example is $\mathcal{U}(H) \curvearrowright \mathbb{B}(H)_{\mathrm{sa},1}$ by conjugation: it's known to be generically turbulent (Kechris–Sofronidis).

Why SA(H)?

- While $\mathbb{B}(H)_{\mathrm{sa},1}$ is SOT-Polish, the restriction to the unit ball can be inconvenient.
- $\mathbb{B}(H)_{sa}$ is standard Borel by SOT, but none of nice topologies (norm, (σ) SOT, (σ) WOT,...) make it Polish.
- SA(H) is SRT-Polish in which $\mathbb{B}(H)_{sa}$ is F_{σ} .

$$A_n \stackrel{\mathsf{SRT}}{\to} A \stackrel{\mathsf{def}}{\Leftrightarrow} (A_n - i)^{-1} \stackrel{\mathsf{SOT}}{\to} (A - i)^{-1})$$

- It is sometimes crucial to use unbounded operators (e.g. modular theory of type III factors, affiliated operators in II₁ factors)
- Unbounded operators can produce substantially more complex *E* than bounded ones.

Theorem (A-Matsuzawa '14)

Let $G = \mathbb{K}(H)_{\operatorname{sa}} \rtimes \mathcal{U}(H)$ act on $\operatorname{SA}(H)$ by

$$(K,u)\cdot A:=uAu^*+K,\quad u\in \mathcal{U}(H),\ K\in \mathbb{K}(H)_{\mathrm{sa}},\ A\in \mathrm{SA}(H).$$

Then $G \curvearrowright \mathrm{SA}(H)$ is unclassifiable by countable structures, while the restriction $G \curvearrowright \mathbb{B}(H)_{\mathrm{sa}}$ is smooth (Weyl-von Neumann).

We'll attempt the ultraproduct approach to $\mathcal{U}(H) \curvearrowright SA(H)$.

Unbounded self-adjoint operator

- A densely defined operator on H is a linear map $A: D(A) \to H$, where $D(A) \subset H$ (domain of A) is a dense subspace.
 - B is an extension of A, written $A \subset B$ if $D(A) \subset D(B)$ and $A\xi = B\xi, \ \xi \in D(A)$.
 - A = B if $A \subset B$ and $B \subset A$.
 - The adjoint A* of A is

$$D(A^*) = \{ \xi \in H; \exists ! \zeta \in H \forall \eta \in D(A) \ \langle \xi, A\eta \rangle = \langle \zeta, \eta \rangle \},$$
$$A^* \xi := \zeta.$$

• A is symmetric if $A \subset A^*$ i.e.,

$$\forall \xi, \eta \in D(A) \quad \langle \xi, A\eta \rangle = \langle A\xi, \eta \rangle.$$

• A is self-adjoint if $A = A^*$.

Example

Fix an orthonormal basis (ONB) $(\xi_n)_{n=1}^{\infty}$ for H and $(a_n)_{n=1}^{\infty}$ in \mathbb{R} .

Then $A = \sum_{n=1}^{\infty} a_n e_n \in SA(H)$, where $e_n = \langle \xi_n, \cdot \rangle \xi_n$,

$$D(A) = \left\{ \xi \in H; \sum_{n=1}^{\infty} a_n^2 |\langle \xi, \xi_n \rangle|^2 < \infty \right\}, \ A\xi := \sum_{n=1}^{\infty} a_n \langle \xi, \xi_n \rangle \xi_n, \ \xi \in D(A).$$

 $B:=A|_{\operatorname{span}\{\xi_n\}_{n\in\mathbb{N}}}$ is symmetric but not self-adjoint $B\subsetneq A\subsetneq B^*$.

We denote A by $diag(a_1, a_2, \cdots)$.

Example

Fix $\mu \in \text{Prob}(\mathbb{R})$ and $H = L^2(\mathbb{R}, \mu)$. Then $A \in \text{SA}(H)$, where

$$D(A) = \left\{ f \in H; \int_{\mathbb{D}} x^2 |f(x)|^2 \mathrm{d}\mu(x) < \infty \right\}, [Af](x) := xf(x), \quad f \in D(A).$$

Given $(a_n)_{n=1}^{\infty} \in \ell^{\infty}(\mathbb{B}(H))$, it's easy to define $(a_n)_{\mathcal{U}} \in \mathbb{B}(H_{\mathcal{U}})$:

$$(a_n)_{\mathcal{U}}\xi := (a_n\xi_n)_{\mathcal{U}}, \quad \xi = (\xi_n)_{\mathcal{U}} \in \mathcal{H}_{\mathcal{U}}.$$

Here, we can take any representing seq $(\xi_n)_{n=1}^{\infty}$ for $\xi \in \mathcal{H}_{\mathcal{U}}$. How should we define $A_{\mathcal{U}}$ for $A \in \mathrm{SA}(H)$? What's $D(A_{\mathcal{U}}) \subset \mathcal{H}_{\mathcal{U}}$?

Definition (doesn't work...)

$$\tilde{D}(A_{\mathcal{U}})=\{\xi\in H_{\mathcal{U}}; \xi=(\xi_n)_{\mathcal{U}}, \ \forall n\ \xi_n\in D(A)\}$$
 and

$$A_{\mathcal{U}}\xi := (A\xi_n)_{\mathcal{U}}, \quad \xi \in D(A_{\mathcal{U}}).$$
 (1)

where $\xi = (\xi_n)_{\mathcal{U}}, \ \xi_n \in D(A) \ (n \in \mathbb{N}).$

- $\tilde{D}(A_{\mathcal{U}}) = H_{\mathcal{U}}$. (D(A) is dense in H).
- This $A_{\mathcal{U}}\xi$ depends on the choice of representing $(\xi_n)_{n=1}^{\infty}$.

Example

Let $A = \text{diag}(1, 2, 3, \cdots)$ relative to the ONB $\{\eta_n\}_{n=1}^{\infty}$, and consider

$$\xi_n := \eta_1, \quad \xi'_n := \eta_1 + \frac{1}{n} \eta_n \quad (n \ge 1).$$

Clearly
$$\xi_n, \xi_n' \in D(A)$$
, $\xi = (\xi_n)_{\mathcal{U}} = (\xi_n')_{\mathcal{U}} \in H_{\mathcal{U}}$, and $(A\xi_n)_{n=1}^{\infty} = (\eta_1)_{n=1}^{\infty}$, $(A\xi_n')_{n=1}^{\infty} = (\eta_1 + \eta_n)_{n=1}^{\infty} \in \ell^{\infty}(H)$, but

$$\lim_{n\to\mathcal{U}}\|A\xi_n-A\xi_n'\|=\lim_{n\to\mathcal{U}}\|\eta_n\|=1\neq 0,$$

so $(A\xi_n)_{\mathcal{U}} \neq (A\xi'_n)_{\mathcal{U}}$.

Should we define $A_{\mathcal{U}}\xi = (A\xi_n)_{\mathcal{U}}$ or $A_{\mathcal{U}}\xi = (A\xi_n')_{\mathcal{U}}$?

Krupa–Zawisza ('84) gave the right definition of $A_{\mathcal{U}}$ as a self-adjoint operator.

Definition (Krupa–Zawisza)

Let $\mathbf{A} = (A_n)_{n=1}^{\infty}$ be a sequence in $\mathrm{SA}(H)$.

- (i) $(\xi_n)_{n=1}^{\infty} \in \ell^{\infty}(H)$ is an **A**-sequence if $\xi_n \in D(A_n)$ for each $n \in \mathbb{N}$.
- (ii) $\mathscr{D}_{\mathbf{A}} = \{ \xi \in H_{\mathcal{U}}; \exists (\xi_n)_{n=1}^{\infty} \mathbf{A}\text{-seq s.t. } \xi = (\xi_n)_{\mathcal{U}}, \ \sup_n \|A_n \xi_n\| < \infty \}.$ Such $(\xi_n)_{n=1}^{\infty}$ is called $\mathbf{A}\text{-bounded}$.
- (iii) The *Krupa-Zawisza subspace* is defined by $\mathscr{H}(\mathbf{A}) := \overline{\mathscr{D}_{\mathbf{A}}} \subset H_{\mathcal{U}}$.

Theorem (Krupa-Zawisza ('84))

- (i) $\exists ! \mathbf{A}_{\mathcal{U}} \in \mathrm{SA}(\mathscr{H}(\mathbf{A}))$ with $D(\mathbf{A}_{\mathcal{U}}) = \mathscr{D}_{\mathbf{A}}$ s.t. for $\xi \in \mathscr{D}_{\mathbf{A}}, \eta \in \mathscr{H}(\mathbf{A})$, $\mathbf{A}_{\mathcal{U}}\xi = \eta$ iff $\xi = (\xi_n)_{\mathcal{U}}$ (**A**-bounded) and $\eta = (A_n\xi_n)_{\mathcal{U}}$ holds.
- $(\mathrm{ii}) \ (\mathbf{A}_{\mathcal{U}}-i)^{-1}=((A_n-i)^{-1})_{\mathcal{U}}|_{\mathscr{H}(\mathbf{A})} \ \text{and} \ \mathrm{Ker}(((A_n-i)^{-1})_{\mathcal{U}})^{\perp}=\mathscr{H}(\mathbf{A}).$

Remark

- The above example shows that different choice of **A**-bounded rep seq $(\xi_n)_{n=1}^{\infty}$ of $\xi \in \mathscr{D}_{\mathbf{A}}$ may result in different $(A_n\xi_n)_{\mathcal{U}}!$
- The rep seq $(\xi_n)_{n=1}^{\infty}$ is determined to be the unique one (up to $c_{\mathcal{U}}(H)$) for which $\eta = (A_n \xi_n)_{\mathcal{U}} \in \mathcal{H}(\mathbf{A})$ holds.
- In the above example, $(A\xi_n)_{\mathcal{U}} \in \mathcal{H}(\mathbf{A})$, while $(A\xi_n')_{\mathcal{U}} \notin \mathcal{H}(\mathbf{A})$.

We can't see if a chosen bounded one $(\xi_n)_{n=1}^{\infty}$ is the right one without computing $(A_n\xi_n)_{\mathcal{U}}$.

Intrinsic characterization of the right representative is desirable.

4D + 4B + 4B + B + 900

This motivates us to define the following notions:

Definition (A–Ojima–Saigo '13)

(i) **A**-seq $(\xi_n)_{n=1}^{\infty}$ is **A**-regular if $\mathbb{R} \ni t \mapsto e^{itA_n}\xi_n \in H \ (n \in \mathbb{N})$ is \mathcal{U} -equicontinuous, i.e., $\forall \varepsilon > 0 \ \exists \delta > 0 \ \exists W \in \mathcal{U}$ s.t. $\forall t \in (-\delta, \delta) \ \forall n \in W$,

$$\|e^{itA_n}\xi_n-\xi_n\|<\varepsilon.$$

$$\widetilde{\mathscr{H}}(\mathbf{A}) := \{ \xi \in \ell^{\infty}(H); \ \xi = (\xi_n)_{\mathcal{U}}, \ (\xi_n)_{n=1}^{\infty} \ \mathbf{A}\text{-regular} \}$$

(ii) **A**-seq $(\xi_n)_{n=1}^{\infty}$ is **A**-proper, if $\forall \varepsilon > 0 \ \exists a > 0 \ \exists (\eta_n)_{n=1}^{\infty} \in \ell^{\infty}(H)$ s.t. $\forall n \in \mathbb{N} \ \xi_n \in \operatorname{ran1}_{[-a,a]}(A_n)$ and $\lim_{n \to \mathcal{U}} \|\xi_n - \eta_n\|_{A_n} < \varepsilon$, where

$$\|\xi\|_A := (\|\xi\|^2 + \|A\xi\|^2)^{\frac{1}{2}}$$

$$\begin{split} \widetilde{\mathscr{D}}_{\mathbf{A}} &:= \{ \xi \in \ell^{\infty}(H); \ \xi = (\xi_n)_{\mathcal{U}}, \ (\xi_n)_{n=1}^{\infty} \ \mathbf{A}\text{-proper} \} \\ \mathscr{D}_0(\mathbf{A}) &:= \{ (\xi_n)_{n=1}^{\infty} \in \ell^{\infty}(H); \ \exists a > 0 \ \forall n \in \mathbb{N} \ \xi_n \in \mathrm{ran1}_{[-a,a]}(A_n) \}. \end{split}$$

KZ ultraproduct

Theorem (A–Ojima–Saigo '13)

- (i) $\widetilde{\mathscr{D}}_{\mathbf{A}} = \mathscr{D}_{\mathbf{A}}, \ \widetilde{\mathscr{H}}(\mathbf{A}) = \mathscr{H}(\mathbf{A}).$
- (ii) If $\xi \in \mathcal{H}(\mathbf{A})$, then any rep **A**-seq of ξ is **A**-regular.
- (iii) If $\xi \in \mathscr{D}_{\mathbf{A}}$, then an rep \mathbf{A} -seq $(\xi_n)_{n=1}^{\infty}$ of ξ is the "right one", i.e., $\mathbf{A}_{\mathcal{U}}\xi = (A_n\xi_n)_{\mathcal{U}}$ iff $(\xi_n)_{n=1}^{\infty}$ is \mathbf{A} -proper.
- (iv) $\mathcal{D}_0(\mathbf{A})$ is a core for $\mathbf{A}_{\mathcal{U}}$.

Now consider the unitary orbit $\mathcal{O}(A) := \{uAu^*; u \in \mathcal{U}(H)\} \subset SA(H)$.

Problem

Let $A, B \in SA(H)$.

- (a) When does $B \in \overline{\mathcal{O}(A)}$ hold?
- (b) $\exists A \text{ with a dense orbit? } \overline{\mathcal{O}(A)} \stackrel{?}{=} \mathrm{SA}(H). \text{ Is } \mathcal{O}(A) \text{ meager?}$
- (c) When is $\mathcal{O}(A)$ closed? (obvious if $A = \lambda 1_H$)
- (d) Is it possible to have $A = A_{\mathcal{U}}$? (obviously no if A bounded)

They can be answered by KZ ultraproduct (model_theory?)

Definition

For H, H' Hilbert spaces and $A \in SA(H), B \in SA(H')$, we write $B \hookrightarrow A$ if $\exists K \subset H$ reducing A and $\exists u \colon H' \xrightarrow{\sim} K$ s.t. $uBu^* = A|_{K \cap D(A)}$.

Example $(2A \in \overline{\mathcal{O}(A)})$

Let $A = \operatorname{diag}(1, 2, \cdots) \in \operatorname{SA}(H)$, w.r.t $\{\xi_n\}_{n=1}^{\infty}$. Then $\exists (u_n)_{n=1}^{\infty}$ in $\mathcal{U}(H)$ s.t. $u_n A u_n^* \stackrel{n \to \infty}{\to} 2A$.

OBS: $2A \in \overline{\mathcal{O}(A)}$ is impossible if A is bounded.

Outline.

 $K := \text{proj onto } \overline{\text{span}}\{\xi_{2n}; n \in \mathbb{N}\}. \text{ Fix } v \in \mathbb{B}(H), vv^* = \text{proj onto } K \text{ s.t. }$

- K reduces A, $v^*Av = 2A$ and $v^*Av \hookrightarrow A_{\mathcal{U}}$ (in fact $v^*Av \hookrightarrow A$).
- $\exists (u_n)_{n=1}^{\infty}$ in $\mathcal{U}(H)$ s.t. $u_n \stackrel{n \to \infty}{\to} v$ (SOT).
- $u_n^* A u_n \stackrel{n \to \infty}{\to} v^* A v = 2A$ (SRT). (Note: $u_n^* \not\to v^*$)

Theorem (Answer to (a) $B \in \overline{\mathcal{O}(A)}$)

Let $\mathbf{A} = (A_n)_{n=1}^{\infty}$, A_n , $B \in \mathrm{SA}(H)$ $(n \in \mathbb{N})$. TFAE.

- (i) $B \hookrightarrow \mathbf{A}_{\mathcal{U}}$.
- (ii) $\exists u_n \in \mathcal{U}(H)$ s.t. $\lim_{n \to \mathcal{U}} u_n A_n u_n^* = B$ in SA(H).

Proof of (i) \Rightarrow (ii).

(i) \Rightarrow (ii) $\exists K \in \mathscr{H}(\mathbf{A}), \ \exists v \colon H \overset{\sim}{\to} K \text{ s.t. } vBv^* = (\mathbf{A}_{\mathcal{U}})|_K$. By Haagerup–Winsløw '00, $\exists w_n \colon K \overset{\sim}{\to} H \text{ s.t. } \forall \xi \in K \ (w_n \xi)_{\mathcal{U}} = \xi$. Then $u_n := v^*w_n^* \in \mathcal{U}(H)$ satisfies for $\xi, \eta \in H$ (use WRT=SRT),

$$\lim_{n \to \mathcal{U}} \langle v^* w_n^* (A_n - i)^{-1} w_n v \xi, \eta \rangle = \lim_{n \to \mathcal{U}} \langle (A_n - i)^{-1} w_n v \xi, w_n v \eta \rangle$$

$$= \langle ((A_n - i)^{-1})_{\mathcal{U}} (w_n v \xi)_{\mathcal{U}}, (w_n v \eta)_{\mathcal{U}} \rangle$$

$$= \langle ((A_n - i)^{-1})_{\mathcal{U}} v \xi, v \eta \rangle = \langle v (B - i)^{-1} v^* v \xi, v \eta \rangle$$

$$= \langle (B - i)^{-1} \xi, \eta \rangle.$$

Let $(X, \mu), (X_n, \mu_n)$ be standard prob spaces, Γ a countable group.

 $Act(\Gamma, X, \mu) = \{a : \Gamma \stackrel{\mathsf{pmp}}{\curvearrowright} (X, \mu)\} \text{ is Polish.}$

Given $(a_n)_{n=1}^{\infty}$ one can construct $(a_n)_{\mathcal{U}} : \Gamma \curvearrowright (X_{\mathcal{U}}, \mu_{\mathcal{U}})$.

Theorem (Conley-Kechris-Tucker-Drob '13)

 $b \in Act(\Gamma, X, \mu)$, $a_n \in Act(\Gamma, X_n, \mu_n)$ $(n \in \mathbb{N})$. TFAE.

- (i) $b \prec (a_n)_{\mathcal{U}} \in Act(\Gamma, X_{\mathcal{U}}, \mu_{\mathcal{U}}).$
- (ii) $\exists \tilde{a}_n \in \operatorname{Act}(\Gamma, X_n, \mu_n)$, $\tilde{a}_n \cong a_n$ s.t. $\lim_{n \to \mathcal{U}} \tilde{a}_n = b$ in $\operatorname{Act}(\Gamma, X, \mu)$.

 $\mathrm{vN}(H) = \{M \overset{\mathrm{vNalg}}{\subset} \mathbb{B}(H)\}$ is Polish w.r.t. the *Effros-Maréchal* topology. Given $(M_n, \varphi_n)_{n=1}^{\infty}$ one can construct $(M_n, \varphi_n)^{\mathcal{U}}$.

Theorem (A-Haagerup-Winsløw '14)

Let M_n , $N \in vN(H)$ $(n \in \mathbb{N})$. TFAE.

- (i) $\exists N \stackrel{\leftarrow}{\hookrightarrow} (M_n, \varphi_n)^{\mathcal{U}}$.
- (ii) $\exists \tilde{M}_n \in vN(H)$, $\tilde{M}_n \cong M_n$ s.t. $\lim_{n \to \mathcal{U}} \tilde{M}_n = N$ in vN(H).

The above three theorems are proved by methods specific to each structures. It seems that there is some principle which leads to a unified proof for all of the above theorems and more.

Problem (???)

Given a category $\mathcal C$ of objects with a certain metric structure which admits an ultraproduct $(X_n)_{\mathcal U}$. Find a nice Polish space $\mathcal X$ of separable objects in $\mathcal C$ (which should contain all the isomorphism classes of separable objects) s.t. the following is true:

Let $X_n, Y \in \mathcal{X}$. Then TFAE.

- (i) $Y \hookrightarrow (X_n)_{\mathcal{U}}$.
- (ii) $\exists \tilde{X}_n \in \mathcal{X}$, $\tilde{X}_n \cong X_n$ s.t. $\lim_{n \to \mathcal{U}} \tilde{X}_n = Y$.

Let's go back to the remaining 3 questions about $\mathcal{O}(A) = \{uAu^*; u \in \mathcal{U}(H)\}.$

(b) $\exists A$ with a dense orbit? $\overline{\mathcal{O}(A)} \stackrel{?}{=} \mathrm{SA}(H)$. Is $\mathcal{O}(A)$ meager?

Definition

For $A \in SA(H)$, the essential spectrum $\sigma_e(A)$ is the set of all $\lambda \in \sigma(A)$ which is either

- (1) an accumulation point in $\sigma(A)$ or
- (2) an isolated eigenvalues of ∞ multiplicity.

 $\sigma_{\rm e}(A)$ is always closed, and nonempty if A bounded but can be empty in general.

Proposition

Let $A \in SA(H)$ and let $\lambda \in \mathbb{R}$. TFAE.

- (i) $\lambda \in \sigma_{\mathrm{e}}(A)$.
- (ii) $\lambda 1_H \hookrightarrow A_{\mathcal{U}}$. That is, λ is an eigenvalue of $A_{\mathcal{U}}$ of ∞ multiplicity.

Theorem

Let $A \in SA(H)$. TFAE.

- (i) $\overline{\mathcal{O}(A)} = SA(H)$.
- (ii) $\sigma_{e}(A) = \mathbb{R}$.

Proposition (Chokski-Nadkarni '98 (bounded case), A-Matsuzawa '16)

- (1) The set of all $A \in SA(H)$ which has purely singular continuous spectrum equal to \mathbb{R} , is a dense G_{δ} subset of SA(H). In particular, $\sigma_{e}(A) = \mathbb{R}$ is SRT-generic.
- (2) $\forall A \in SA(H)$ $\mathcal{O}(A)$ is SRT-meager.

The equivalence $\sigma_{\rm e}(A)=\mathbb{R}\Leftrightarrow \mathcal{O}(A)={\rm SA}(H)$ can be proved using Hadwin's result below, of which we can give a simple proof using KZ ultraproduct.

Theorem (Hadwin '75)

Let $A, B \in \mathbb{B}(H)$ be normal. TFAE.

- (i) $B \in \overline{\mathcal{O}(A)}$.
- (ii) $\operatorname{rank}(1_U(B)) \leq \operatorname{rank}(1_U(A))$ for all $U \subset \mathbb{C}$ open.

Hadwin's theorem is reformulated as such and is generalized to vNalg setting by Sherman '07.

Proposition

Hadwin's theorem holds for all $A, B \in SA(H)$.

(c) When is $\mathcal{O}(A)$ closed? (obvious if $A = \lambda 1_H$)

Theorem

Let $A \in SA(H)$. Then $\mathcal{O}(A)$ is SRT-closed iff $A = \lambda 1_H$ for some $\lambda \in \mathbb{R}$.

Outline.

When $\sigma_{\mathrm{e}}(A) = \emptyset$, then $A \cong \mathrm{diag}(a_1^{\oplus n_1}, a_2^{\oplus n_2}, \cdots)$ $(|a_1| < |a_2| \nearrow \infty)$ and $B := \mathrm{diag}(a_2^{\oplus n_2}, a_3^{\oplus n_3}, \cdots) \hookrightarrow A_{\mathcal{U}}$ hence $B \in \overline{\mathcal{O}(A)}$ but $B \not\cong A$. So fix $\lambda \in \sigma_{\mathrm{e}}(A)$. If $\exists \mu \in \sigma(A) \setminus \{\lambda\}$, then $B := \lambda 1_H \hookrightarrow A_{\mathcal{U}}$ but $B \not\cong A$. Thus $\sigma(A) = \{\lambda\}$, which means $A = \lambda 1_H$.

(d) Is it possible to have $A = A_{\mathcal{U}}$?

If $A \in SA(H)$ is bounded, then $A \neq A_{\mathcal{U}}$, because

$$D(A) = H \subsetneq D(A_{\mathcal{U}}) = H_{\mathcal{U}}.$$

For unbounded A, it can happen that $A = A_{\mathcal{U}}$.

Theorem

For $A \in SA(H)$, TFAE.

- (i) $A = A_{\mathcal{U}}$.
- (ii) $\sigma_{e}(A) = \emptyset$.

Note that $\sigma_{e}(B) \neq \emptyset$ if B is bounded.

Example

 $A = diag(1, 2, 3, \cdots)$ satisfies $A = A_{\mathcal{U}}$ and $\sigma_{e}(A) = \emptyset$.

Future direction

- Study dynamical properties of $\mathcal{U}(H) \curvearrowright \mathrm{SA}(H)$ and related equivalence relations on $\mathrm{SA}(H)$ (e.g. Weyl–von Neumann type relations)
- Adapt our method to von Neumann (or C*) framework. Cf.
 Sherman's work on unitary orbits for normal operators in a von Neumann algebra.
- Applications to \mathbb{R} -actions.
- Study of norm resolvent convergence in SA(H).
 Cf. Voiculescu's non-commutative Weyl-von Neumann Theorem.

Definition

Say that $A, B \in SA(H)$ are Weyl-von Neumann equivalent $A \stackrel{\operatorname{WvN}}{\sim} B$ if $\exists u \in \mathcal{U}(H), \ K \in \mathbb{K}(H)_{\operatorname{sa}} \ [B = uAu^* + K]$.

Namely $\overset{\mathrm{WvN}}{\sim} = E_G^{\mathrm{SA}(H)}$, where $G = \mathbb{K}(H)_{\mathrm{sa}} \rtimes \mathcal{U}(H)$. We know that $\overset{\mathrm{WvN}}{\sim}$ is unclassifiable by countable structures. What can we say more about it?

Although Weyl-von Neumann type theorem

$$A \overset{ ext{WvN}}{\sim} B \Leftrightarrow \sigma_{ ext{e}}(A) = \sigma_{ ext{e}}(B)$$

miserably fails for unbounded operators (\Rightarrow is true), we do know that it holds on \mathbb{R} , i.e.,

$$\sigma_{\mathrm{e}}(A) = \sigma_{\mathrm{e}}(B) = \mathbb{R} \Rightarrow A \overset{\mathrm{WvN}}{\sim} B.$$

Similarly, W–vN holds e.g. on $\mathbb{R} \setminus (-2,3) \cup (6,9)$ but fails on \mathbb{N} or \emptyset .

Question

On which closed subset $M \subset \mathbb{R}$ does the Weyl–von Neumann Theorem hold?

$$\forall A, B \in SA(H) \ [\sigma_{e}(A) = \sigma_{e}(B) = M \stackrel{?}{\Rightarrow} A \stackrel{WvN}{\sim} B].$$

Theorem (A–Matsuzawa '17)

Let M be a closed subset of \mathbb{R} . TFAE

(i) The Weyl-von Neumann theorem holds on M. That is,

$$\forall A, B \in SA(H) \ [\sigma_{e}(A) = \sigma_{e}(B) = M \Rightarrow A \overset{WvN}{\sim} B].$$

(ii) M has no large gaps at infinity. That is, $M \neq \emptyset$ and

(*)
$$d_M := \limsup_{|\lambda| \to \infty} \operatorname{dist}(\lambda, M) = 0.$$

Here we assume $\sup \emptyset = 0$.

Thank you for your attention!