COMPUTABLY STRONGLY SELF-ABSORBING C*-ALGEBRAS

ISAAC GOLDBRING

AsstrACT. We introduce the notion of a computably strongly self-absorbing C*-
algebra and show that the following C*-algebras are computably strongly self-
absorbing: the Cuntz algebras O, and O, the UHF algebra M,,(C) and the
tensor product M, (C) ® O, where n is a supernatural number of infinite type
with computably enumerable support, and the Jiang-Su algebra Z. In connec-
tion with the last example, we show that Z has a computable presentation. The
results above are a special instance of a computable version of the standard
approximate intertwining argument due to Elliott.

1. INTRODUCTION

A separable unital C*-algebra A is called self-absoring if A ~ A ® A ! while it
is called strongly self-absorbing if there is an isomorphism A — A ® A that
is approximately unitarily equivalent to the inclusion ida ®14 : A — A® A%
The class of strongly self-absorbing C*-algebras has been intensely studied and,
modulo a positive resolution to the UCT conjecture, a complete list of the strongly
self-absorbing C*-algebras has been obtained: the Cuntz algebras O, and O,
the UHF algebras M,,(C) of infinite type, tensor products M, (C) ® O, (with the
UHEF algebra again of infinite type), and the Jiang-Su algebra Z.

In this paper, we introduce an effective version of strongly self-absorbing C*-
algebras that we call computably strongly self-absorbing, meaning that there
is a computable isomorphism between A and A ® A that is computably approx-
imately unitarily equivalent to idy ®14. In order to state that there is a com-
putable isomorphism between A and A ® A, one first has to equip A with a
presentation, which is simply a countable sequence from A that generates A as
a C*-algebra; this presentation naturally induces a tensor product presentation
on A ® A. To say that an isomorphism ¢ : A — A ® A is computable means
that there is an algorithm such that, upon input some #-polynomial p in the

Goldbring was partially supported by NSF grant DMS-2054477.
!'Unless otherwise stated, ® denotes the minimal tensor product of C*-algebras.
2Two *-homomorphisms @, : A — B between separable unital C*-algebras A and B are
approximately unitarily equivalent if there is a sequence (v, )nen of unitaries such that, for all
ac A, lim, o [vae(a)vE —P(a)| = 0.
3One typically excludes C from the class of strongly self-absorbing C*-algebras.
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generators of A and some rational tolerance €, returns some *-polynomial q in
the generators of A ® A such that [@(p) — q| < €. To say that ¢ is computably
approximately unitarily equivalent to ida ®14 means that there is a computable
sequence of unitaries (U )ney from A @ A (what this means exactly is explained
in the next section) such that, upon input a *-polynomial p in the generators for
A and rational € > 0, returns n such that [u,@(a)ul —a® 1| < e.

The main result of this paper is that the standard presentations of all of the
strongly self-absorbing C*-algebras satisfying the UCT are computably strongly
self-absorbing, except that in the case of the algebras involving UHF algebras,
our proofs require the additional assumption that the UHF algebra have c.e.*
support, where by the support of a UHF algebra we mean the set of primes for
which, in the supernatural number associated to the algebra, the exponent is
nonzero.

The proof that the algebras mentioned above are strongly self-absorbing uses an
approximate intertwining argument originally due to Elliott; see also |6, Propo-
sition 2.5.3]. We prove a computable version of this result in Section 3 below
and use it to deduce the aforementioned results about computably strongly self-
absorbing C*-algebras.

The results in this paper were originally inspired by the following quote of
Blackadar [2]: “...in fact, it is in principle essentially impossible to give an ex-
plicit isomorphism of O, ® O, and O, by the results of [1].” In private commu-
nication, Blackadar expanded on this comment by indicating by “explicit” he
meant “algebraic”, given that the main result of [1] states that the *-subalgebra
L, (known as the Leavitt path algebra) of O, generated by the pair of comple-
mentary isometries is such that L, # L, ® L,. The fact that O, is computably
strongly self-absorbing is a contrast to Blackadar’s sentiment provided that we
change the interpretation of “explicit” from “algebraic” to “computable.”

Section 2 contains the necessary background material on computable presen-
tations of C*-algebras while the computably approximate intertwining result is
proven in Section 3. Section 4 contains the applications to computably strongly
self-absorbing C*-algebras while Section 5 provides a proof that the Jiang-Su
algebra has a “standard” presentation that is computable.

We would like to thank Bruce Blackadar, Bradd Hart, Timothy McNicholl, and
Alessandro Vignati for helpful comments concerning this work.

“Here, c.e. stands for computably enumerable; a set X of natural numbers is c.e. if there is an
algorithm which, upon input n, halts and returns “yes” if n € X, while if n ¢ X, the algorithm
either does not halt or halts and returns "no.” C.e. has replaced the older terminology of r.e.,
which stands for recursively enumerable.
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2. BACKGROUND ON PRESENTATIONS OF C*-ALGEBRAS

Throughout this paper, to simplify matters, we restrict ourselves to unital C*-
algebras and unit-preserving *-homomorphisms.

2.1. Presentations of C*-algebras. Let A be a separable C*-algebra. A presen-
tation of A is a pair AT := (A, (an)nen), where {a,, : n € N} is a subset of A that
generates A (as a C*-algebra). Elements of the sequence (a, )ney are referred to
as special points of the presentation while elements of the form p(ai,,...,a; )
for p a »-polynomial with coefficients from (i) (a rational polynomial) are re-
ferred to as rational points of the presentation. By fixing an effective bijection
between the set of rational polynomials and N, we can fix an effective enumera-
tion of the rational polynomials and thus from any presentation of a C*-algebra
we obtain an effective enumeration of the rational points of the presentation. If
x is the n'" rational point of A, then we call n an code for x.

We say that AT is a computable presentation of A if there is an algorithm such
that, upon input a rational point p of AT and k € N, returns a rational number
q such that ||p| — q|] < 27*. A weaker notion is that of a left-c.e. (resp. right-
c.e.) presentation, which means that there is an algorithm which, upon input
a rational point p of AT, enumerates a sequence of lower bounds (resp. upper
bounds) which converges to |p|. Note that a presentation is computable if and
only if it is both left-c.e. and right-c.e. If AT is a computable, left-c.e., or right-c.e.
presentation, then by a code for AT we mean a natural number which codes the
finite sequence of strings that describes the algorithm.

An element x € A is a computable point of the presentation A if there is an
algorithm which, upon input k € N, returns a rational point q of AT such that
Ix — q| < 27%. Once again, one can speak of the code of a computable point of
a presentation.

If AT and B* are presentations of C*-algebras A and B respectively, a function
¢ : AT — B* is computable if ¢ is a function from A to B for which there is is
an algorithim such that, upon input a rational point p of AT and k € N, returns
a rational point q of B such that ||@(p) — q|| < 27%; in other words, ¢ is a com-
putable map if the @-images of rational points of AT are computable points of
B*, uniformly in the code for the rational point, meaning that the code for the
computable point ¢(p) can be computed from the code for p. Once again, one
may speak of the code of a computable map as the code of such an algorithm.
An isomorphism ¢ : A — B between C*-algebras is a computable isomor-
phism from Af to B* if it is a computable map with computable inverse. (The
computability of the inverse is automatic if B is computable.)
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By a computable sequence in AT we mean a sequence (x, )nen from A consisting
of computable points of AT for which the function sending n to the code for x,
is computable.

2.2. Universal presentations of C*-algebras. Operator algebraists might be fa-
miliar with a different notion of a presentation of a C*-algebra. In this subsec-
tion, we clarify the relationship between these two notions of presentation.

Let G be a set of noncommuting indeterminates, which we call generators. By a
set of relations for § we mean a set of relations of the form ||p(x1,...,x,)| < a,
where p is a *-polynomial in n noncommuting variables with no constant term,
X1,...,Xn are elements of §, and a is a nonnegative real number. We also require
that, for every generator x € G, there is a relation of the form |x| < M in R. A
representation of (G, R) is a function j : § — A, where A is a C*-algebra, such
that [p(j(x1),...,j(xn))| < a for every relation |p(xi,...,xn)| < ainR.

The universal C*-algebra of (G, R) is a C*-algebra A along with a representation
t:§ — A of (9,R) such that, for all other representations j : § — B of (9, R),
there is a unique *-homomorphism ¢ : A — B such that ¢(1(x)) = j(x) forall x €
G. If the universal C*-algebra of (G, R) exists, then it is unique up isomorphism
and will be denoted by C*(G|R). Note that C*(G|R) is generated by the image
of the generators. If G is a sequence X, then we may write C*(X|R) instead of
C*(G|R). Given that we remain in the context of unital C*-algebras throughout
this paper, we implicitly assume that we have a distinguished generator for the
unit and include relations stating that it is a self-adjoint idempotent which acts
as a multiplicative identity.

If the C*-algebra A is isomorphic to a universal C*-algebra (G, R), we refer to
(G,R) as a generator-relation presentation of A; note that a given C*-algebra
might admit many generator-relation presentations. Given a generator-relation
presentation C*(x|R) of A, we define the corresponding universal presentation
of A to be the presentation of A (in the sense of the previous subsection) with
as the sequence of special points. Since we always assume that in any generator-
presentation we have an indeterminate for the identity element, it follows that
the identity is a special point of any universal presentation of a C*-algebra.

Some C*-algebras admit “canonical” generator-relation presentations. For ex-
ample, the Cuntz algebra O, is most commonly defined as the universal (unital)
C*-algebra generated by two contractions s; and s, subject to the following rela-
tions: sjs; = sjs; = 1 and s;s7 + s2s5 = 1. When there is no possible confusion,
we call a presentation AT of A the standard presentation of A if it is the univer-
sal presentation corresponding to a canonical generator-relation presentation of
A; we denote the standard presentation of A by A®.
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A relation |p(x1,...,%q)|| < ais called rational if p is a rational polynomial and
a is a nonnegative dyadic rational. A presentation AT of a C*-algebra A is called
c.e. if for some c.e. set of rational relations R it is the universal presentation cor-
responding to C*(X|R). When % and R are both finite, we say that A' is finitely
c.e. For example, the standard presentation O3 of O, is finitely c.e.

We will need the following facts, due to Fox [4, Theorems 3.3 and 3.14]:

Fact 2.1. The notions “c.e. presentation” and “right-c.e. presentation” coincide. More-
over, from a code for the c.e. set R, one can compute a code for the algorithm witnessing
that the universal presentation corresponding to C*(G, R) is right-c.e.

Fact 2.2. If A is a simple C*-algebra, then any c.e. presentation AT of A is computable.

2.3. Tensor product and inductive limit presentations. Consider two presen-
tations AT = (A, (an)nen) and B* = (B, (b, )nen) of C*-algebras A and B. Given
any (C*-)tensor product A ®, B of A and B, we can consider the tensor product
presentation (A ®, B)'®* of A ®, B, given by declaring the n'" special point to
be the elementary tensor a,, ®b,, where (-, ) is a computable pairing of N* with
Nand (m,p) =n.

Call a presentation AT = (A, (a,)nen) bounded if there is a computable function
such that, upon input n, returns an upper bound on |a,|. Note that any right-
c.e. presentation is bounded.

Lemma 2.3. If AT is a bounded presentation of A and 1 is a computable point of B,
then ida ®1p : AT — (A ®4 B)™®* is a computable map.

Proof. Given a rational point a of AT and k € N, effectively find an upper bound
M on |al| (which is possible since the presentation is bounded) and find a ratio-
nal point b of Bf such that |[b — 1| < 27*M; it follows that [a® 1 —a®b| < 27~
It remains to note that a ® b is a rational point of (A ®, B)"™®* whose code can
be computed from codes for a and b. O

Suppose now that AT and B* are universal presentations of A and B. Then there
is a corresponding universal presentation (A ®max B)“(®* of the maximal ten-
sor product A ®max B, whose generators are the union of the generators of A
and B (enumerated, as above, via some computable pairing between N? and N)
and whose relations are the relations defining A and B individually as well as
relations stating that the generators and adjoints of generators of A commute
with the generators and adjoints of generators of B. (Note that the implicit re-
lations defining the identities of A and B individually should be replaced by a
single set of relations defining the identity.) As usual, a generator x of A gets
identified with the element x ® 1 of A ®max B and similarly for generators of B.
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Although the tensor product presentation (A ®max B)'®* and universal presen-
tation (A ®max B)u(@#) are not literally the same, we nevertheless have:

Lemma 2.4. If AT and B* are universal presentations of A and B respectively, then
idAgB ¢ (A ®max B)®* — (A ®max B)“®¥) is a computable isomorphism.

Proof. We first note that the identity map is computable. To see this, note that
any special point of (A ®max B)'®* is either a special point of (A ®max B)“1®¥
(such as x ® 1) or a product of two special points of (A @max B)“1® (such as
x ®y). From this observation, it follows easily that the map is computable. To
see that the inverse map is computable, it suffices to note that every special point
of (A @max B)“(1® is a special point of (A ®max B)®*. O

The following fact is immediate from the definitions:

Lemma 2.5. Suppose that AT and B* are c.e. presentations of A and B respectively.
Then (A ®max B)“1®*) is a c.e. presentation of A @max B.

Throughout this paper, we equip M,,(C) with its standard presentation M,,(C)**
associated to the generator-relation presentation of M,,(C) in terms of matrix
units. We thank Alec Fox for communicating the following fact to us:

Proposition 2.6. Suppose that A' is a computable presentation of A. Then the univer-
sal presentation (A ® M, (C))*(1®Y is computable. Moreover, from n and a code for
A, one can compute a code for (A ® M,,(C))(1®sH),

Proof. First, since Al is computable, it is right-c.e., hence c.e. by Fact 2.1. Con-
seequently, (A ® M, (C))“1®"Y js c.e. by Lemma 2.5 and thus right-c.e. by Fact
2.1 again.

It remains to show that (A ® M, (C))*(1® is left-c.e. To see this, we recall that,
for any element a = 22)51 a4 ® e € A ® M,,(C), we have

n
*
2 xiayy;

i,j=1

laf = sup ,

where the supremum is taken over all pairs of n-tuples (xi,...,%n), (Yty...,Yn) €
A" satisfying | D70, xixF |, | 21 yiyf|| < 1. Consequently, if a is a rational point
of (A®M,,(C))“(1®Y, one can find computable lower bounds for |a| by enumer-
ating all such tuples consisting of rational points (which is possible since the
norm of A" is right-c.e.) and then computably approximating || 31", xiaiy;|
from below, which is possible since AT is left-c.e. and the entries of a are ratio-
nal points of AT. By Fact 2.1 and the algorithm outlined here, this algorithm is
uniform in n and a code for A. O
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We now turn to presentations of inductive limits. Suppose that (Alm), oy is a
sequence of universal presentations of C*-algebras (A, )men. Suppose further
that @, : A, — A4 is a *-homomorphism. If a is the n™ rational point

of A, and k > 1, let b(m,n, k) be the first rational point of AL;":{ for which
|®m(a) — b(m,n, k)| < 27%. We define the corresponding inductive limit pre-
sentation lim (Al @,,) of the inductive limit algebra lim (A, @) to be the uni-
versal presentation corresponding to the universal C*-algebra whose generators
are the generators of the individual Al’s together with the relations of the var-

ious Alm’s and relations stating | ®,,(a) — b(m, a, k)| < 27* as above.

The following lemma has a routine proof:

Lemma 2.7. In the notation of the previous paragraph, suppose that the sequence of

maps @, : Alm — AI]T:]‘ is uniformly computable, that is, each map ©,, : Al —

Air*l‘j]‘ is computable and the function mapping m to a code for ®., is computable. Then:

(1) The map b(m,n, k) is computable.

(2) If the presentations Al are right-c.e. uniformly in m, then im(Alr, @) is
right-c.e.

(3) Ifthe presentations Al are computable uniformly in mand each @, is injective,
then lim (A, @) is computable.

2.4. Computable unitaries. We begin this subsection with a result on “almost
unitaries” that will be used in the following section.

Fix a C*-algebra A. Recall that, foreach € € (0, 1],if a € A is an e-almost unitary,
by which we mean that [|[a*a — 1||, [aa* — 1| < ¢, then a is invertible and, letting
a = w(a)(a*a)'? denote the polar decomposition of a, we have that w(a) is a
unitary and |a — w(a)| < e.

Recall also the Taylor expansion

oy (k _k1/2>(1 Cx% <1

k=0
For each n > 1, set s,(x) := 31, (%) (1 — x)¥. By Taylor’s theorem, there is
a computable function & — N(8) : Q*° — N such that |[x~"/? — sns) (x)]| < 6 for
all x € [1/2,3/2]. Consequently, if a is an e-almost unitary with e < 1/2 and
|a|| < 1, then since w(a) = a(a*a)~"?, we have that |w(a) — asnp)(a*a)| < 8.

The upshot of this discussion is the following;:

Lemma 2.8. There is a computable function such that: for any presentation A of a
C*-algebra A for which 1 is a computable point, upon input a code for a rational point
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aof AT with |a| < 1,acodefor 1, andn e N, if |a*a — 1|, |aa* — 1| < 1, returns the
code for a rational point of AT, denoted w,,(a), such that |w(a) — wy(a)| < 27™

The remainder of this subsection contains results that will be used in the last
section of this paper.

Lemma 2.9. There is a computable map e : N* — N such that, if x is a code for a
unitary element wof M, (C) that is a rational point of M., (C)*', then e(n, x) is the code
for a computable self-adjoint element h of M,,(C) for which exp(ih) = u.

Proof. Recall that the Schur factorization of a matrix a is a factorization of the
form a = zbz*, where z is unitary and b is upper triangular. There are well-
known algorithms for computing the Schur factorization of a matrix with ratio-
nal complex entries. If a is itself unitary, then b must be diagonal (being both
upper triangular and unitary).

Consequently, we can effectively find a diagonalization u = zbz* of the unitary
u coded by x.

Note also that one can compute a rational number 6 € [0, 27) such that exp(i0)
is not an eigenvalue of u. Let arg denote the branch of the argument function
taking values in [0,0 + 271). We can then set h := zarg(b)z*, where arg(b)
is the result of applying arg to each of the diagonal elements of b; note that
u = exp(ih), h is computable, and a code for h can be found from a code for
b. O

Remarks 2.10. It is unclear to us if a version of the previous proof goes through
if the assumption that u is a rational unitary is replaced by the more general
assumption that u is a computable unitary.

In the following lemma, we equip C[0, 1] with its standard presentation C[0, 1]**
consisting only of the identity function t := idc[o,1); we note that this presenta-
tion is computable.

Given any C*-algebra A, there is a unique isomorphism
$a: C[0,1]®A — C([0,1],A)

for which (¢pa(f ® a))(t) = f(t)a forall f € C[0,1] and a € A. If AT is a pre-
sentation of A, then then we let C([0, 1], A)' be the presentation of C([0, 1], A)
induced by the presentation (C[0, 1] ® A)**®' via da.

Suppose that x,y € N are codes for computable unitaries u and v of M, (C)
respectively. Let h, and h, be the self-adjoint elements coded by e(n,x) and
e(n,y). Weletu ~» v e C([0, 1], M,(C)) be defined by

(uw~~ v)(t) := exp(i(1 — t)hy,) exp(ith,).
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Note that (u ~~ v)(t) is a unitary element of M,,(C) for all t € [0, 1] satisfying
(u~v)(0) =uand (u~v)(1) =v.

Lemma 2.11. There is a computable function g : N° — N such that, if x and y are
codes for rational unitaries w and v of M,,(C), then g(n,x,y) is the code for u ~~ v
with respect to the presentation C([0, 1], M, (C))*".

Proof. Since (u ~~ v)(t) = (1 ® u)exp(ti(h, — hy)), it suffices to show that, for
any computable self-adjoint element h of M, (C), the function t — exp(ith)
is a computable element of C([0, 1], M,,(C))*" uniformly in n and a code for h.
However, since exp(ith) = >»_ L t™h™ and the function t — t™h™ equals
dm. ) (™ ®h™), the desired conclusion follows from a Taylor estimate like that
done earlier in this subsection. 0

3. COMPUTABLE APPROXIMATE INTERTWINING

In this section, we prove the computable analog of the approximate intertwining
result of Elliott, following Rerdam’s exposition [6].

Definition 3.1. Two computable +-homomorphisms ¢, ¢ : AT — B* are com-
putably approximately unitarily equivalent if there is a computable sequence
(Vi )nen from Bf consisting of unitaries such that there is an algorithm for which,
given inputs a code for a rational point a of AT and m € N, returns n € N such
that [vhe(a)vi —W(a)| <27™.

Remarks 3.2.

(1) There are ways of altering the previous definition that can lead to dif-
ferent notions of computably approximately unitarily equivalent mor-
phisms. For example, one might not require the sequence (v )nen to be
computable. Alternatively, one might not require that ¢ and 1 be com-
putable maps; however, with the rest of the definition unchanged, note
that, if ¢ and \{ are computably approximately unitarily equivalent, then
@ is computable if and only if 1\ is computable.

(2) If @, : AT — B* are computable maps, (Vi )ney is a computable se-
quence of unitaries witnessing that ¢ and 1 are approximately unitarily
equivalent, and the presentation B¥ is computable, then the last part of
the definition is automatic.

The following is the main result of this section and is the computable analog of
[6, Proposition 2.3.5]:

Theorem 3.3. Let A and B be separable, unital C*-algebras and let ¢ : A — B be an
injective x-homomorphism. Equip A and B with computable presentations AT and B*
respectively. Suppose the following conditions hold:
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(1) 1is a computable point of B¥.
(2) ¢ : At — B* is a computable map.
(3) There is a sequence of unitaries (Wy )nen from B such that

lim [whe(a) — @(a)wy| = 0and lim d(w;bw,, ¢(A)) =0
forallae Aandb € B.

Then there is a computable isomorphism b : AT — B* that is computably approximately
unitarily equivalent to @.

Proof. For ease of exposition, we assume that the ¢-image of every rational point
of AT is actually a rational point of B*; the general case just involves an extra
approximation step in what follows. Let (a,)ney and (bn)nen be effective enu-
merations of the rational points of AT and B* respectively.

Begin by effectively choosing small rational numbers €; and 1n; (to be deter-
mined below) and searching for the first €;-almost unitary rational point ¥; of
B* with |¥1] < 1 and first rational point a;; of AT such that

max (Vb1 — @(ai)], [Vie(ar) — @(a)v]) <m.

That such rational points exist follows from assumption (3) and that such com-
putations can be done effectively follows from (1), (2) and the fact that the pre-
sentations are computable. (We will omit such justifications in the sequel.) Set
vy = w(V1), 80 [vi — V1| < €;. It follows that

[Vibivi — @(an)| < 2er[brf +my
and
vie(ar) — e(anvi| < 2erfar] +m.
Consequently, taking €7 < 1/(2> max(|ai], [b1])) and n; < 272 we have that
max(|[vibivi — @(ai)], [vie(a) — e(awi]) <27".

Next effectively choose small rational numbers €, and n, and a sufficiently large
integer k(2) (again, to be determined below) and search for the first e;-almost
unitary rational point ¥, of B with |¥,| < land first rational points a; 3, a,, of
AT such that:

e maxj_12 [V3 (Wk@) (¥1)*bjwi) (¥1))V2 — ©(a;2)[ < M2
o [V2p(ar;) — @(ai;)v] <me.
® maXj=12 |\~’2(P(ai) - @(aj)f’zH <TMa2.

Set v, := w(¥,), so |[v; — ;| < €,. Forj = 1,2, we then have:

o [V2(vibyvi)va) — @(a;2)] < (2€2 + 27D bs ] + m.
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o [va@(ai) — @(ai)va| < 2ezfar;| +mnz.
o [vao(a;) — @(ay)v2| < 2ezfa| + 2.

One can computably choose €, and 1, sufficiently small and k(2) sufficiently
large so that all of the bounds in the previous three bullets can be taken to be
272,
Inductively suppose that, forj = 1,...,n —1Tand k = 1,...,j, one has found
e;-almost unitary rational points ¥; of B with ||[]| < 1 and rational points ay ; of
At in the manner above. Once again, effectively choose small rational numbers
€, and 1, and a sufficiently large integer k(n) and search for the first e,-almost
unitary rational point ¥,, of B with |[¥,,| < 1 and first rational points a;, of Af
with k = 1,...,n such that the following quantities are bounded by 1,, for all
I<j<nand1<k<j:

o [VR(im) (In1)* - - Win) (V7)) 05 W) (V1) - - Wiy (V1) )V — @(ajn) |

o [Vne(ar;) — @(aw;)v:|

® ||\~)n(p(aj> - (p(aj)\jnH'

Set v, := w(Vy) 80 [vq — Vn| < €n. We then have the following inequalities for
alT<j<mandall 1 <k <j:

o [VEOVRy VbV v ) v = @(agn)| < (2en + 27K by + .
o [vno(ai;) — @(ai;)vn| < 2Zenfag;] +nn.
o [vno(q)) = @(aj)val < 2Zen|ajf +nn.

One can computably choose €, and n, sufficiently small and k(n) sufficiently
large so that all of the bounds in the previous three bullets can be taken to be
2

For each a € A and n € N, set wy(a) := vyva---vya@(a)vi---vivi. Note that
lwn(a) = waii(a@)]| = [@(a) = varre(a)vi,,|| < 2= for all rational points a
of AT and consequently for all a € A. Setting P (a) := lim,_,,, wy(a), the proof
of [6, Proposition 2.3.5] shows that{ : A — B is an isomorphism. We claim
that 1 is a computable map.

Fix j, m € N. Notice that for any p > 1, we have
Wi (0) =y (51) =+ @ (V) 0(0) 0 (Vi) - 0, (W) < (M4 1)27 .

Consequently, taking p such that 2°~™ > (m+1)|a;|, and noting that ||[wy, 1 (a)—
Y(a)| < 2™+, we have that w, (1) - - - W, (Vn) @(aj)wp (vn)* - - - wp(v1)* is a ra-
tional point of B* within 2™ of {(a;). It follows that 1 is a computable map.

It is clear from construction that the sequence (Vi - - - vn)ney is computable; as
shown in the proof of [6, Proposition 2.3.5], the sequence also witnesses that ¢
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and 1 are approximately unitarily equivalent. By Remark 3.2(2), the sequence
witnesses that ¢ and 1\ are computably approximately unitarily equivalent. [J

4. COMPUTABLY STRONGLY SELF-ABSORBING C*-ALGEBRAS

In this section, we apply the result of the previous section to the study of strongly
self-absorbing C*-algebras. We first recall that a C*-algebra A is said to have ap-
proximately inner half-flip if the two inclusions idy ®1a, 1A ®idy : A > AQA
are approximately unitarily equivalent. A proof of the following fact can be
found in [6, Theorem 7.2.2]. In what follows, U always denotes a nonprincipal
ultrafilter on N, A" denotes the ultrapower A with respect to U, and

AN A= {xe A% : xy =yxforallye A}

denotes the relative commutant of A inside of AY, where we identify A with its
image in A" under the diagonal embedding.

Fact 4.1. Suppose that A and B are separable C*-algebras and B has approximately
inner half flip. Further suppose that B embeds into A’ n AY. Then the map idx @1
satisfies (3) in Theorem 3.3.

Using Lemma 2.3, we have:

Corollary 4.2. Suppose that AT and B* are presentations of C*-algebras A and B.
Suppose that the following conditions hold:

(1) B has approximately inner half flip.

(2) B embeds into A’ n Al

(3) Al and (A ® B)™®* are computable presentations.

(4) 14 and 1y are computable points of AT and B* respectively.

Then there is a computable isomorphism P : AT — (A ® B)"®* computably approxi-
mately unitarily equivalent to idy ®@1s.

As stated in the introduction, a C*-algebra D is strongly self-absorbing if it is not
isomorphic to C and there is an isomorphism D — D ® D approximately uni-
tarily equivalent to idp ®1p. Strongly self-absorbing C*-algebras have approxi-
mately inner half-flip [7, Section 1]. If D is a strongly self-absorbing C*-algebra,
then a C*-algebra A is called D-stable if A ~ A ® D. If A is D-stable, then D
embeds in A’ n Al [6, Theorem 7.2.2]. Consequently, we have:

Corollary 4.3. Suppose that A" and D* are presentations of C*-algebras A and D.
Suppose that the following conditions hold:

(1) D is strongly self-absorbing.
(2) A is D-stable.
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(3) Al and (A ® D)'®* are computable presentations.
(4) 1 and 1p are computable points of At and D respectively.

Then there is a computable isomorphism \ : AT — (A ® D)"®* computably approxi-
mately unitarily equivalent to idy ®1p.

Every strongly self-absoring algebra D is D-stable. Since strongly self-absorbing
algebras are simple, any c.e. presentation of D is automatically computable.
Moreover, if D' is a c.e. presentation of D, then so is (D ® D)“(®") by Lemma
2.5, whence this presentation is also computable.

We say that a presentation A" is computably strongly self-absorbing if there is
a computable isomorphism AT — (A ® A)™®T that is computably approximately
unitarily equivalent to ida ®14. Note that, since our definition of computably
approximately unitarily equivalent morphisms requires that the morphisms be
computable, the definition of computably strongly self-absorbing presentation
presupposes that the map ida ®14 : AT — (A ® A)T is computable, which hap-
pens, for example, when A' is bounded and 1 is a rational point of AT (see
Lemma 2.3). The previous discussion and Lemma 2.4 imply:

Corollary 4.4. Suppose that D is a strongly self-absorbing C*-algebra and D' is a
c.e. (and thus computable) presentation of D. Then DT is computably strongly self-
absorbing.

The standard presentations of the Cuntz algebras O, and O, are clearly c.e. Con-
sequently, we have:

Corollary 4.5. 05 and 0% are computably strongly self-absorbing.

As mentioned in [7, Examples 1.14], a UHF algebra M,,(C) is strongly self-
absorbing if and only if the supernatural number n is of infinite type, that is, if
all of its nonzero exponents are infinite (and at least one exponent is nonzero),
in which case M,,(C) ® O, is also strongly self-absorbing. By the support of
a supernatural number n, we mean the set of primes which appear in n with
nonzero exponents. By [3], a UHF algebra M,,(C) of infinite type has a com-
putable presentation if and only if its support is c.e., in which case it admits
a computable “standard presentation” M, (C)*. Together with Lemma 2.5, we
have:

Corollary 4.6. Suppose that n is a supernatural number of infinite type with c.e. sup-
port. Then M,,(C)* and (M, (C) ® O, )*®st are computably strongly self-absorbing.

Any strongly self-absorbing C*-algebra satisfying the UCT must be isomorphic
to M,(C), Oy, M(C) ® Oy, Z, or O,, where n is of infinite type and Z is the
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Jiang-Su algebra. In the next section, we show that Z has a “standard presenta-
tion” that is computable, whence it is also computably strongly self-absorbing.
Consequently, with the possible exception of the UCT strongly self-absorbing
algebras involving UHF algebras without computable presentations, all of the
known UCT strongly self-absorbing C*-algebras are computably strongly self-
absorbing.

If D is any strongly self-absorbing C*-algebra, then D®Z =~ D and D® O, = 0O,.
Consequently, we have:

Corollary 4.7. Suppose that D is a strongly self-absorbing C*-algebra that admits a
c.e. presentation DY. Then:

(1) There is a computable isomorphism DT — (D ® 2)1® computably approxi-
mately unitarily equivalent to idp ®14.

(2) There is a computable isomorphism O — (D ® 0,)'® computably approxi-
mately unitarily equivalent to idy, ®1p.

5. A COMPUTABLE PRESENTATION OF THE ]IANG-SU ALGEBRA

In this section, we show how the original construction of the Jiang-Su algebra
Z given in [5] yields a “standard” computable presentation Z*' of Z, whence,
by the results of the previous section, shows that Z is also computably strongly
self-absorbing.

Given integers p, q > 2, we let Z, 4 denote the functions f € C([0, 1], M,(C) ®
M, (C)) such that f(0) € M,(C) ® Tm, ¢y and f(1) € Ty, ) ® Mq(C); Zp g is a C*-
subalgebra of C([0, 1], M,(C)®M4(C)) called a dimension drop algebra; when
p and q are relatively prime, Z, 4 is called a prime dimension drop algebra.

By [5, Proposition 7.3], Z,, 4 admits a generator-relations presentation consist-
ing of finitely many generators and relations; as usual, we let 2}, denote the
associated standard presentation of Z, 4. The exact details of the presentation
are not relevant for us; the only thing we will need is the following:

Lemma 5.1. Viewing Z,, q as a subalgebra of C[0, 1]|@M,,(C)®M,(C), the generators
of 23!, are computable points of (C[0,1] ® M, (C) @ My(C))* &t @@ yniformly in
p and q.

Proof. The generators of Z, 4 are a; :== (1 — )2 ®elP ®1,,i = 1,...,p, and
b =U2®1,® eg?), j =1,...,q. The result follows from the fact that t'/? and
(1 — 1)'/% are computable points of C[0, 1]*. a

The Jiang-Su algebra 2 is a particular inductive limit lim(2;,, 4,., ®m) of prime
dimension drop algebras, which we now describe. Begin by setting po = 2
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and qo = 3 and setting Ay = Z, 4,- Supposing that the prime dimension
drop algebra A, =: Z,,. q.. has been constructed, we now construct a new di-
mension drop algebra A1 = Zp ., q.., and an injective *-homomorphism
D, 1 Ay — Angr. Let ki, and 1, denote the first two prime numbers larger
than 2p,.qm.> We set pns1 = knpm and qms1 := lngm. Note that p,,; and
qm+1 are relatively prime, so A, is a prime dimension drop algebra. We now
construct the morphism ®@,,.

Set r,,, to be the remainder of k,1,,, modulo q.,;1 and set s, to be the remainder
of kyly, modulo pyi1. Fori = 1,... kL., we define functions & € C[0,1]
as follows: fori = 1,... 1, set &(t) = t/2; fori = 1, + 1,...,k — s, set
E(t)=1/2fori=k—sn+1,...,Kknln, set &(t) = (t+1)/2.

As noted in the proof of [5, Proposition 2.5], both 1,,qm and kil — T, are
divisible by qm+1, say Tmdm = %mqm4+1 and kplym — Tm = Bmqmer. Let uy €
M C) be the unitary matrix taking

diag(f(&1(0)), ..., f(&knn (0)))

to the block diagonal matrices with blocks

diag(f(0),...,f(0),f(1/2),...,f(1/2)),
where f(0) is repeated «, times and f(1/2) is repeated 3., times. Moreover, u,,
is a rational point of M, 4..., (C)* for which the map
f—up diag(f(&:(0)), ..., f(&xntn (0))Um
is a »-homomorphism Ay, — My, ,, ® Ty, . Similarly, there is a computable
unitary v,, such that f — v diag(f(&;(1)),..., fk,.1.(1))Vm is a =-homomorphism
An = Tnm,, , (C)®Mq,,,(C).

Then the map @, (f) = (Uy ~» vi)*diag(fo &y ...,f 0 & 1) (W ~> Vi) is the
desired injective -homomorphism @, : Ay, — A,

Pm+1Qm+1(

Proposition 5.2. The map ©y, : 2} . — Z . is computable, uniformly in
m.

Proof. By Lemma 5.1, it suffices to show that
O,:2% —(C[0,1]eM, ., (C)eM

Pmydm
is computable uniformly in m. This follows from Lemmas 2.11 and 5.1, the fact
that the map f — diag(fo &;,...,f o &, 1,.) is a computable map

(C[0, 1]@M,,, (C)@My,, (€))% — (C[0, 1]@M,,,,, (C)®My,,..

and that the unitaries u,, and v,, are rational points of M (C)**and M
respectively, uniformly in m.

(C))u(st®st®st)

Pm+1 qm+1

<C>)u(st®st®st))
(C)St
O

Pm+1

Pm+1 qm+1

°N.B. Our notation is slightly different than that in [5].
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Set 2% 1= lim(Zy' .., ®m), aso-called “standard presentation” of Z. Combining
the above discussion with Fact 2.2 and Lemma 2.7, we arrive at:

Theorem 5.3. The presentation Z* is computable and thus computably strongly self-
absorbing.
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