Tutorial on von Neumann algebras

Adrian Ioana

University of California, San Diego

Model Theory and Operator Algebras UC Irvine September 20-22, 2017

- *H* separable Hilbert space, e.g. $\ell^2(\mathbb{N})$, $L^2([0,1], \mathbf{Leb})$.
- $\mathbb{B}(H)$ algebra of **bounded** linear operators $T: H \to H$, i.e. such that $||T|| = \sup\{||T\xi|| \mid ||\xi|| = 1\} < \infty$.

- *H* separable Hilbert space, e.g. $\ell^2(\mathbb{N})$, $L^2([0,1], \mathbf{Leb})$.
- $\mathbb{B}(H)$ algebra of **bounded** linear operators $T: H \to H$, i.e. such that $||T|| = \sup\{||T\xi|| \mid ||\xi|| = 1\} < \infty$.
- the adjoint $T^* \in \mathbb{B}(H)$ given by $\langle T\xi, \eta \rangle = \langle \xi, T^*\eta \rangle$, for all $\xi, \eta \in H$.

- *H* separable Hilbert space, e.g. $\ell^2(\mathbb{N})$, $L^2([0,1], \mathbf{Leb})$.
- $\mathbb{B}(H)$ algebra of **bounded** linear operators $T: H \to H$, i.e. such that $||T|| = \sup\{||T\xi|| \mid ||\xi|| = 1\} < \infty$.
- the adjoint $T^* \in \mathbb{B}(H)$ given by $\langle T\xi, \eta \rangle = \langle \xi, T^*\eta \rangle$, for all $\xi, \eta \in H$.
- the **spectrum** of T is $\sigma(T) = \{\lambda \in \mathbb{C} | T \lambda \mid \text{not invertible} \}.$
- Fact: $\sigma(T)$ is a compact non-empty subset of \mathbb{C} .

- *H* separable Hilbert space, e.g. $\ell^2(\mathbb{N})$, $L^2([0,1], \mathbf{Leb})$.
- $\mathbb{B}(H)$ algebra of **bounded** linear operators $T: H \to H$, i.e. such that $||T|| = \sup\{||T\xi|| \mid ||\xi|| = 1\} < \infty$.
- the adjoint $T^* \in \mathbb{B}(H)$ given by $\langle T\xi, \eta \rangle = \langle \xi, T^*\eta \rangle$, for all $\xi, \eta \in H$.
- the **spectrum** of T is $\sigma(T) = \{\lambda \in \mathbb{C} | T \lambda \mid \text{not invertible} \}.$
- Fact: $\sigma(T)$ is a compact non-empty subset of \mathbb{C} .

Definition

An operator $T \in \mathbb{B}(H)$ is called

- **1** self-adjoint if $T = T^*$.
- **② positive** if $\langle T\xi, \xi \rangle \geq 0$, for all $\xi \in H$. (positive \Rightarrow self-adjoint)

- *H* separable Hilbert space, e.g. $\ell^2(\mathbb{N})$, $L^2([0,1], \mathbf{Leb})$.
- $\mathbb{B}(H)$ algebra of **bounded** linear operators $T: H \to H$, i.e. such that $||T|| = \sup\{||T\xi|| \mid ||\xi|| = 1\} < \infty$.
- the adjoint $T^* \in \mathbb{B}(H)$ given by $\langle T\xi, \eta \rangle = \langle \xi, T^*\eta \rangle$, for all $\xi, \eta \in H$.
- the **spectrum** of T is $\sigma(T) = \{\lambda \in \mathbb{C} | T \lambda \mid \text{not invertible} \}.$
- Fact: $\sigma(T)$ is a compact non-empty subset of \mathbb{C} .

Definition

An operator $T \in \mathbb{B}(H)$ is called

- **1** self-adjoint if $T = T^*$.
- **2 positive** if $\langle T\xi, \xi \rangle \geq 0$, for all $\xi \in H$. (positive \Rightarrow self-adjoint)
- **3** a **projection** if $T = T^* = T^2 \Leftrightarrow T$ is the orthogonal projection onto a closed subspace $K \subset H$.

- *H* separable Hilbert space, e.g. $\ell^2(\mathbb{N})$, $L^2([0,1], \mathbf{Leb})$.
- $\mathbb{B}(H)$ algebra of **bounded** linear operators $T: H \to H$, i.e. such that $||T|| = \sup\{||T\xi|| \mid ||\xi|| = 1\} < \infty$.
- the adjoint $T^* \in \mathbb{B}(H)$ given by $\langle T\xi, \eta \rangle = \langle \xi, T^*\eta \rangle$, for all $\xi, \eta \in H$.
- the **spectrum** of T is $\sigma(T) = \{\lambda \in \mathbb{C} | T \lambda \mid \text{not invertible} \}.$
- Fact: $\sigma(T)$ is a compact non-empty subset of \mathbb{C} .

Definition

An operator $T \in \mathbb{B}(H)$ is called

- self-adjoint if $T = T^*$.
- **2 positive** if $\langle T\xi, \xi \rangle \geq 0$, for all $\xi \in H$. (positive \Rightarrow self-adjoint)
- **3** a **projection** if $T = T^* = T^2 \Leftrightarrow T$ is the orthogonal projection onto a closed subspace $K \subset H$.
- **4** a **unitary** if $TT^* = T^*T = I$.

• norm topology: $T_i \to T \iff ||T_i - T|| \to 0$.

- norm topology: $T_i \to T \iff ||T_i T|| \to 0$.
- strong operator topology (SOT): $T_i \to T \iff ||T_i\xi T\xi|| \to 0$, for all $\xi \in H$.
- weak operator topology (WOT): $T_i \to T \iff \langle T_i \xi, \eta \rangle \to \langle T \xi, \eta \rangle$, for all $\xi, \eta \in H$.

- norm topology: $T_i \to T \iff ||T_i T|| \to 0$.
- strong operator topology (SOT): $T_i \to T \iff ||T_i\xi T\xi|| \to 0$, for all $\xi \in H$.
- weak operator topology (WOT): $T_i \to T \iff \langle T_i \xi, \eta \rangle \to \langle T \xi, \eta \rangle$, for all $\xi, \eta \in H$.

Exercise 1: Suppose that $T_i \to T$ (WOT) and T_i , T are all projections (or all unitaries). Prove that $T_i \to T$ (SOT).

- norm topology: $T_i \to T \iff ||T_i T|| \to 0$.
- strong operator topology (SOT): $T_i \to T \iff ||T_i\xi T\xi|| \to 0$, for all $\xi \in H$.
- weak operator topology (WOT): $T_i \to T \iff \langle T_i \xi, \eta \rangle \to \langle T \xi, \eta \rangle$, for all $\xi, \eta \in H$.

Exercise 1: Suppose that $T_i \to T$ (WOT) and T_i , T are all projections (or all unitaries). Prove that $T_i \to T$ (SOT).

Definition

A subalgebra $A \subset \mathbb{B}(H)$ is called a *-algebra if $T^* \in A$, for all $T \in A$.

- norm topology: $T_i \to T \iff ||T_i T|| \to 0$.
- strong operator topology (SOT): $T_i \to T \iff ||T_i\xi T\xi|| \to 0$, for all $\xi \in H$.
- weak operator topology (WOT): $T_i \to T \iff \langle T_i \xi, \eta \rangle \to \langle T \xi, \eta \rangle$, for all $\xi, \eta \in H$.

Exercise 1: Suppose that $T_i \to T$ (WOT) and T_i , T are all projections (or all unitaries). Prove that $T_i \to T$ (SOT).

Definition

A subalgebra $A \subset \mathbb{B}(H)$ is called a *-algebra if $T^* \in A$, for all $T \in A$. A *-subalgebra $A \subset \mathbb{B}(H)$ is called a

• C*-algebra if it is closed in the norm topology.

- norm topology: $T_i \to T \iff ||T_i T|| \to 0$.
- strong operator topology (SOT): $T_i \to T \iff ||T_i\xi T\xi|| \to 0$, for all $\xi \in H$.
- weak operator topology (WOT): $T_i \to T \iff \langle T_i \xi, \eta \rangle \to \langle T \xi, \eta \rangle$, for all $\xi, \eta \in H$.

Exercise 1: Suppose that $T_i \to T$ (WOT) and T_i , T are all projections (or all unitaries). Prove that $T_i \to T$ (SOT).

Definition

A subalgebra $A \subset \mathbb{B}(H)$ is called a *-algebra if $T^* \in A$, for all $T \in A$. A *-subalgebra $A \subset \mathbb{B}(H)$ is called a

- C*-algebra if it is closed in the norm topology.
- **2** von Neumann algebra if it is WOT-closed.

- norm topology: $T_i \to T \iff ||T_i T|| \to 0$.
- strong operator topology (SOT): $T_i \to T \iff ||T_i\xi T\xi|| \to 0$, for all $\xi \in H$.
- weak operator topology (WOT): $T_i \to T \iff \langle T_i \xi, \eta \rangle \to \langle T \xi, \eta \rangle$, for all $\xi, \eta \in H$.

Exercise 1: Suppose that $T_i \to T$ (WOT) and T_i, T are all projections (or all unitaries). Prove that $T_i \to T$ (SOT).

Definition

A subalgebra $A \subset \mathbb{B}(H)$ is called a *-algebra if $T^* \in A$, for all $T \in A$.

A *-subalgebra $A \subset \mathbb{B}(H)$ is called a

- **①** C*-algebra if it is closed in the norm topology.
- von Neumann algebra if it is WOT-closed.

Terminology. A homomorphism $\pi:A\to B$ between two *-algebras is called a *-homomorphism if $\pi(T^*)=\pi(T)^*$, for all $T\in A$. A bijective *-homomorphism $\pi:A\to B$ is called a *-**isomorphism**.

Let $T \in \mathbb{B}(H)$ be an operator which is **normal**: $T^*T = TT^*$.

Let $T \in \mathbb{B}(H)$ be an operator which is **normal**: $T^*T = TT^*$. Let $B(\sigma(T))$ denote the *-algebra of bounded Borel functions $f : \sigma(T) \to \mathbb{C}$, with the *-operation given by $f^*(z) = \overline{f(z)}$.

Let $T \in \mathbb{B}(H)$ be an operator which is **normal**: $T^*T = TT^*$. Let $B(\sigma(T))$ denote the *-algebra of bounded Borel functions $f: \sigma(T) \to \mathbb{C}$, with the *-operation given by $f^*(z) = \overline{f(z)}$.

Theorem: \exists a *-homomorphism $\pi: B(\sigma(T)) \to \mathbb{B}(H)$ such that

Let $T \in \mathbb{B}(H)$ be an operator which is **normal**: $T^*T = TT^*$. Let $B(\sigma(T))$ denote the *-algebra of bounded Borel functions $f: \sigma(T) \to \mathbb{C}$, with the *-operation given by $f^*(z) = \overline{f(z)}$.

Theorem: \exists a *-homomorphism $\pi: B(\sigma(T)) \to \mathbb{B}(H)$ such that

• $\pi(z) = T$ (and thus $\pi(\bar{z}) = T^*$).

Let $T \in \mathbb{B}(H)$ be an operator which is **normal**: $T^*T = TT^*$. Let $B(\sigma(T))$ denote the *-algebra of bounded Borel functions $f: \sigma(T) \to \mathbb{C}$, with the *-operation given by $f^*(z) = \overline{f(z)}$.

Theorem: \exists a *-homomorphism $\pi: B(\sigma(T)) \to \mathbb{B}(H)$ such that

- $\pi(z) = T$ (and thus $\pi(\bar{z}) = T^*$).
- $\|\pi(f)\| \le \|f\|_{\infty}$, for all $f \in B(\sigma(T))$, with equality if $f \in C(\sigma(T))$.

Let $T \in \mathbb{B}(H)$ be an operator which is **normal**: $T^*T = TT^*$. Let $B(\sigma(T))$ denote the *-algebra of bounded Borel functions $f: \sigma(T) \to \mathbb{C}$, with the *-operation given by $f^*(z) = \overline{f(z)}$.

Theorem: \exists a *-homomorphism $\pi: B(\sigma(T)) \to \mathbb{B}(H)$ such that

- $\pi(z) = T$ (and thus $\pi(\bar{z}) = T^*$).
- $\|\pi(f)\| \le \|f\|_{\infty}$, for all $f \in B(\sigma(T))$, with equality if $f \in C(\sigma(T))$.
- If $f_i \in B(\sigma(T))$ is a net such that $\sup_i \|f_i\|_{\infty} < \infty$ and $f_i(z) \to f(z)$, for all $z \in \sigma(T)$, then $\pi(f_i) \to \pi(f)$ (SOT).

Let $T \in \mathbb{B}(H)$ be an operator which is **normal**: $T^*T = TT^*$. Let $B(\sigma(T))$ denote the *-algebra of bounded Borel functions $f: \sigma(T) \to \mathbb{C}$, with the *-operation given by $f^*(z) = \overline{f(z)}$.

Theorem: \exists a *-homomorphism $\pi: B(\sigma(T)) \to \mathbb{B}(H)$ such that

- $\pi(z) = T$ (and thus $\pi(\bar{z}) = T^*$).
- $\|\pi(f)\| \le \|f\|_{\infty}$, for all $f \in B(\sigma(T))$, with equality if $f \in C(\sigma(T))$.
- If $f_i \in B(\sigma(T))$ is a net such that $\sup_i \|f_i\|_{\infty} < \infty$ and $f_i(z) \to f(z)$, for all $z \in \sigma(T)$, then $\pi(f_i) \to \pi(f)$ (SOT).

Notation. $f(T) := \pi(f)$, for all $f \in B(\sigma(T))$.

Let $T \in \mathbb{B}(H)$ be an operator which is **normal**: $T^*T = TT^*$. Let $B(\sigma(T))$ denote the *-algebra of bounded Borel functions $f: \sigma(T) \to \mathbb{C}$, with the *-operation given by $f^*(z) = \overline{f(z)}$.

Theorem: \exists a *-homomorphism $\pi: B(\sigma(T)) \to \mathbb{B}(H)$ such that

- $\pi(z) = T$ (and thus $\pi(\bar{z}) = T^*$).
- $\|\pi(f)\| \le \|f\|_{\infty}$, for all $f \in B(\sigma(T))$, with equality if $f \in C(\sigma(T))$.
- If $f_i \in B(\sigma(T))$ is a net such that $\sup_i \|f_i\|_{\infty} < \infty$ and $f_i(z) \to f(z)$, for all $z \in \sigma(T)$, then $\pi(f_i) \to \pi(f)$ (SOT).

Notation. $f(T) := \pi(f)$, for all $f \in B(\sigma(T))$.

Let $T \in \mathbb{B}(H)$ be an operator which is **normal**: $T^*T = TT^*$. Let $B(\sigma(T))$ denote the *-algebra of bounded Borel functions $f: \sigma(T) \to \mathbb{C}$, with the *-operation given by $f^*(z) = \overline{f(z)}$.

Theorem: \exists a *-homomorphism $\pi: B(\sigma(T)) \to \mathbb{B}(H)$ such that

- $\pi(z) = T$ (and thus $\pi(\bar{z}) = T^*$).
- $\|\pi(f)\| \le \|f\|_{\infty}$, for all $f \in B(\sigma(T))$, with equality if $f \in C(\sigma(T))$.
- If $f_i \in B(\sigma(T))$ is a net such that $\sup_i \|f_i\|_{\infty} < \infty$ and $f_i(z) \to f(z)$, for all $z \in \sigma(T)$, then $\pi(f_i) \to \pi(f)$ (SOT).

Notation. $f(T) := \pi(f)$, for all $f \in B(\sigma(T))$.

Consequences. Assume M is a von Neumann algebra containing T. 1) $f(T) \in M$, for all $f \in B(\sigma(T))$.

Let $T \in \mathbb{B}(H)$ be an operator which is **normal**: $T^*T = TT^*$. Let $B(\sigma(T))$ denote the *-algebra of bounded Borel functions $f: \sigma(T) \to \mathbb{C}$, with the *-operation given by $f^*(z) = \overline{f(z)}$.

Theorem: \exists a *-homomorphism $\pi: B(\sigma(T)) \to \mathbb{B}(H)$ such that

- $\pi(z) = T$ (and thus $\pi(\bar{z}) = T^*$).
- $\|\pi(f)\| \le \|f\|_{\infty}$, for all $f \in B(\sigma(T))$, with equality if $f \in C(\sigma(T))$.
- If $f_i \in B(\sigma(T))$ is a net such that $\sup_i \|f_i\|_{\infty} < \infty$ and $f_i(z) \to f(z)$, for all $z \in \sigma(T)$, then $\pi(f_i) \to \pi(f)$ (SOT).

Notation. $f(T) := \pi(f)$, for all $f \in B(\sigma(T))$.

- 1) $f(T) \in M$, for all $f \in B(\sigma(T))$.
- 2) $1_{\Delta}(T) \in M$ is a projection, for any Borel set $\Delta \subset \sigma(T)$.

Let $T \in \mathbb{B}(H)$ be an operator which is **normal**: $T^*T = TT^*$. Let $B(\sigma(T))$ denote the *-algebra of bounded Borel functions $f: \sigma(T) \to \mathbb{C}$, with the *-operation given by $f^*(z) = \overline{f(z)}$.

Theorem: \exists a *-homomorphism $\pi: B(\sigma(T)) \to \mathbb{B}(H)$ such that

- $\pi(z) = T$ (and thus $\pi(\bar{z}) = T^*$).
- $\|\pi(f)\| \le \|f\|_{\infty}$, for all $f \in B(\sigma(T))$, with equality if $f \in C(\sigma(T))$.
- If $f_i \in B(\sigma(T))$ is a net such that $\sup_i \|f_i\|_{\infty} < \infty$ and $f_i(z) \to f(z)$, for all $z \in \sigma(T)$, then $\pi(f_i) \to \pi(f)$ (SOT).

Notation. $f(T) := \pi(f)$, for all $f \in B(\sigma(T))$.

- 1) $f(T) \in M$, for all $f \in B(\sigma(T))$.
- 2) $1_{\Delta}(T) \in M$ is a projection, for any Borel set $\Delta \subset \sigma(T)$.
- 3) T is a norm limit of linear combinations of projections in M.

Let $T \in \mathbb{B}(H)$ be an operator which is **normal**: $T^*T = TT^*$. Let $B(\sigma(T))$ denote the *-algebra of bounded Borel functions $f: \sigma(T) \to \mathbb{C}$, with the *-operation given by $f^*(z) = \overline{f(z)}$.

Theorem: \exists a *-homomorphism $\pi: B(\sigma(T)) \to \mathbb{B}(H)$ such that

- $\pi(z) = T$ (and thus $\pi(\bar{z}) = T^*$).
- $\|\pi(f)\| \le \|f\|_{\infty}$, for all $f \in B(\sigma(T))$, with equality if $f \in C(\sigma(T))$.
- If $f_i \in B(\sigma(T))$ is a net such that $\sup_i \|f_i\|_{\infty} < \infty$ and $f_i(z) \to f(z)$, for all $z \in \sigma(T)$, then $\pi(f_i) \to \pi(f)$ (SOT).

Notation. $f(T) := \pi(f)$, for all $f \in B(\sigma(T))$.

- 1) $f(T) \in M$, for all $f \in B(\sigma(T))$.
- 2) $1_{\Delta}(T) \in M$ is a projection, for any Borel set $\Delta \subset \sigma(T)$.
- 3) T is a norm limit of linear combinations of projections in M.
- 4) If T is positive, then there exists $S \in M$ such that $T = S^*S$. (since $\sigma(T) \subset [0, \infty)$, we can take $S = T^{1/2}$).

Examples. 1) $\mathbb{B}(H)$ is a von Neumann algebra.

2) The algebra $\mathbb{K}(H)$ of all compact operators on H is a C*-algebra.

Examples. 1) $\mathbb{B}(H)$ is a von Neumann algebra.

2) The algebra $\mathbb{K}(H)$ of all compact operators on H is a C*-algebra.

Exercise 2. Show that $\mathbb{K}(H)$ is not a von Neumann algebra if dim $H = \infty$.

- **Examples.** 1) $\mathbb{B}(H)$ is a von Neumann algebra.
- 2) The algebra $\mathbb{K}(H)$ of all compact operators on H is a C*-algebra.
- **Exercise 2.** Show that $\mathbb{K}(H)$ is not a von Neumann algebra if dim $H = \infty$.
- **Exercise 3.** Let $S \subset \mathbb{B}(H)$ be a set such that $x^* \in S$, for all $x \in S$.

- **Examples.** 1) $\mathbb{B}(H)$ is a von Neumann algebra.
- 2) The algebra $\mathbb{K}(H)$ of all compact operators on H is a C*-algebra.
- **Exercise 2.** Show that $\mathbb{K}(H)$ is not a von Neumann algebra if dim $H = \infty$.
- **Exercise 3.** Let $S \subset \mathbb{B}(H)$ be a set such that $x^* \in S$, for all $x \in S$. Show that $S' = \{y \in \mathbb{B}(H) \mid xy = yx, \ \forall \ x \in S\}$ (the commutant of S) is a von Neumann algebra.

- **Examples.** 1) $\mathbb{B}(H)$ is a von Neumann algebra.
- 2) The algebra $\mathbb{K}(H)$ of all compact operators on H is a C*-algebra.
- **Exercise 2.** Show that $\mathbb{K}(H)$ is not a von Neumann algebra if dim $H = \infty$.

Exercise 3. Let $S \subset \mathbb{B}(H)$ be a set such that $x^* \in S$, for all $x \in S$. Show that $S' = \{y \in \mathbb{B}(H) \mid xy = yx, \ \forall \ x \in S\}$ (the commutant of S) is a von Neumann algebra.

Notation. If M is a von Neumann algebra, its **center** is $\mathcal{Z}(M) = M \cap M'$.

- **Examples.** 1) $\mathbb{B}(H)$ is a von Neumann algebra.
- 2) The algebra $\mathbb{K}(H)$ of all compact operators on H is a C*-algebra.
- **Exercise 2.** Show that $\mathbb{K}(H)$ is not a von Neumann algebra if dim $H = \infty$.
- **Exercise 3.** Let $S \subset \mathbb{B}(H)$ be a set such that $x^* \in S$, for all $x \in S$. Show that $S' = \{y \in \mathbb{B}(H) \mid xy = yx, \ \forall \ x \in S\}$ (the commutant of S) is a von Neumann algebra.

Notation. If M is a von Neumann algebra, its **center** is $\mathcal{Z}(M) = M \cap M'$.

Theorem (von Neumann)

If $M \subset \mathbb{B}(H)$ is a unital $(1 \in M)$ *-algebra, then **TFAE**:

- M is WOT-closed.
- M is SOT-closed.
- M = M'' := (M')'.

- **Examples.** 1) $\mathbb{B}(H)$ is a von Neumann algebra.
- 2) The algebra $\mathbb{K}(H)$ of all compact operators on H is a C*-algebra.
- **Exercise 2.** Show that $\mathbb{K}(H)$ is not a von Neumann algebra if dim $H = \infty$.
- **Exercise 3.** Let $S \subset \mathbb{B}(H)$ be a set such that $x^* \in S$, for all $x \in S$. Show that $S' = \{y \in \mathbb{B}(H) \mid xy = yx, \ \forall \ x \in S\}$ (the commutant of S) is a von Neumann algebra.

Notation. If M is a von Neumann algebra, its **center** is $\mathcal{Z}(M) = M \cap M'$.

Theorem (von Neumann)

If $M \subset \mathbb{B}(H)$ is a unital $(1 \in M)$ *-algebra, then **TFAE**:

- M is WOT-closed.
- M is SOT-closed.
- M = M'' := (M')'.
- $(3) \Rightarrow (1) \Rightarrow (2)$, so it remains to prove that $(2) \Rightarrow (3)$.

Proof of the bicommutant theorem, I

Assumption: $M \subset \mathbb{B}(H)$ is an SOT-closed unital *-algebra.

Goal: M = M''. To this end, fix $x \in M''$.

Proof of the bicommutant theorem, I

Assumption: $M \subset \mathbb{B}(H)$ is an SOT-closed unital *-algebra. Goal: M = M''. To this end, fix $x \in M''$. In order to show that $x \in M$, it suffices to argue that $x \in \overline{M}^{SOT}$: $\forall \xi_1, ..., \xi_n \in H$ and $\varepsilon > 0$, $\exists y \in M$ s.t. $||x\xi_i - y\xi_i|| < \varepsilon, \forall i = 1, ..., n$.

Proof of the bicommutant theorem, I

Assumption: $M \subset \mathbb{B}(H)$ is an SOT-closed unital *-algebra.

Goal: M = M''. To this end, fix $x \in M''$.

In order to show that $x \in M$, it suffices to argue that $x \in \overline{M}^{SOT}$:

 $\forall \xi_1,...,\xi_n \in H \text{ and } \varepsilon > 0, \ \exists y \in M \text{ s.t. } \|x\xi_i - y\xi_i\| < \varepsilon, \forall i = 1,...,n.$

First, we assume that n = 1 and prove the following:

Assumption: $M \subset \mathbb{B}(H)$ is an SOT-closed unital *-algebra.

Goal: M = M''. To this end, fix $x \in M''$.

In order to show that $x \in M$, it suffices to argue that $x \in \overline{M}^{SOT}$:

 $\forall \xi_1,...,\xi_n \in H \text{ and } \varepsilon > 0, \ \exists y \in M \text{ s.t. } \|x\xi_i - y\xi_i\| < \varepsilon, \forall i = 1,...,n.$

First, we assume that n = 1 and prove the following:

Claim

Let $K \subset H$ be an M-invariant closed subspace. ($zK \subset K$, for all $z \in M$)

Assumption: $M \subset \mathbb{B}(H)$ is an SOT-closed unital *-algebra.

Goal: M = M''. To this end, fix $x \in M''$.

In order to show that $x \in M$, it suffices to argue that $x \in \overline{M}^{SOT}$:

 $\forall \xi_1,...,\xi_n \in H \text{ and } \varepsilon > 0, \ \exists y \in M \text{ s.t. } \|x\xi_i - y\xi_i\| < \varepsilon, \forall i = 1,...,n.$

First, we assume that n = 1 and prove the following:

Claim

Let $K \subset H$ be an M-invariant closed subspace. ($zK \subset K$, for all $z \in M$) If p is the orthogonal projection onto K, then $p \in M'$.

Assumption: $M \subset \mathbb{B}(H)$ is an SOT-closed unital *-algebra.

Goal: M = M''. To this end, fix $x \in M''$.

In order to show that $x \in M$, it suffices to argue that $x \in \overline{M}^{SOT}$:

 $\forall \xi_1,...,\xi_n \in H \text{ and } \varepsilon > 0, \ \exists y \in M \text{ s.t. } \|x\xi_i - y\xi_i\| < \varepsilon, \forall i = 1,...,n.$

First, we assume that n = 1 and prove the following:

Claim

Let $K \subset H$ be an M-invariant closed subspace. ($zK \subset K$, for all $z \in M$) If p is the orthogonal projection onto K, then $p \in M'$.

Proof of the claim. If $z \in M$, then $zpH = zK \subset K$.

Assumption: $M \subset \mathbb{B}(H)$ is an SOT-closed unital *-algebra.

Goal: M = M''. To this end, fix $x \in M''$.

In order to show that $x \in M$, it suffices to argue that $x \in \overline{M}^{SOT}$:

$$\forall \xi_1,...,\xi_n \in H \text{ and } \varepsilon > 0, \ \exists y \in M \text{ s.t. } \|x\xi_i - y\xi_i\| < \varepsilon, \forall i = 1,...,n.$$

First, we assume that n = 1 and prove the following:

Claim

Let $K \subset H$ be an M-invariant closed subspace. ($zK \subset K$, for all $z \in M$) If p is the orthogonal projection onto K, then $p \in M'$.

Proof of the claim. If $z \in M$, then $zpH = zK \subset K$.

Hence $(1 - p)zpH \subset (1 - p)K = \{0\}$ and thus (1 - p)zp = 0 (a).

Assumption: $M \subset \mathbb{B}(H)$ is an SOT-closed unital *-algebra.

Goal: M = M''. To this end, fix $x \in M''$.

In order to show that $x \in M$, it suffices to argue that $x \in \overline{M}^{SOT}$:

$$\forall \xi_1,...,\xi_n \in H \text{ and } \varepsilon > 0, \ \exists y \in M \text{ s.t. } \|x\xi_i - y\xi_i\| < \varepsilon, \forall i = 1,...,n.$$

First, we assume that n = 1 and prove the following:

Claim

Let $K \subset H$ be an M-invariant closed subspace. ($zK \subset K$, for all $z \in M$) If p is the orthogonal projection onto K, then $p \in M'$.

Proof of the claim. If $z \in M$, then $zpH = zK \subset K$.

Hence $(1 - p)zpH \subset (1 - p)K = \{0\}$ and thus (1 - p)zp = 0 (a).

Since $z^* \in M \Rightarrow (1-p)z^*p = 0 \Rightarrow pz(1-p) = 0$ (b).

Assumption: $M \subset \mathbb{B}(H)$ is an SOT-closed unital *-algebra.

Goal: M = M''. To this end, fix $x \in M''$.

In order to show that $x \in M$, it suffices to argue that $x \in \overline{M}^{SOT}$:

$$\forall \xi_1,...,\xi_n \in H \text{ and } \varepsilon > 0, \ \exists y \in M \text{ s.t. } \|x\xi_i - y\xi_i\| < \varepsilon, \forall i = 1,...,n.$$

First, we assume that n = 1 and prove the following:

Claim

Let $K \subset H$ be an M-invariant closed subspace. ($zK \subset K$, for all $z \in M$) If p is the orthogonal projection onto K, then $p \in M'$.

Proof of the claim. If $z \in M$, then $zpH = zK \subset K$.

Hence $(1 - p)zpH \subset (1 - p)K = \{0\}$ and thus (1 - p)zp = 0 (a).

Since $z^* \in M \Rightarrow (1-p)z^*p = 0 \Rightarrow pz(1-p) = 0$ **(b)**.

(a) and (b) $\Rightarrow pz - zp = pz(1-p) - (1-p)zp = 0$, proving the claim.

Goal: If $M \subset \mathbb{B}(H)$ is a unital *-algebra and $x \in M''$, then $\forall \xi_1,...,\xi_n \in H$ and $\varepsilon > 0$, $\exists y \in M$ s.t. $||x\xi_i - y\xi_i|| < \varepsilon, \forall i = 1,...,n$.

Goal: If $M \subset \mathbb{B}(H)$ is a unital *-algebra and $x \in M''$, then $\forall \xi_1,...,\xi_n \in H$ and $\varepsilon > 0, \ \exists y \in M \ \text{s.t.} \ \|x\xi_i - y\xi_i\| < \varepsilon, \forall i = 1,...,n.$ In the present case n = 1, let p be the orthogonal projection onto

$$\overline{M\xi_1} := \overline{\{y\xi_1 \mid y \in M\}}.$$

Goal: If $M \subset \mathbb{B}(H)$ is a unital *-algebra and $x \in M''$, then $\forall \xi_1,...,\xi_n \in H$ and $\varepsilon > 0, \ \exists y \in M \ \text{s.t.} \ \|x\xi_i - y\xi_i\| < \varepsilon, \forall i = 1,...,n.$

In the present case n = 1, let p be the orthogonal projection onto

$$\overline{M\xi_1} := \overline{\{y\xi_1 \mid y \in M\}}.$$

Since $\overline{M\xi_1} \subset H$ is a closed M-invariant subspace, the claim implies $p \in M'$.

Goal: If $M \subset \mathbb{B}(H)$ is a unital *-algebra and $x \in M''$, then $\forall \xi_1,...,\xi_n \in H$ and $\varepsilon > 0, \ \exists y \in M \ \text{s.t.} \ \|x\xi_i - y\xi_i\| < \varepsilon, \forall i = 1,...,n.$

In the present case n = 1, let p be the orthogonal projection onto

$$\overline{M\xi_1} := \overline{\{y\xi_1 \mid y \in M\}}.$$

Since $\overline{M\xi_1} \subset H$ is a closed M-invariant subspace, the claim implies $p \in M'$.

Since
$$x \in (M')'$$
, we have $xp = px$, and thus $x\xi_1 = xp\xi_1 = p(x\xi_1) \in \overline{M\xi_1}$.

Goal: If $M \subset \mathbb{B}(H)$ is a unital *-algebra and $x \in M''$, then $\forall \xi_1,...,\xi_n \in H$ and $\varepsilon > 0, \ \exists y \in M \ \text{s.t.} \ \|x\xi_i - y\xi_i\| < \varepsilon, \forall i = 1,...,n.$

In the present case n = 1, let p be the orthogonal projection onto

$$\overline{M\xi_1} := \overline{\{y\xi_1 \mid y \in M\}}.$$

Since $\overline{M\xi_1} \subset H$ is a closed M-invariant subspace, the claim implies $p \in M'$.

Since $x \in (M')'$, we have xp = px, and thus $x\xi_1 = xp\xi_1 = p(x\xi_1) \in \overline{M\xi_1}$.

This implies that $||x\xi_1 - y\xi_1|| < \varepsilon$, for some $y \in M$, and finishes the proof in the case n = 1.

Goal: If $M \subset \mathbb{B}(H)$ is a unital *-algebra and $x \in M''$, then $\forall \xi_1,...,\xi_n \in H$ and $\varepsilon > 0, \ \exists y \in M \ \text{s.t.} \ \|x\xi_i - y\xi_i\| < \varepsilon, \forall i = 1,...,n.$

Since we have verified the case n = 1, we may assume $n \ge 2$.

Goal: If $M \subset \mathbb{B}(H)$ is a unital *-algebra and $x \in M''$, then $\forall \xi_1,...,\xi_n \in H$ and $\varepsilon > 0, \ \exists y \in M \ \text{s.t.} \ \|x\xi_i - y\xi_i\| < \varepsilon, \forall i = 1,...,n.$

Since we have verified the case n=1, we may assume $n\geq 2$. We will use a "matrix trick". We define a diagonal *-homomorphism $\pi: \mathbb{B}(H) \to \mathbb{B}(H^n) \equiv \mathbb{M}_n(\mathbb{B}(H))$ by letting

$$\pi(y) = \begin{pmatrix} y & 0 & \dots & 0 \\ 0 & y & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & y \end{pmatrix}$$

Goal: If $M \subset \mathbb{B}(H)$ is a unital *-algebra and $x \in M''$, then $\forall \xi_1,...,\xi_n \in H$ and $\varepsilon > 0, \ \exists y \in M \ \text{s.t.} \ \|x\xi_i - y\xi_i\| < \varepsilon, \forall i = 1,...,n.$

Since we have verified the case n=1, we may assume $n\geq 2$. We will use a "matrix trick". We define a diagonal *-homomorphism $\pi: \mathbb{B}(H) \to \mathbb{B}(H^n) \equiv \mathbb{M}_n(\mathbb{B}(H))$ by letting

$$\pi(y) = \begin{pmatrix} y & 0 & \dots & 0 \\ 0 & y & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & y \end{pmatrix}$$

Equivalently: $\pi(y)(\eta_1 \oplus ... \oplus \eta_n) = y\eta_1 \oplus ... \oplus y\eta_n$.

Goal: If $M \subset \mathbb{B}(H)$ is a unital *-algebra and $x \in M''$, then $\forall \xi_1,...,\xi_n \in H$ and $\varepsilon > 0, \ \exists y \in M \ \text{s.t.} \ \|x\xi_i - y\xi_i\| < \varepsilon, \forall i = 1,...,n.$

Since we have verified the case n=1, we may assume $n\geq 2$. We will use a "matrix trick". We define a diagonal *-homomorphism $\pi: \mathbb{B}(H) \to \mathbb{B}(H^n) \equiv \mathbb{M}_n(\mathbb{B}(H))$ by letting

$$\pi(y) = \begin{pmatrix} y & 0 & \dots & 0 \\ 0 & y & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & y \end{pmatrix}$$

Equivalently: $\pi(y)(\eta_1 \oplus ... \oplus \eta_n) = y\eta_1 \oplus ... \oplus y\eta_n$.

Exercise 4. Show that $\pi(M'') \subset \mathbb{M}_n(M')'$ and $\pi(M)' \subset \mathbb{M}_n(M')$.

Goal: If $M \subset \mathbb{B}(H)$ is a unital *-algebra and $x \in M''$, then $\forall \xi_1,...,\xi_n \in H$ and $\varepsilon > 0, \ \exists y \in M \ \text{s.t.} \ \|x\xi_i - y\xi_i\| < \varepsilon, \forall i = 1,...,n.$

Since we have verified the case n=1, we may assume $n\geq 2$. We will use a "matrix trick". We define a diagonal *-homomorphism $\pi: \mathbb{B}(H) \to \mathbb{B}(H^n) \equiv \mathbb{M}_n(\mathbb{B}(H))$ by letting

$$\pi(y) = \begin{pmatrix} y & 0 & \dots & 0 \\ 0 & y & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & y \end{pmatrix}$$

Equivalently: $\pi(y)(\eta_1 \oplus ... \oplus \eta_n) = y\eta_1 \oplus ... \oplus y\eta_n$.

Exercise 4. Show that $\pi(M'') \subset \mathbb{M}_n(M')'$ and $\pi(M)' \subset \mathbb{M}_n(M')$.

This implies that $\pi(M'') \subset (\pi(M)')'$, hence $\pi(x) \in \pi(M)''$.

Goal: If $M \subset \mathbb{B}(H)$ is a unital *-algebra and $x \in M''$, then $\forall \xi_1,...,\xi_n \in H$ and $\varepsilon > 0$, $\exists y \in M$ s.t. $\|x\xi_i - y\xi_i\| < \varepsilon, \forall i = 1,...,n$.

Since we have verified the case n=1, we may assume $n\geq 2$. We will use a "matrix trick". We define a diagonal *-homomorphism $\pi: \mathbb{B}(H) \to \mathbb{B}(H^n) \equiv \mathbb{M}_n(\mathbb{B}(H))$ by letting

$$\pi(y) = \begin{pmatrix} y & 0 & \dots & 0 \\ 0 & y & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & y \end{pmatrix}$$

Equivalently: $\pi(y)(\eta_1 \oplus ... \oplus \eta_n) = y\eta_1 \oplus ... \oplus y\eta_n$.

Exercise 4. Show that $\pi(M'') \subset \mathbb{M}_n(M')'$ and $\pi(M)' \subset \mathbb{M}_n(M')$.

This implies that $\pi(M'') \subset (\pi(M)')'$, hence $\pi(x) \in \pi(M)''$. If $\xi = \xi_1 \oplus ... \oplus \xi_n \in H^n$, the case $n = 1 \Rightarrow \exists y \in M$ s.t.

$$\|\pi(x)\xi - \pi(y)\xi\| < \varepsilon$$
, or equivalently $\left(\sum_{i=1}^n \|x\xi_i - y\xi_i\|^2\right)^{1/2} < \varepsilon$.

Proposition

Let (X, μ) be a **standard** probability space $(X \text{ is a Polish space}, \mu \text{ is a Borel measure on } X \text{ with } \mu(X) = 1).$

Proposition

Let (X, μ) be a **standard** probability space $(X \text{ is a Polish space}, \mu \text{ is a Borel measure on } X \text{ with } \mu(X) = 1).$

Define a *-homomorphism $\pi: L^{\infty}(X, \mu) \to \mathbb{B}(L^2(X, \mu))$ by $\pi(f)(\xi) = f\xi$, for all $f \in L^{\infty}(X)$ and $\xi \in L^2(X)$.

Proposition

Let (X, μ) be a **standard** probability space $(X \text{ is a Polish space}, \mu \text{ is a Borel measure on } X \text{ with } \mu(X) = 1).$

Define a *-homomorphism $\pi: L^{\infty}(X,\mu) \to \mathbb{B}(L^2(X,\mu))$ by $\pi(f)(\xi) = f\xi$, for all $f \in L^{\infty}(X)$ and $\xi \in L^2(X)$.

Then $\pi(L^{\infty}(X))' = \pi(L^{\infty}(X))$.

Proposition

Let (X, μ) be a **standard** probability space $(X \text{ is a Polish space}, \mu \text{ is a Borel measure on } X \text{ with } \mu(X) = 1).$

Define a *-homomorphism $\pi: L^{\infty}(X, \mu) \to \mathbb{B}(L^2(X, \mu))$ by $\pi(f)(\xi) = f\xi$, for all $f \in L^{\infty}(X)$ and $\xi \in L^2(X)$.

Then $\pi(L^{\infty}(X))' = \pi(L^{\infty}(X))$. Therefore, $\pi(L^{\infty}(X)) \subset \mathbb{B}(L^{2}(X))$ is a maximal abelian von Neumann subalgebra.

Proposition

Let (X, μ) be a **standard** probability space $(X \text{ is a Polish space}, \mu \text{ is a Borel measure on } X \text{ with } \mu(X) = 1).$

Define a *-homomorphism $\pi: L^{\infty}(X, \mu) \to \mathbb{B}(L^2(X, \mu))$ by $\pi(f)(\xi) = f\xi$, for all $f \in L^{\infty}(X)$ and $\xi \in L^2(X)$.

Then $\pi(L^{\infty}(X))' = \pi(L^{\infty}(X))$. Therefore, $\pi(L^{\infty}(X)) \subset \mathbb{B}(L^{2}(X))$ is a maximal abelian von Neumann subalgebra.

Proof. Let $T \in \pi(L^{\infty}(X))'$ and put $g = T(\mathbf{1}_X) \in L^2(X)$.

Proposition

Let (X, μ) be a **standard** probability space $(X \text{ is a Polish space}, \mu \text{ is a Borel measure on } X \text{ with } \mu(X) = 1).$

Define a *-homomorphism $\pi: L^{\infty}(X, \mu) \to \mathbb{B}(L^2(X, \mu))$ by $\pi(f)(\xi) = f\xi$, for all $f \in L^{\infty}(X)$ and $\xi \in L^2(X)$.

Then $\pi(L^{\infty}(X))' = \pi(L^{\infty}(X))$. Therefore, $\pi(L^{\infty}(X)) \subset \mathbb{B}(L^{2}(X))$ is a maximal abelian von Neumann subalgebra.

Proof. Let $T \in \pi(L^{\infty}(X))'$ and put $g = T(\mathbf{1}_X) \in L^2(X)$. Then $fg = \pi(f)T(\mathbf{1}) = T\pi(f)(\mathbf{1}) = T(f)$, for all $f \in L^{\infty}(X)$.

Proposition

Let (X, μ) be a **standard** probability space $(X \text{ is a Polish space}, \mu \text{ is a Borel measure on } X \text{ with } \mu(X) = 1).$

Define a *-homomorphism $\pi: L^{\infty}(X,\mu) \to \mathbb{B}(L^2(X,\mu))$ by $\pi(f)(\xi) = f\xi$, for all $f \in L^{\infty}(X)$ and $\xi \in L^2(X)$.

Then $\pi(L^{\infty}(X))' = \pi(L^{\infty}(X))$. Therefore, $\pi(L^{\infty}(X)) \subset \mathbb{B}(L^{2}(X))$ is a maximal abelian von Neumann subalgebra.

Proof. Let $T \in \pi(L^{\infty}(X))'$ and put $g = T(\mathbf{1}_X) \in L^2(X)$.

Then $fg = \pi(f)T(\mathbf{1}) = T\pi(f)(\mathbf{1}) = T(f)$, for all $f \in L^{\infty}(X)$.

Since $L^{\infty}(X) \subset L^{2}(X)$ is dense, it suffices to show that $g \in L^{\infty}(X)$.

Proposition

Let (X, μ) be a **standard** probability space $(X \text{ is a Polish space}, \mu \text{ is a Borel measure on } X \text{ with } \mu(X) = 1).$

Define a *-homomorphism $\pi: L^{\infty}(X,\mu) \to \mathbb{B}(L^2(X,\mu))$ by $\pi(f)(\xi) = f\xi$, for all $f \in L^{\infty}(X)$ and $\xi \in L^2(X)$.

Then $\pi(L^{\infty}(X))' = \pi(L^{\infty}(X))$. Therefore, $\pi(L^{\infty}(X)) \subset \mathbb{B}(L^{2}(X))$ is a maximal abelian von Neumann subalgebra.

Proof. Let
$$T \in \pi(L^{\infty}(X))'$$
 and put $g = T(\mathbf{1}_X) \in L^2(X)$.

Then $fg = \pi(f)T(\mathbf{1}) = T\pi(f)(\mathbf{1}) = T(f)$, for all $f \in L^{\infty}(X)$.

Since $L^{\infty}(X) \subset L^{2}(X)$ is dense, it suffices to show that $g \in L^{\infty}(X)$.

For $n \ge 1$, let $f_n = \mathbf{1}_{\{x \in X | |g(x)| \ge ||T|| + 1/n\}}$. Then $|f_n g| \ge (||T|| + 1/n)|f_n|$,

Proposition

Let (X, μ) be a **standard** probability space $(X \text{ is a Polish space}, \mu \text{ is a Borel measure on } X \text{ with } \mu(X) = 1).$

Define a *-homomorphism $\pi: L^{\infty}(X, \mu) \to \mathbb{B}(L^2(X, \mu))$ by $\pi(f)(\xi) = f\xi$, for all $f \in L^{\infty}(X)$ and $\xi \in L^2(X)$.

Then $\pi(L^{\infty}(X))' = \pi(L^{\infty}(X))$. Therefore, $\pi(L^{\infty}(X)) \subset \mathbb{B}(L^{2}(X))$ is a maximal abelian von Neumann subalgebra.

Proof. Let $T \in \pi(L^{\infty}(X))'$ and put $g = T(\mathbf{1}_X) \in L^2(X)$.

Then $fg = \pi(f)T(1) = T\pi(f)(1) = T(f)$, for all $f \in L^{\infty}(X)$.

Since $L^{\infty}(X) \subset L^{2}(X)$ is dense, it suffices to show that $g \in L^{\infty}(X)$.

For $n \ge 1$, let $f_n = \mathbf{1}_{\{x \in X \mid |g(x)| \ge ||T|| + 1/n\}}$. Then $|f_n g| \ge (||T|| + 1/n)|f_n|$, hence $||T|| ||f_n||_2 \ge ||T(f_n)||_2 = ||f_n g||_2 \ge (||T|| + 1/n)||f_n||_2$, so $f_n = 0$, a.e.

Proposition

Let (X, μ) be a **standard** probability space $(X \text{ is a Polish space}, \mu \text{ is a Borel measure on } X \text{ with } \mu(X) = 1).$

Define a *-homomorphism $\pi: L^{\infty}(X, \mu) \to \mathbb{B}(L^2(X, \mu))$ by $\pi(f)(\xi) = f\xi$, for all $f \in L^{\infty}(X)$ and $\xi \in L^2(X)$.

Then $\pi(L^{\infty}(X))' = \pi(L^{\infty}(X))$. Therefore, $\pi(L^{\infty}(X)) \subset \mathbb{B}(L^{2}(X))$ is a maximal abelian von Neumann subalgebra.

Proof. Let $T \in \pi(L^{\infty}(X))'$ and put $g = T(\mathbf{1}_X) \in L^2(X)$.

Then $fg = \pi(f)T(\mathbf{1}) = T\pi(f)(\mathbf{1}) = T(f)$, for all $f \in L^{\infty}(X)$.

Since $L^{\infty}(X) \subset L^{2}(X)$ is dense, it suffices to show that $g \in L^{\infty}(X)$.

For $n \ge 1$, let $f_n = \mathbf{1}_{\{x \in X \mid |g(x)| \ge ||T|| + 1/n\}}$. Then $|f_n g| \ge (||T|| + 1/n)|f_n|$, hence $||T|| ||f_n||_2 \ge ||T(f_n)||_2 = ||f_n g||_2 \ge (||T|| + 1/n)||f_n||_2$, so $f_n = 0$, a.e.

Thus, $\mu(\{x \in X | |g(x)| \ge ||T|| + 1/n\}) = 0$ for all $n \ge 1 \Rightarrow ||g||_{\infty} \le ||T||$.

Definition. Let A be a unital C*-algebra. A unital linear functional $\varphi: A \to \mathbb{C}$ is called a **state** if is **positive**: $\varphi(x) \ge 0$, for all $x \in A, x \ge 0$.

Definition. Let A be a unital C*-algebra. A unital linear functional $\varphi: A \to \mathbb{C}$ is called a **state** if is **positive**: $\varphi(x) \geq 0$, for all $x \in A, x \geq 0$. **Example.** $\varphi(T) = \langle T(\xi), \xi \rangle$ is a state on $\mathbb{B}(H)$, for $\xi \in H$, $\|\xi\| = 1$.

Definition. Let A be a unital C*-algebra. A unital linear functional $\varphi:A\to\mathbb{C}$ is called a **state** if is **positive**: $\varphi(x)\geq 0$, for all $x\in A, x\geq 0$. **Example.** $\varphi(T)=\langle T(\xi),\xi\rangle$ is a state on $\mathbb{B}(H)$, for $\xi\in H$, $\|\xi\|=1$. **Exercise 5.** Show that a) $|\varphi(y^*x)|^2\leq \varphi(x^*x)\varphi(y^*y)$, for all $x,y\in A$. b) φ is bounded and $\|\varphi\|=\varphi(1)$.

Definition. Let A be a unital C*-algebra. A unital linear functional $\varphi:A\to\mathbb{C}$ is called a **state** if is **positive**: $\varphi(x)\geq 0$, for all $x\in A, x\geq 0$. **Example.** $\varphi(T)=\langle T(\xi),\xi\rangle$ is a state on $\mathbb{B}(H)$, for $\xi\in H$, $\|\xi\|=1$.

Exercise 5. Show that a) $|\varphi(y^*x)|^2 \le \varphi(x^*x)\varphi(y^*y)$, for all $x, y \in A$. b) φ is bounded and $||\varphi|| = \varphi(1)$.

Definition

A von Neumann algebra $M \subset \mathbb{B}(H)$ is called **tracial** if there exists a state $\varphi: M \to \mathbb{C}$ (called a **trace**) which is:

• faithful if $x \ge 0$ and $\varphi(x) = 0$, then x = 0.

Definition. Let A be a unital C*-algebra. A unital linear functional $\varphi:A\to\mathbb{C}$ is called a **state** if is **positive**: $\varphi(x)\geq 0$, for all $x\in A, x\geq 0$. **Example.** $\varphi(T)=\langle T(\xi),\xi\rangle$ is a state on $\mathbb{B}(H)$, for $\xi\in H$, $\|\xi\|=1$.

Exercise 5. Show that a) $|\varphi(y^*x)|^2 \le \varphi(x^*x)\varphi(y^*y)$, for all $x, y \in A$. b) φ is bounded and $||\varphi|| = \varphi(1)$.

Definition

A von Neumann algebra $M \subset \mathbb{B}(H)$ is called **tracial** if there exists a state $\varphi: M \to \mathbb{C}$ (called a **trace**) which is:

- faithful if $x \ge 0$ and $\varphi(x) = 0$, then x = 0.
- **2** normal (or completely additive) $\varphi(\sum_{i\in I} p_i) = \sum_{i\in I} \varphi(p_i)$, for any collection of mutually orthogonal projections $\{p_i\}_{i\in I}$ in M.

Definition. Let A be a unital C*-algebra. A unital linear functional $\varphi:A\to\mathbb{C}$ is called a **state** if is **positive**: $\varphi(x)\geq 0$, for all $x\in A, x\geq 0$. **Example.** $\varphi(T)=\langle T(\xi),\xi\rangle$ is a state on $\mathbb{B}(H)$, for $\xi\in H$, $\|\xi\|=1$.

Exercise 5. Show that a) $|\varphi(y^*x)|^2 \le \varphi(x^*x)\varphi(y^*y)$, for all $x, y \in A$. b) φ is bounded and $||\varphi|| = \varphi(1)$.

Definition

A von Neumann algebra $M \subset \mathbb{B}(H)$ is called **tracial** if there exists a state $\varphi : M \to \mathbb{C}$ (called a **trace**) which is:

- faithful if $x \ge 0$ and $\varphi(x) = 0$, then x = 0.
- **2** normal (or completely additive) $\varphi(\sum_{i \in I} p_i) = \sum_{i \in I} \varphi(p_i)$, for any collection of mutually orthogonal projections $\{p_i\}_{i \in I}$ in M.
- **3** tracial $\varphi(xy) = \varphi(yx)$, for all $x, y \in M$.

Definition. Let A be a unital C*-algebra. A unital linear functional $\varphi: A \to \mathbb{C}$ is called a **state** if is **positive**: $\varphi(x) \ge 0$, for all $x \in A, x \ge 0$.

Example. $\varphi(T) = \langle T(\xi), \xi \rangle$ is a state on $\mathbb{B}(H)$, for $\xi \in H$, $\|\xi\| = 1$.

Exercise 5. Show that a) $|\varphi(y^*x)|^2 \le \varphi(x^*x)\varphi(y^*y)$, for all $x, y \in A$. b) φ is bounded and $||\varphi|| = \varphi(1)$.

Definition

A von Neumann algebra $M \subset \mathbb{B}(H)$ is called **tracial** if there exists a state $\varphi: M \to \mathbb{C}$ (called a **trace**) which is:

- faithful if $x \ge 0$ and $\varphi(x) = 0$, then x = 0.
- **2** normal (or completely additive) $\varphi(\sum_{i \in I} p_i) = \sum_{i \in I} \varphi(p_i)$, for any collection of mutually orthogonal projections $\{p_i\}_{i \in I}$ in M.
- **3** tracial $\varphi(xy) = \varphi(yx)$, for all $x, y \in M$.

Examples. 1) $L^{\infty}(X, \mu)$ with $\varphi(f) = \int_X f d\mu$.

- 2) $\mathbb{M}_n(\mathbb{C})$ with the usual normalized trace $\varphi([a_{i,j}]) = (a_{1,1} + + a_{n,n})/n$.
- 3) $\mathbb{B}(H)$ is not tracial if dim $H = \infty$.

Equivalence of projections

Definition

Let $M \subset \mathbb{B}(H)$ be a von Neumann algebra and $p, q \in M$ be projections.

• p is equivalent to q ($p \sim q$) if $\exists v \in M$ such that $v^*v = p$, $vv^* = q$. (v is an isometry between pH and qH, called a **partial isometry**).

Equivalence of projections

Definition

Let $M \subset \mathbb{B}(H)$ be a von Neumann algebra and $p, q \in M$ be projections.

- p is equivalent to q ($p \sim q$) if $\exists v \in M$ such that $v^*v = p$, $vv^* = q$. (v is an isometry between pH and qH, called a **partial isometry**).
- p is dominated by q $(p \leq q)$ if $\exists q' \in M$ such that $q' \leq q$ and $p \sim q$

Definition

Let $M \subset \mathbb{B}(H)$ be a von Neumann algebra and $p, q \in M$ be projections.

- p is equivalent to q ($p \sim q$) if $\exists v \in M$ such that $v^*v = p$, $vv^* = q$. (v is an isometry between pH and qH, called a **partial isometry**).
- p is dominated by q $(p \leq q)$ if $\exists q' \in M$ such that $q' \leq q$ and $p \sim q$

Lemma 1. If $pMq \neq \{0\} \Rightarrow \exists p', q' \in M \text{ s.t. } p' \leq p, q' \leq q, \text{ and } p' \sim q'.$

Definition

Let $M \subset \mathbb{B}(H)$ be a von Neumann algebra and $p, q \in M$ be projections.

- p is equivalent to q ($p \sim q$) if $\exists v \in M$ such that $v^*v = p$, $vv^* = q$. (v is an isometry between pH and qH, called a **partial isometry**).
- p is dominated by q $(p \leq q)$ if $\exists q' \in M$ such that $q' \leq q$ and $p \sim q$

Lemma 1. If $pMq \neq \{0\} \Rightarrow \exists p', q' \in M \text{ s.t. } p' \leq p, q' \leq q, \text{ and } p' \sim q'.$ [If $x \in M$ satisfies $pxq \neq 0$, then polar decomposition gives a partial isometry $v \in M$ s.t. x = v|x|. One checks that $vv^* \leq p$ and $v^*v \leq q$.]

Definition

Let $M \subset \mathbb{B}(H)$ be a von Neumann algebra and $p, q \in M$ be projections.

- p is equivalent to q ($p \sim q$) if $\exists v \in M$ such that $v^*v = p$, $vv^* = q$. (v is an isometry between pH and qH, called a **partial isometry**).
- p is dominated by q ($p \leq q$) if $\exists q' \in M$ such that $q' \leq q$ and $p \sim q$

Lemma 1. If $pMq \neq \{0\} \Rightarrow \exists p', q' \in M \text{ s.t. } p' \leq p, q' \leq q, \text{ and } p' \sim q'.$ [If $x \in M$ satisfies $pxq \neq 0$, then polar decomposition gives a partial isometry $v \in M$ s.t. x = v|x|. One checks that $vv^* \leq p$ and $v^*v \leq q$.]

Lemma 2. \exists a projection $z \in \mathcal{Z}(M)$ s.t. $pz \leq qz$ and $q(1-z) \leq p(1-z)$.

Definition

Let $M \subset \mathbb{B}(H)$ be a von Neumann algebra and $p, q \in M$ be projections.

- p is equivalent to q ($p \sim q$) if $\exists v \in M$ such that $v^*v = p$, $vv^* = q$. (v is an isometry between pH and qH, called a **partial isometry**).
- p is dominated by q $(p \leq q)$ if $\exists q' \in M$ such that $q' \leq q$ and $p \sim q$

Lemma 1. If $pMq \neq \{0\} \Rightarrow \exists p', q' \in M \text{ s.t. } p' \leq p, q' \leq q, \text{ and } p' \sim q'.$ [If $x \in M$ satisfies $pxq \neq 0$, then polar decomposition gives a partial isometry $v \in M$ s.t. x = v|x|. One checks that $vv^* \leq p$ and $v^*v \leq q$.]

Lemma 2. \exists a projection $z \in \mathcal{Z}(M)$ s.t. $pz \leq qz$ and $q(1-z) \leq p(1-z)$. **Proof sketch.** Let (p',q') be a maximal pair of projections such that $p',q' \in M, p' \leq p,q' \leq q$ and $p' \sim q'$.

Definition

Let $M \subset \mathbb{B}(H)$ be a von Neumann algebra and $p, q \in M$ be projections.

- p is equivalent to q ($p \sim q$) if $\exists v \in M$ such that $v^*v = p$, $vv^* = q$. (v is an isometry between pH and qH, called a **partial isometry**).
- ullet p is dominated by q $(p \leq q)$ if $\exists q' \in M$ such that $q' \leq q$ and $p \sim q$

Lemma 1. If $pMq \neq \{0\} \Rightarrow \exists p', q' \in M \text{ s.t. } p' \leq p, q' \leq q, \text{ and } p' \sim q'.$ [If $x \in M$ satisfies $pxq \neq 0$, then polar decomposition gives a partial isometry $v \in M$ s.t. x = v|x|. One checks that $vv^* \leq p$ and $v^*v \leq q$.]

Lemma 2. \exists a projection $z \in \mathcal{Z}(M)$ s.t. $pz \leq qz$ and $q(1-z) \leq p(1-z)$. **Proof sketch.** Let (p',q') be a maximal pair of projections such that $p',q' \in M, p' \leq p, q' \leq q$ and $p' \sim q'$. Since p-p' and q-q' have no equivalent subprojections, Lemma $1 \Rightarrow (p-p')M(q-q') = \{0\}$.

Definition

Let $M \subset \mathbb{B}(H)$ be a von Neumann algebra and $p, q \in M$ be projections.

- p is equivalent to q ($p \sim q$) if $\exists v \in M$ such that $v^*v = p$, $vv^* = q$. (v is an isometry between pH and qH, called a **partial isometry**).
- p is dominated by q $(p \leq q)$ if $\exists q' \in M$ such that $q' \leq q$ and $p \sim q$

Lemma 1. If $pMq \neq \{0\} \Rightarrow \exists p', q' \in M \text{ s.t. } p' \leq p, q' \leq q, \text{ and } p' \sim q'.$ [If $x \in M$ satisfies $pxq \neq 0$, then polar decomposition gives a partial isometry $v \in M$ s.t. x = v|x|. One checks that $vv^* \leq p$ and $v^*v \leq q$.] **Lemma 2.** \exists a projection $z \in \mathcal{Z}(M)$ s.t. $pz \leq qz$ and $q(1-z) \leq p(1-z)$.

Proof sketch. Let (p',q') be a maximal pair of projections such that $p',q'\in M,p'\leq p,q'\leq q$ and $p'\sim q'$. Since p-p' and q-q' have no equivalent subprojections, Lemma $1\Rightarrow (p-p')M(q-q')=\{0\}$. Let z be the ortho. proj. onto $\overline{M(q-q')H}$. Then $z\in\mathcal{Z}(M)$.

Definition

Let $M \subset \mathbb{B}(H)$ be a von Neumann algebra and $p, q \in M$ be projections.

- p is equivalent to q ($p \sim q$) if $\exists v \in M$ such that $v^*v = p$, $vv^* = q$. (v is an isometry between pH and qH, called a **partial isometry**).
- p is dominated by q ($p \leq q$) if $\exists q' \in M$ such that $q' \leq q$ and $p \sim q$

```
Lemma 1. If pMq \neq \{0\} \Rightarrow \exists p', q' \in M s.t. p' \leq p, q' \leq q, and p' \sim q'. [If x \in M satisfies pxq \neq 0, then polar decomposition gives a partial isometry v \in M s.t. x = v|x|. One checks that vv^* \leq p and v^*v \leq q.] Lemma 2. \exists a projection z \in \mathcal{Z}(M) s.t. pz \leq qz and q(1-z) \leq p(1-z). Proof sketch. Let (p', q') be a maximal pair of projections such that p', q' \in M, p' \leq p, q' \leq q and p' \sim q'. Since p - p' and q - q' have no equivalent subprojections, Lemma 1 \Rightarrow (p - p')M(q - q') = \{0\}. Let z be the ortho. proj. onto \overline{M(q - q')H}. Then z \in \mathcal{Z}(M). Since (p - p')z = 0 \Rightarrow pz = p'z \sim q'z \leq qz \Rightarrow pz \leq qz.
```

Definition

Let $M \subset \mathbb{B}(H)$ be a von Neumann algebra and $p, q \in M$ be projections.

- p is equivalent to q ($p \sim q$) if $\exists v \in M$ such that $v^*v = p$, $vv^* = q$. (v is an isometry between pH and qH, called a **partial isometry**).
- p is dominated by q ($p \leq q$) if $\exists q' \in M$ such that $q' \leq q$ and $p \sim q$

Lemma 1. If $pMq \neq \{0\} \Rightarrow \exists p', q' \in M$ s.t. $p' \leq p, q' \leq q$, and $p' \sim q'$. [If $x \in M$ satisfies $pxq \neq 0$, then polar decomposition gives a partial isometry $v \in M$ s.t. x = v|x|. One checks that $vv^* \leq p$ and $v^*v \leq q$.] **Lemma 2.** \exists a projection $z \in \mathcal{Z}(M)$ s.t. $pz \leq qz$ and $q(1-z) \leq p(1-z)$. **Proof sketch.** Let (p', q') be a maximal pair of projections such that $p', q' \in M, p' \leq p, q' \leq q$ and $p' \sim q'$. Since p - p' and q - q' have no equivalent subprojections, Lemma $1 \Rightarrow (p - p')M(q - q') = \{0\}$. Let z be the ortho. proj. onto $\overline{M(q - q')H}$. Then $z \in \mathcal{Z}(M)$. Since $(p - p')z = 0 \Rightarrow pz = p'z \sim q'z \leq qz \Rightarrow pz \leq qz$. Since $(q - q') \leq z \Rightarrow (q - q')(1 - z) = 0 \Rightarrow q(1 - z) \leq p(1 - z)$.

A von Neumann algebra M is called a factor if $\mathcal{Z}(M) = M \cap M' = \mathbb{C}1$.

A von Neumann algebra M is called a factor if $\mathcal{Z}(M) = M \cap M' = \mathbb{C}1$. **Corollary.** If M is a factor, then $\forall p, q$ projections, either $p \leq q$ or $q \leq p$.

A von Neumann algebra M is called a factor if $\mathcal{Z}(M) = M \cap M' = \mathbb{C}1$. **Corollary.** If M is a factor, then $\forall p, q$ projections, either $p \leq q$ or $q \leq p$.

Note: If H is separable, any vNa M is an integral $M = \int_X M_x \, \mathrm{d}\mu(x)$ of factors $\{M_x\}_{x \in X}$ "indexed" over a probability space (X, μ) .

Definition. A projection p in a von Neumann algebra M is

- minimal if $q \in M$, $q \le p \Rightarrow q \in \{0, p\}$.
- finite if $q \in M, q \le p, q \sim p \Rightarrow q = p$.

A von Neumann algebra M is called a factor if $\mathcal{Z}(M) = M \cap M' = \mathbb{C}1$. **Corollary.** If M is a factor, then $\forall p, q$ projections, either $p \leq q$ or $q \leq p$.

Note: If H is separable, any vNa M is an integral $M = \int_X M_x \, \mathrm{d}\mu(x)$ of factors $\{M_x\}_{x \in X}$ "indexed" over a probability space (X, μ) .

Definition. A projection p in a von Neumann algebra M is

- minimal if $q \in M$, $q \le p \Rightarrow q \in \{0, p\}$.
- finite if $q \in M, q \leq p, q \sim p \Rightarrow q = p$.

Remark. Any minimal projection is finite. If $M = \mathbb{B}(H)$, then a projection p is minimal iff $\dim(pH) \in \{0,1\}$ and finite iff $\dim(pH) < \infty$.

A von Neumann algebra M is called a factor if $\mathcal{Z}(M) = M \cap M' = \mathbb{C}1$. **Corollary.** If M is a factor, then $\forall p, q$ projections, either $p \leq q$ or $q \leq p$.

Note: If H is separable, any vNa M is an integral $M = \int_X M_X \, \mathrm{d}\mu(x)$ of factors $\{M_x\}_{x \in X}$ "indexed" over a probability space (X, μ) .

Definition. A projection p in a von Neumann algebra M is

- minimal if $q \in M$, $q \le p \Rightarrow q \in \{0, p\}$.
- finite if $q \in M, q \le p, q \sim p \Rightarrow q = p$.

Remark. Any minimal projection is finite. If $M = \mathbb{B}(H)$, then a projection p is minimal iff $\dim(pH) \in \{0,1\}$ and finite iff $\dim(pH) < \infty$.

A factor $M \subset \mathbb{B}(H)$ is called of

- 1 type I if it has a non-zero minimal projection.
- **2 type II** if it has a non-zero finite projection, but not minimal proj. If $\mathbf{1} \in M$ is finite, M is of **type II**₁; otherwise, M is of **type II**_{∞}.
- **3 type III** if it contains no non-zero finite projection.

- $\mathbb{B}(K)$ is a factor of type I, for any Hilbert space K.
- Any factor M of type I is isomorphic to $\mathbb{B}(K)$, for a Hilbert space K.

- $\mathbb{B}(K)$ is a factor of type I, for any Hilbert space K.
- Any factor M of type I is isomorphic to $\mathbb{B}(K)$, for a Hilbert space K. **Proof.** Let $p \in M$ be a minimal projection. Let $\{p_i\}_{i \in I}$ be a maximal family of mutually orthogonal proj. in M which are equivalent to p.

- $\mathbb{B}(K)$ is a factor of type I, for any Hilbert space K.
- Any factor M of type I is isomorphic to $\mathbb{B}(K)$, for a Hilbert space K. **Proof.** Let $p \in M$ be a minimal projection. Let $\{p_i\}_{i \in I}$ be a maximal family of mutually orthogonal proj. in M which are equivalent to p. Put $q = 1 \sum_{i \in I} p_i$. Then $p \leq q$ or $q \leq p$. Maximality $\Rightarrow q \leq p$.

- $\mathbb{B}(K)$ is a factor of type I, for any Hilbert space K.
- Any factor M of type I is isomorphic to $\mathbb{B}(K)$, for a Hilbert space K. **Proof.** Let $p \in M$ be a minimal projection. Let $\{p_i\}_{i \in I}$ be a maximal family of mutually orthogonal proj. in M which are equivalent to p. Put $q = 1 \sum_{i \in I} p_i$. Then $p \leq q$ or $q \leq p$. Maximality $\Rightarrow q \leq p$. Since p is minimal $\Rightarrow q = 0$ or q = p (impossible by maximality).

- $\mathbb{B}(K)$ is a factor of type I, for any Hilbert space K.
- Any factor M of type I is isomorphic to $\mathbb{B}(K)$, for a Hilbert space K. **Proof.** Let $p \in M$ be a minimal projection. Let $\{p_i\}_{i \in I}$ be a maximal family of mutually orthogonal proj. in M which are equivalent to p. Put $q = 1 \sum_{i \in I} p_i$. Then $p \leq q$ or $q \leq p$. Maximality $\Rightarrow q \leq p$. Since p is minimal $\Rightarrow q = 0$ or q = p (impossible by maximality). Thus, q = 0 and hence $\sum_{i \in I} p_i = 1$. (a)

- $\mathbb{B}(K)$ is a factor of type I, for any Hilbert space K.
- Any factor M of type I is isomorphic to $\mathbb{B}(K)$, for a Hilbert space K. **Proof.** Let $p \in M$ be a minimal projection. Let $\{p_i\}_{i \in I}$ be a maximal family of mutually orthogonal proj. in M which are equivalent to p. Put $q = 1 - \sum_{i \in I} p_i$. Then $p \leq q$ or $q \leq p$. Maximality $\Rightarrow q \leq p$. Since p is minimal $\Rightarrow q = 0$ or q = p (impossible by maximality). Thus, q=0 and hence $\sum_{i\in I} p_i=1$. (a)

- $\mathbb{B}(K)$ is a factor of type I, for any Hilbert space K.
- Any factor M of type I is isomorphic to $\mathbb{B}(K)$, for a Hilbert space K. **Proof.** Let $p \in M$ be a minimal projection. Let $\{p_i\}_{i \in I}$ be a maximal family of mutually orthogonal proj. in M which are equivalent to p. Put $q = 1 \sum_{i \in I} p_i$. Then $p \leq q$ or $q \leq p$. Maximality $\Rightarrow q \leq p$. Since p is minimal $\Rightarrow q = 0$ or q = p (impossible by maximality). Thus, q = 0 and hence $\sum_{i \in I} p_i = 1$. (a) Since p is minimal $\Rightarrow pMp = \mathbb{C}p$. (b) Combining (a) and (b) $\Rightarrow M \cong \mathbb{B}(\ell^2 I)$.

- $\mathbb{B}(K)$ is a factor of type I, for any Hilbert space K.
- Any factor M of type I is isomorphic to $\mathbb{B}(K)$, for a Hilbert space K. **Proof.** Let $p \in M$ be a minimal projection. Let $\{p_i\}_{i \in I}$ be a maximal family of mutually orthogonal proj. in M which are equivalent to p. Put $q = 1 \sum_{i \in I} p_i$. Then $p \leq q$ or $q \leq p$. Maximality $\Rightarrow q \leq p$. Since p is minimal $\Rightarrow q = 0$ or q = p (impossible by maximality). Thus, q = 0 and hence $\sum_{i \in I} p_i = 1$. (a) Since p is minimal $\Rightarrow pMp = \mathbb{C}p$. (b) Combining (a) and (b) $\Rightarrow M \cong \mathbb{B}(\ell^2 I)$.

- $\mathbb{B}(K)$ is a factor of type I, for any Hilbert space K.
- Any factor M of type I is isomorphic to $\mathbb{B}(K)$, for a Hilbert space K. **Proof.** Let $p \in M$ be a minimal projection. Let $\{p_i\}_{i \in I}$ be a maximal family of mutually orthogonal proj. in M which are equivalent to p. Put $q = 1 \sum_{i \in I} p_i$. Then $p \leq q$ or $q \leq p$. Maximality $\Rightarrow q \leq p$. Since p is minimal $\Rightarrow q = 0$ or q = p (impossible by maximality). Thus, q = 0 and hence $\sum_{i \in I} p_i = 1$. (a) Since p is minimal $\Rightarrow pMp = \mathbb{C}p$. (b) Combining (a) and (b) $\Rightarrow M \cong \mathbb{B}(\ell^2 I)$.

Let Γ an infinite countable group, (X, μ) non-atomic measure space.

• Γ infinite conjugacy class \rightsquigarrow Π_1 factor $L(\Gamma)$.

- $\mathbb{B}(K)$ is a factor of type I, for any Hilbert space K.
- Any factor M of type I is isomorphic to $\mathbb{B}(K)$, for a Hilbert space K. **Proof.** Let $p \in M$ be a minimal projection. Let $\{p_i\}_{i \in I}$ be a maximal family of mutually orthogonal proj. in M which are equivalent to p. Put $q = 1 \sum_{i \in I} p_i$. Then $p \leq q$ or $q \leq p$. Maximality $\Rightarrow q \leq p$. Since p is minimal $\Rightarrow q = 0$ or q = p (impossible by maximality). Thus, q = 0 and hence $\sum_{i \in I} p_i = 1$. (a) Since p is minimal $\Rightarrow pMp = \mathbb{C}p$. (b) Combining (a) and (b) $\Rightarrow M \cong \mathbb{B}(\ell^2 I)$.

- Γ infinite conjugacy class \rightsquigarrow Π_1 factor $L(\Gamma)$.
- $\Gamma \curvearrowright (X, \mu)$ non-singular free ergodic action \leadsto factor $L^{\infty}(X) \rtimes \Gamma$ of

- $\mathbb{B}(K)$ is a factor of type I, for any Hilbert space K.
- Any factor M of type I is isomorphic to $\mathbb{B}(K)$, for a Hilbert space K. **Proof.** Let $p \in M$ be a minimal projection. Let $\{p_i\}_{i \in I}$ be a maximal family of mutually orthogonal proj. in M which are equivalent to p. Put $q = 1 \sum_{i \in I} p_i$. Then $p \leq q$ or $q \leq p$. Maximality $\Rightarrow q \leq p$. Since p is minimal $\Rightarrow q = 0$ or q = p (impossible by maximality). Thus, q = 0 and hence $\sum_{i \in I} p_i = 1$. (a) Since p is minimal $\Rightarrow pMp = \mathbb{C}p$. (b) Combining (a) and (b) $\Rightarrow M \cong \mathbb{B}(\ell^2 I)$.

- Γ infinite conjugacy class \rightsquigarrow Π_1 factor $L(\Gamma)$.
- $\Gamma \curvearrowright (X, \mu)$ non-singular free ergodic action \leadsto factor $L^{\infty}(X) \rtimes \Gamma$ of • type II₁ iff $\exists \Gamma$ -invariant probability measure on X equivalent to μ .

- $\mathbb{B}(K)$ is a factor of type I, for any Hilbert space K.
- Any factor M of type I is isomorphic to $\mathbb{B}(K)$, for a Hilbert space K. **Proof.** Let $p \in M$ be a minimal projection. Let $\{p_i\}_{i \in I}$ be a maximal family of mutually orthogonal proj. in M which are equivalent to p. Put $q = 1 \sum_{i \in I} p_i$. Then $p \leq q$ or $q \leq p$. Maximality $\Rightarrow q \leq p$. Since p is minimal $\Rightarrow q = 0$ or q = p (impossible by maximality). Thus, q = 0 and hence $\sum_{i \in I} p_i = 1$. (a) Since p is minimal $\Rightarrow pMp = \mathbb{C}p$. (b) Combining (a) and (b) $\Rightarrow M \cong \mathbb{B}(\ell^2 I)$.

- Γ infinite conjugacy class $\rightsquigarrow \Pi_1$ factor $L(\Gamma)$.
- $\Gamma \curvearrowright (X, \mu)$ non-singular free ergodic action \leadsto factor $L^{\infty}(X) \rtimes \Gamma$ of
 - **1** type II_1 iff $\exists \Gamma$ -invariant probability measure on X equivalent to μ .
 - **2** type II_{∞} iff $\exists \Gamma$ -invariant infinite measure on X equivalent to ν .

- $\mathbb{B}(K)$ is a factor of type I, for any Hilbert space K.
- Any factor M of type I is isomorphic to $\mathbb{B}(K)$, for a Hilbert space K. **Proof.** Let $p \in M$ be a minimal projection. Let $\{p_i\}_{i \in I}$ be a maximal family of mutually orthogonal proj. in M which are equivalent to p. Put $q = 1 \sum_{i \in I} p_i$. Then $p \leq q$ or $q \leq p$. Maximality $\Rightarrow q \leq p$. Since p is minimal $\Rightarrow q = 0$ or q = p (impossible by maximality). Thus, q = 0 and hence $\sum_{i \in I} p_i = 1$. (a) Since p is minimal $\Rightarrow pMp = \mathbb{C}p$. (b) Combining (a) and (b) $\Rightarrow M \cong \mathbb{B}(\ell^2 I)$.

- Γ infinite conjugacy class $\rightsquigarrow \Pi_1$ factor $L(\Gamma)$.
- $\Gamma \curvearrowright (X, \mu)$ non-singular free ergodic action \leadsto factor $L^{\infty}(X) \rtimes \Gamma$ of
 - **1** type II_1 iff $\exists \Gamma$ -invariant probability measure on X equivalent to μ .
 - **2** type Π_{∞} iff $\exists \Gamma$ -invariant infinite measure on X equivalent to ν .
 - **3** type III iff no measure on X equivalent to μ is Γ -invariant.

Theorem

A factor M is of type $II_1 \iff$ it is an infinite dimensional tracial factor.

Theorem

A factor M is of type $II_1 \iff$ it is an infinite dimensional tracial factor.

Moreover, if M is a II_1 factor, then $\exists !$ tracial faithful normal state $\tau: M \to \mathbb{C}$ (called the **trace** of M).

Theorem

A factor M is of type $II_1 \iff$ it is an infinite dimensional tracial factor.

Moreover, if M is a II_1 factor, then $\exists !$ tracial faithful normal state $\tau:M\to\mathbb{C}$ (called the **trace** of M).

Proof of \Leftarrow **.** Assume that \exists a trace $\tau: M \to \mathbb{C}$.

Theorem

A factor M is of type $II_1 \iff$ it is an infinite dimensional tracial factor.

Moreover, if M is a II_1 factor, then $\exists !$ tracial faithful normal state $\tau:M\to\mathbb{C}$ (called the **trace** of M).

Proof of \Leftarrow **.** Assume that \exists a trace $\tau: M \to \mathbb{C}$. Goal. M is type II₁: **(a)** $1 \in M$ is a finite projection and **(b)** M not type I.

II₁ factors are tracial

Theorem

A factor M is of type $II_1 \iff$ it is an infinite dimensional tracial factor.

Moreover, if M is a II_1 factor, then $\exists!$ tracial faithful normal state $\tau: M \to \mathbb{C}$ (called the **trace** of M).

Proof of \Leftarrow . Assume that \exists a trace $\tau: M \to \mathbb{C}$. Goal. M is type II_1 : (a) $1 \in M$ is a finite projection and (b) M not type I.

(a) Let $p \in M$ such that $p \sim 1 \Rightarrow \exists v \in M$ with $v^*v = 1, vv^* = p$.

Theorem

A factor M is of type $II_1 \iff$ it is an infinite dimensional tracial factor.

Moreover, if M is a II_1 factor, then $\exists !$ tracial faithful normal state $\tau: M \to \mathbb{C}$ (called the **trace** of M).

Proof of \Leftarrow . Assume that \exists a trace $\tau: M \to \mathbb{C}$. **Goal**. M is type II_1 : **(a)** $1 \in M$ is a finite projection and **(b)** M not type I. **(a)** Let $p \in M$ such that $p \sim 1 \Rightarrow \exists v \in M$ with $v^*v = 1, vv^* = p$. Thus, $\tau(1-p) = \tau(v^*v - vv^*) = \tau(v^*v) - \tau(vv^*) = 0$.

Theorem

A factor M is of type $II_1 \iff$ it is an infinite dimensional tracial factor.

Moreover, if M is a II_1 factor, then $\exists !$ tracial faithful normal state $\tau: M \to \mathbb{C}$ (called the **trace** of M).

Proof of \Leftarrow **.** Assume that \exists a trace $\tau: M \to \mathbb{C}$.

Goal. M is type II_1 : (a) $1 \in M$ is a finite projection and (b) M not type I.

(a) Let $p \in M$ such that $p \sim 1 \Rightarrow \exists v \in M$ with $v^*v = 1, vv^* = p$.

Thus, $\tau(1-p) = \tau(v^*v - vv^*) = \tau(v^*v) - \tau(vv^*) = 0$.

Since $1 - p \ge 0$ and τ is faithful $\Rightarrow p = 1 \Rightarrow 1$ is finite.

Theorem

A factor M is of type $II_1 \iff$ it is an infinite dimensional tracial factor.

Moreover, if M is a II_1 factor, then $\exists !$ tracial faithful normal state $\tau:M\to\mathbb{C}$ (called the **trace** of M).

Proof of \Leftarrow . Assume that \exists a trace $\tau: M \to \mathbb{C}$. **Goal**. M is type II₁: **(a)** $1 \in M$ is a finite projection and **(b)** M not type I.

(a) Let $p \in M$ such that $p \sim 1 \Rightarrow \exists v \in M$ with $v^*v = 1, vv^* = p$.

Thus, $\tau(1-p) = \tau(v^*v - vv^*) = \tau(v^*v) - \tau(vv^*) = 0$.

Since $1-p\geq 0$ and τ is faithful $\Rightarrow p=1 \Rightarrow 1$ is finite. **(b)** If M is type I, since $\dim M=\infty \Rightarrow M\cong \mathbb{B}(K)$, where $\dim K=\infty$. But $1\in \mathbb{B}(K)$, with $\dim K=\infty$, is not a finite projection, contradiction.

Theorem

A factor M is of type $II_1 \iff$ it is an infinite dimensional tracial factor.

Moreover, if M is a II_1 factor, then $\exists !$ tracial faithful normal state $\tau:M\to\mathbb{C}$ (called the **trace** of M).

Proof of \Leftarrow **.** Assume that \exists a trace $\tau: M \to \mathbb{C}$.

Goal. M is type II₁: (a) $1 \in M$ is a finite projection and (b) M not type I.

(a) Let $p \in M$ such that $p \sim 1 \Rightarrow \exists v \in M$ with $v^*v = 1, vv^* = p$.

Thus, $\tau(1-p) = \tau(v^*v - vv^*) = \tau(v^*v) - \tau(vv^*) = 0.$

Since $1-p\geq 0$ and τ is faithful $\Rightarrow p=1\Rightarrow 1$ is finite. **(b)** If M is type I, since $\dim M=\infty\Rightarrow M\cong \mathbb{B}(K)$, where $\dim K=\infty$. But $1\in \mathbb{B}(K)$, with $\dim K=\infty$, is not a finite projection, contradiction.

Notation. If M is a II_1 factor and τ its trace, we put $||x||_2 := \tau(x^*x)^{1/2}$. $L^2(M)$ is the closure of M w.r.t. $||.||_2$.

Theorem

A factor M is of type $II_1 \iff$ it is an infinite dimensional tracial factor.

Moreover, if M is a II_1 factor, then $\exists !$ tracial faithful normal state $\tau:M\to\mathbb{C}$ (called the **trace** of M).

Proof of \Leftarrow **.** Assume that \exists a trace $\tau: M \to \mathbb{C}$.

Goal. M is type II₁: (a) $1 \in M$ is a finite projection and (b) M not type I.

(a) Let $p \in M$ such that $p \sim 1 \Rightarrow \exists v \in M$ with $v^*v = 1, vv^* = p$.

Thus, $\tau(1-p) = \tau(v^*v - vv^*) = \tau(v^*v) - \tau(vv^*) = 0.$

Since $1-p\geq 0$ and τ is faithful $\Rightarrow p=1\Rightarrow 1$ is finite. **(b)** If M is type I, since $\dim M=\infty\Rightarrow M\cong \mathbb{B}(K)$, where $\dim K=\infty$. But $1\in \mathbb{B}(K)$, with $\dim K=\infty$, is not a finite projection, contradiction.

Notation. If M is a II_1 factor and τ its trace, we put $||x||_2 := \tau(x^*x)^{1/2}$. $L^2(M)$ is the closure of M w.r.t. $||.||_2$.

We have an injective SOT-cont. *-homomorphism $\pi: M \to \mathbb{B}(L^2(M))$ given by $\pi(x)(y) = xy$, for $x, y \in M$. (the standard representation)

Let Γ be a countable group.

Let Γ be a countable group.

Put
$$\ell^2\Gamma=\{f:\Gamma\to\mathbb{C}|\ \|f\|_2:=(\sum_{g\in\Gamma}|f(g)|^2)^{1/2}<\infty\}.$$

Let Γ be a countable group. Put $\ell^2\Gamma=\{f:\Gamma\to\mathbb{C}|\ \|f\|_2:=(\sum_{g\in\Gamma}|f(g)|^2)^{1/2}<\infty\}$. An orthonormal basis for $\ell^2\Gamma$ is $\{\delta_g\}_{g\in\Gamma}$.

Let Γ be a countable group.

Put $\ell^2\Gamma = \{f : \Gamma \to \mathbb{C} | \|f\|_2 := (\sum_{g \in \Gamma} |f(g)|^2)^{1/2} < \infty \}.$

An orthonormal basis for $\ell^2\Gamma$ is $\{\delta_g\}_{g\in\Gamma}$.

The **left regular representation** $\lambda : \Gamma \to \mathcal{U}(\ell^2\Gamma)$ is given by $\lambda(g)(\delta_h) = \delta_{gh}$, for all $g, h \in \Gamma$.

Let Γ be a countable group. Put $\ell^2\Gamma=\{f:\Gamma\to\mathbb{C}|\ \|f\|_2:=(\sum_{g\in\Gamma}|f(g)|^2)^{1/2}<\infty\}.$

An orthonormal basis for $\ell^2\Gamma$ is $\{\delta_g\}_{g\in\Gamma}$.

The **left regular representation** $\lambda:\Gamma\to \mathcal{U}(\ell^2\Gamma)$ is given by $\lambda(g)(\delta_h)=\delta_{gh}$, for all $g,h\in\Gamma$. **Note.** λ is a unitary representation: $\lambda(g)$ is a unitary operator and $\lambda(gh)=\lambda(g)\lambda(h)$, for all $g,h\in\Gamma$.

Let Γ be a countable group.

Put
$$\ell^2\Gamma = \{f: \Gamma \to \mathbb{C} | \|f\|_2 := (\sum_{g \in \Gamma} |f(g)|^2)^{1/2} < \infty \}.$$

An orthonormal basis for $\ell^2\Gamma$ is $\{\delta_g\}_{g\in\Gamma}$.

The **left regular representation** $\lambda: \Gamma \to \mathcal{U}(\ell^2\Gamma)$ is given by $\lambda(g)(\delta_h) = \delta_{gh}$, for all $g, h \in \Gamma$. **Note.** λ is a unitary representation: $\lambda(g)$ is a unitary operator and $\lambda(gh) = \lambda(g)\lambda(h)$, for all $g, h \in \Gamma$.

Define $\mathcal{A}:=\{\sum_{g\in F}a_g\lambda(g)|\ F\subset \Gamma \ \text{finite}, a_g\in \mathbb{C}, \forall g\in F\}.$

Let Γ be a countable group.

Put
$$\ell^2\Gamma = \{f : \Gamma \to \mathbb{C} | \|f\|_2 := (\sum_{g \in \Gamma} |f(g)|^2)^{1/2} < \infty \}.$$

An orthonormal basis for $\ell^2\Gamma$ is $\{\delta_g\}_{g\in\Gamma}$.

The **left regular representation** $\lambda: \Gamma \to \mathcal{U}(\ell^2\Gamma)$ is given by $\lambda(g)(\delta_h) = \delta_{gh}$, for all $g, h \in \Gamma$. **Note.** λ is a unitary representation: $\lambda(g)$ is a unitary operator and $\lambda(gh) = \lambda(g)\lambda(h)$, for all $g, h \in \Gamma$.

Define $\mathcal{A}:=\{\sum_{g\in F}a_g\lambda(g)|\ F\subset \Gamma\ \text{finite}, a_g\in \mathbb{C}, \forall g\in F\}.$

Then $\mathcal{A} \subset \mathbb{B}(\ell^2\Gamma)$ is a *-subalgebra.

Remark. A is isomorphic to the complex group algebra $\mathbb{C}[\Gamma]$.

Let Γ be a countable group.

Put
$$\ell^2\Gamma = \{f : \Gamma \to \mathbb{C} | \|f\|_2 := (\sum_{g \in \Gamma} |f(g)|^2)^{1/2} < \infty \}.$$

An orthonormal basis for $\ell^2\Gamma$ is $\{\delta_g\}_{g\in\Gamma}$.

The **left regular representation** $\lambda : \Gamma \to \mathcal{U}(\ell^2\Gamma)$ is given by

$$\lambda(g)(\delta_h) = \delta_{gh}$$
, for all $g, h \in \Gamma$. **Note.** λ is a unitary representation:

$$\lambda(g)$$
 is a unitary operator and $\lambda(gh) = \lambda(g)\lambda(h)$, for all $g,h \in \Gamma$.

Define
$$\mathcal{A}:=\{\sum_{g\in F}a_g\lambda(g)|\ F\subset \Gamma \ \text{finite}, a_g\in \mathbb{C}, \forall g\in F\}.$$

Then $\mathcal{A} \subset \mathbb{B}(\ell^2\Gamma)$ is a *-subalgebra.

Remark. A is isomorphic to the complex group algebra $\mathbb{C}[\Gamma]$.

Definition

$$L(\Gamma):=\overline{\mathcal{A}}^{WOT}\subset \mathbb{B}(\ell^2\Gamma) \text{ is called the group von Neumann algebra of } \Gamma.$$

Proposition 1

 $\tau: L(\Gamma) \to \mathbb{C}$ given by $\tau(x) = \langle x(\delta_e), \delta_e \rangle$ is a trace.

Proof. τ is a state, since $\|\delta_e\| = 1$.

Proposition 1

 $\tau: L(\Gamma) \to \mathbb{C}$ given by $\tau(x) = \langle x(\delta_e), \delta_e \rangle$ is a trace.

Proof. τ is a state, since $\|\delta_e\| = 1$.

au is faithful: let $x \in L(\Gamma)$, $x \ge 0$ s.t. $\tau(x) = 0$. Let $y \in L(\Gamma)$ s.t. $x = y^*y$.

Proposition 1

 $\tau: L(\Gamma) \to \mathbb{C}$ given by $\tau(x) = \langle x(\delta_e), \delta_e \rangle$ is a trace.

Proof. τ is a state, since $\|\delta_e\| = 1$.

$$au$$
 is faithful: let $x \in L(\Gamma)$, $x \ge 0$ s.t. $au(x) = 0$. Let $y \in L(\Gamma)$ s.t. $x = y^*y$. Then $0 = au(x) = \langle x \delta_e, \delta_e \rangle = \langle y^*y \delta_e, \delta_e \rangle = \|y \delta_e\|^2 \Rightarrow y \delta_e = 0 \Rightarrow x \delta_e = 0$.

Proposition 1

 $\tau: L(\Gamma) \to \mathbb{C}$ given by $\tau(x) = \langle x(\delta_e), \delta_e \rangle$ is a trace.

Proof. τ is a state, since $\|\delta_e\| = 1$.

$$au$$
 is faithful: let $x \in L(\Gamma)$, $x \ge 0$ s.t. $au(x) = 0$. Let $y \in L(\Gamma)$ s.t. $x = y^*y$. Then $0 = au(x) = \langle x\delta_e, \delta_e \rangle = \langle y^*y\delta_e, \delta_e \rangle = \|y\delta_e\|^2 \Rightarrow y\delta_e = 0 \Rightarrow x\delta_e = 0$.

Define the **right regular rep.** $\rho: \Gamma \to \mathcal{U}(\ell^2\Gamma)$ by $\rho(k)(\delta_h) = \delta_{hk^{-1}}$. Then $\rho(k)$ commutes with $\lambda(g)$, for all $g \in \Gamma \Rightarrow \rho(k) \in L(\Gamma)'$.

Proposition 1

 $\tau: L(\Gamma) \to \mathbb{C}$ given by $\tau(x) = \langle x(\delta_e), \delta_e \rangle$ is a trace.

Proof. τ is a state, since $\|\delta_e\| = 1$.

$$au$$
 is faithful: let $x \in L(\Gamma)$, $x \ge 0$ s.t. $\tau(x) = 0$. Let $y \in L(\Gamma)$ s.t. $x = y^*y$. Then $0 = \tau(x) = \langle x\delta_e, \delta_e \rangle = \langle y^*y\delta_e, \delta_e \rangle = \|y\delta_e\|^2 \Rightarrow y\delta_e = 0 \Rightarrow x\delta_e = 0$. Define the **right regular rep.** $\rho : \Gamma \to \mathcal{U}(\ell^2\Gamma)$ by $\rho(k)(\delta_h) = \delta_{hk^{-1}}$.

Then $\rho(k)$ commutes with $\lambda(g)$, for all $g \in \Gamma \Rightarrow \rho(k) \in L(\Gamma)'$. Hence $x(\delta_k) = x(\rho(k^{-1})\delta_e) = \rho(k^{-1})(x\delta_e) = 0$, for all $k \in \Gamma \Rightarrow x = 0$.

Proposition 1

 $\tau: L(\Gamma) \to \mathbb{C}$ given by $\tau(x) = \langle x(\delta_e), \delta_e \rangle$ is a trace.

Proof. τ is a state, since $\|\delta_e\| = 1$.

$$au$$
 is faithful: let $x \in L(\Gamma)$, $x \ge 0$ s.t. $au(x) = 0$. Let $y \in L(\Gamma)$ s.t. $x = y^*y$. Then $0 = au(x) = \langle x \delta_e, \delta_e \rangle = \langle y^*y \delta_e, \delta_e \rangle = \|y \delta_e\|^2 \Rightarrow y \delta_e = 0 \Rightarrow x \delta_e = 0$.

Define the **right regular rep.** $\rho: \Gamma \to \mathcal{U}(\ell^2\Gamma)$ by $\rho(k)(\delta_h) = \delta_{hk^{-1}}$. Then $\rho(k)$ computes with $\rho(k)$ for all $g \in \Gamma \to \rho(k) \in \mathcal{U}(\Gamma)$.

Then $\rho(k)$ commutes with $\lambda(g)$, for all $g \in \Gamma \Rightarrow \rho(k) \in L(\Gamma)'$.

Hence
$$x(\delta_k) = x(\rho(k^{-1})\delta_e) = \rho(k^{-1})(x\delta_e) = 0$$
, for all $k \in \Gamma \Rightarrow x = 0$.

$$au$$
 is tracial: if $g \in \Gamma$, then $au(\lambda(g)) = \langle \lambda(g)\delta_e, \delta_e \rangle = \langle \delta_g, \delta_e \rangle = \delta_{g,e}$.

Proposition 1

 $\tau: L(\Gamma) \to \mathbb{C}$ given by $\tau(x) = \langle x(\delta_e), \delta_e \rangle$ is a trace.

Proof. τ is a state, since $\|\delta_e\| = 1$.

```
	au is faithful: let x \in L(\Gamma), x \ge 0 s.t. \tau(x) = 0. Let y \in L(\Gamma) s.t. x = y^*y. Then 0 = \tau(x) = \langle x\delta_e, \delta_e \rangle = \langle y^*y\delta_e, \delta_e \rangle = \|y\delta_e\|^2 \Rightarrow y\delta_e = 0 \Rightarrow x\delta_e = 0. Define the right regular rep. \rho : \Gamma \to \mathcal{U}(\ell^2\Gamma) by \rho(k)(\delta_h) = \delta_{hk^{-1}}.
```

Then $\rho(k)$ commutes with $\lambda(g)$, for all $g \in \Gamma \Rightarrow \rho(k) \in L(\Gamma)'$. Hence $x(\delta_k) = x(\rho(k^{-1})\delta_e) = \rho(k^{-1})(x\delta_e) = 0$, for all $k \in \Gamma \Rightarrow x = 0$.

au is tracial: if $g \in \Gamma$, then $\tau(\lambda(g)) = \langle \lambda(g)\delta_e, \delta_e \rangle = \langle \delta_g, \delta_e \rangle = \delta_{g,e}$. Thus, if $g, h \in \Gamma$, we have $\tau(\lambda(g)\lambda(h)) = \delta_{gh,e} = \delta_{hg,e} = \tau(\lambda(h)\lambda(g))$. Since τ is WOT-continuous $\Rightarrow \tau$ is tracial.

Proposition 1

 $\tau: L(\Gamma) \to \mathbb{C}$ given by $\tau(x) = \langle x(\delta_e), \delta_e \rangle$ is a trace.

Proof. τ is a state, since $\|\delta_e\| = 1$.

$$au$$
 is faithful: let $x \in L(\Gamma)$, $x \ge 0$ s.t. $\tau(x) = 0$. Let $y \in L(\Gamma)$ s.t. $x = y^*y$. Then $0 = \tau(x) = \langle x\delta_e, \delta_e \rangle = \langle y^*y\delta_e, \delta_e \rangle = \|y\delta_e\|^2 \Rightarrow y\delta_e = 0 \Rightarrow x\delta_e = 0$. Define the **right regular rep.** $\rho : \Gamma \to \mathcal{U}(\ell^2\Gamma)$ by $\rho(k)(\delta_h) = \delta_{hk^{-1}}$.

Then $\rho(k)$ commutes with $\lambda(g)$, for all $g \in \Gamma \Rightarrow \rho(k) \in L(\Gamma)'$. Hence $x(\delta_k) = x(\rho(k^{-1})\delta_e) = \rho(k^{-1})(x\delta_e) = 0$, for all $k \in \Gamma \Rightarrow x = 0$.

$$au$$
 is tracial: if $g \in \Gamma$, then $\tau(\lambda(g)) = \langle \lambda(g)\delta_e, \delta_e \rangle = \langle \delta_g, \delta_e \rangle = \delta_{g,e}$. Thus, if $g, h \in \Gamma$, we have $\tau(\lambda(g)\lambda(h)) = \delta_{gh,e} = \delta_{hg,e} = \tau(\lambda(h)\lambda(g))$. Since τ is WOT-continuous $\Rightarrow \tau$ is tracial.

Since τ is normal, we are done.

Proposition 2

Let Γ be a countable **abelian** group. Let $\hat{\Gamma}$ be the Pontryagin dual of Γ , i.e. $\hat{\Gamma} = \{h : \Gamma \to \mathbb{C} | h \text{ homomorphism such that } |h(g)| = 1, \forall g \in \Gamma\}.$

Proposition 2

Let Γ be a countable **abelian** group. Let $\hat{\Gamma}$ be the Pontryagin dual of Γ , i.e. $\hat{\Gamma} = \{h : \Gamma \to \mathbb{C} | h \text{ homomorphism such that } |h(g)| = 1, \forall g \in \Gamma\}.$ (Note. $\hat{\Gamma}$ is a compact metrizable group.)

Proposition 2

Let Γ be a countable **abelian** group. Let $\hat{\Gamma}$ be the Pontryagin dual of Γ , i.e. $\hat{\Gamma} = \{h : \Gamma \to \mathbb{C} | h \text{ homomorphism such that } |h(g)| = 1, \forall g \in \Gamma\}.$ (Note. $\hat{\Gamma}$ is a compact metrizable group.) Then $L(\Gamma)$ is *-isomorphic to $L^{\infty}(\hat{\Gamma}, \mu)$, where μ is the Haar measure of Γ .

Proposition 2

Let Γ be a countable **abelian** group. Let $\hat{\Gamma}$ be the Pontryagin dual of Γ , i.e. $\hat{\Gamma} = \{h : \Gamma \to \mathbb{C} | h \text{ homomorphism such that } |h(g)| = 1, \forall g \in \Gamma\}.$ (Note. $\hat{\Gamma}$ is a compact metrizable group.) Then $L(\Gamma)$ is *-isomorphic to $L^{\infty}(\hat{\Gamma}, \mu)$, where μ is the Haar measure of Γ .

Sketch of proof. For $g \in \Gamma$, define $\hat{g} \in C(\hat{\Gamma})$ by $\hat{g}(h) := h(g)$.

Proposition 2

Let Γ be a countable **abelian** group. Let $\hat{\Gamma}$ be the Pontryagin dual of Γ , i.e. $\hat{\Gamma} = \{h : \Gamma \to \mathbb{C} | h \text{ homomorphism such that } |h(g)| = 1, \forall g \in \Gamma\}.$ (Note. $\hat{\Gamma}$ is a compact metrizable group.) Then $L(\Gamma)$ is *-isomorphic to $L^{\infty}(\hat{\Gamma}, \mu)$, where μ is the Haar measure of Γ .

Sketch of proof. For $g \in \Gamma$, define $\hat{g} \in C(\hat{\Gamma})$ by $\hat{g}(h) := h(g)$. **Claim.** If $g \in \Gamma \setminus \{e\}$, then $\exists h \in \hat{\Gamma}$ such that $h(g) \neq 1$.

Proposition 2

Let Γ be a countable **abelian** group. Let $\hat{\Gamma}$ be the Pontryagin dual of Γ , i.e. $\hat{\Gamma} = \{h : \Gamma \to \mathbb{C} | h \text{ homomorphism such that } |h(g)| = 1, \forall g \in \Gamma\}.$ (**Note.** $\hat{\Gamma}$ is a compact metrizable group.)

Then $L(\Gamma)$ is *-isomorphic to $L^{\infty}(\hat{\Gamma}, \mu)$, where μ is the Haar measure of Γ .

Sketch of proof. For $g \in \Gamma$, define $\hat{g} \in C(\hat{\Gamma})$ by $\hat{g}(h) := h(g)$.

Claim. If $g \in \Gamma \setminus \{e\}$, then $\exists h \in \hat{\Gamma}$ such that $h(g) \neq 1$.

Claim + Stone-Weierstrass \Rightarrow span $\{\hat{g}|g\in\Gamma\}$ is dense in $C(\hat{\Gamma})$

Proposition 2

Let Γ be a countable **abelian** group. Let $\hat{\Gamma}$ be the Pontryagin dual of Γ , i.e. $\hat{\Gamma} = \{h : \Gamma \to \mathbb{C} | h \text{ homomorphism such that } |h(g)| = 1, \forall g \in \Gamma\}.$ (Note. $\hat{\Gamma}$ is a compact metrizable group.) Then $L(\Gamma)$ is *-isomorphic to $L^{\infty}(\hat{\Gamma}, \mu)$, where μ is the Haar measure of Γ .

Sketch of proof. For $g \in \Gamma$, define $\hat{g} \in C(\hat{\Gamma})$ by $\hat{g}(h) := h(g)$.

Claim. If $g \in \Gamma \setminus \{e\}$, then $\exists h \in \hat{\Gamma}$ such that $h(g) \neq 1$.

Claim + Stone-Weierstrass \Rightarrow span $\{\hat{g}|g \in \Gamma\}$ is dense in $C(\hat{\Gamma}) \Rightarrow$ span $\{\hat{g}|g \in \Gamma\}$ is dense in $L^2(\hat{\Gamma}, \mu) \Rightarrow \{\hat{g}|g \in \Gamma\}$ is an O.B. for $L^2(\hat{\Gamma}, \mu)$.

Proposition 2

Let Γ be a countable **abelian** group. Let $\hat{\Gamma}$ be the Pontryagin dual of Γ , i.e. $\hat{\Gamma} = \{h : \Gamma \to \mathbb{C} | h \text{ homomorphism such that } |h(g)| = 1, \forall g \in \Gamma\}$. (**Note.** $\hat{\Gamma}$ is a compact metrizable group.)

Then $L(\Gamma)$ is *-isomorphic to $L^{\infty}(\hat{\Gamma}, \mu)$, where μ is the Haar measure of Γ .

Sketch of proof. For $g \in \Gamma$, define $\hat{g} \in C(\hat{\Gamma})$ by $\hat{g}(h) := h(g)$.

Claim. If $g \in \Gamma \setminus \{e\}$, then $\exists h \in \hat{\Gamma}$ such that $h(g) \neq 1$.

Claim + Stone-Weierstrass \Rightarrow span $\{\hat{g}|g \in \Gamma\}$ is dense in $C(\hat{\Gamma}) \Rightarrow$ span $\{\hat{g}|g \in \Gamma\}$ is dense in $L^2(\hat{\Gamma}, \mu) \Rightarrow \{\hat{g}|g \in \Gamma\}$ is an O.B. for $L^2(\hat{\Gamma}, \mu)$.

Thus, $U(\delta_g) = \hat{g}$ defines a unitary $U : \ell^2 \Gamma \to L^2(\hat{\Gamma}, \mu)$.

Proposition 2

Let Γ be a countable **abelian** group. Let $\hat{\Gamma}$ be the Pontryagin dual of Γ , i.e. $\hat{\Gamma} = \{h : \Gamma \to \mathbb{C} | h \text{ homomorphism such that } |h(g)| = 1, \forall g \in \Gamma\}.$ (Note. $\hat{\Gamma}$ is a compact metrizable group.)

Then $L(\Gamma)$ is *-isomorphic to $L^{\infty}(\hat{\Gamma}, \mu)$, where μ is the Haar measure of Γ .

Sketch of proof. For $g \in \Gamma$, define $\hat{g} \in C(\hat{\Gamma})$ by $\hat{g}(h) := h(g)$.

Claim. If $g \in \Gamma \setminus \{e\}$, then $\exists h \in \hat{\Gamma}$ such that $h(g) \neq 1$.

Claim + Stone-Weierstrass \Rightarrow span $\{\hat{g}|g \in \Gamma\}$ is dense in $C(\hat{\Gamma}) \Rightarrow$ span $\{\hat{g}|g \in \Gamma\}$ is dense in $L^2(\hat{\Gamma}, \mu) \Rightarrow \{\hat{g}|g \in \Gamma\}$ is an O.B. for $L^2(\hat{\Gamma}, \mu)$.

Thus, $U(\delta_g) = \hat{g}$ defines a unitary $U : \ell^2 \Gamma \to L^2(\hat{\Gamma}, \mu)$. Since $U\lambda(g)U^* = \hat{g}$, for $g \in \Gamma$, we have $C(\hat{\Gamma}) \subset UL(\Gamma)U^* \subset L^{\infty}(\hat{\Gamma}, \mu)$.

Proposition 2

Let Γ be a countable **abelian** group. Let $\hat{\Gamma}$ be the Pontryagin dual of Γ , i.e. $\hat{\Gamma} = \{h : \Gamma \to \mathbb{C} | h \text{ homomorphism such that } |h(g)| = 1, \forall g \in \Gamma\}.$ (Note. $\hat{\Gamma}$ is a compact metrizable group.)

Then $L(\Gamma)$ is *-isomorphic to $L^{\infty}(\hat{\Gamma}, \mu)$, where μ is the Haar measure of Γ .

Sketch of proof. For $g \in \Gamma$, define $\hat{g} \in C(\hat{\Gamma})$ by $\hat{g}(h) := h(g)$.

Claim. If $g \in \Gamma \setminus \{e\}$, then $\exists h \in \hat{\Gamma}$ such that $h(g) \neq 1$.

Claim + Stone-Weierstrass \Rightarrow span $\{\hat{g}|g \in \Gamma\}$ is dense in $C(\hat{\Gamma}) \Rightarrow$ span $\{\hat{g}|g \in \Gamma\}$ is dense in $L^2(\hat{\Gamma}, \mu) \Rightarrow \{\hat{g}|g \in \Gamma\}$ is an O.B. for $L^2(\hat{\Gamma}, \mu)$.

Thus, $U(\delta_g) = \hat{g}$ defines a unitary $U : \ell^2 \Gamma \to L^2(\hat{\Gamma}, \mu)$. Since $U\lambda(g)U^* = \hat{g}$, for $g \in \Gamma$, we have $C(\hat{\Gamma}) \subset UL(\Gamma)U^* \subset L^{\infty}(\hat{\Gamma}, \mu)$.

Since $C(\hat{\Gamma})$ is WOT-dense in $L^{\infty}(\hat{\Gamma}, \mu)$, we get $UL(\Gamma)$ $U^* = L^{\infty}(\hat{\Gamma}, \mu)$

Definition. Let $x \in L(\Gamma)$ and write $x\delta_e = \sum_{g \in \Gamma} x_g \delta_g \in \ell^2 \Gamma$. Then $\{x_g\}_{g \in \Gamma}$ are called the **Fourier coefficients** of x.

Definition. Let $x \in L(\Gamma)$ and write $x\delta_e = \sum_{g \in \Gamma} x_g \delta_g \in \ell^2 \Gamma$. Then $\{x_g\}_{g \in \Gamma}$ are called the **Fourier coefficients** of x.

Remark. Since $\|x\|_2 = \tau(x^*x)^{1/2} = \|x\delta_e\|_2$ and $x_g\delta_g = (x_g\lambda(g))\delta_e$, we have that $x = \sum_{g \in \Gamma} x_g\lambda(g)$, w.r.t. convergence in $\|.\|_2$.

Definition. Let $x \in L(\Gamma)$ and write $x\delta_e = \sum_{g \in \Gamma} x_g \delta_g \in \ell^2 \Gamma$. Then $\{x_g\}_{g \in \Gamma}$ are called the **Fourier coefficients** of x.

Remark. Since $\|x\|_2 = \tau(x^*x)^{1/2} = \|x\delta_e\|_2$ and $x_g\delta_g = (x_g\lambda(g))\delta_e$, we have that $x = \sum_{g \in \Gamma} x_g\lambda(g)$, w.r.t. convergence in $\|.\|_2$.

Exercise 7. Let $x, y \in L(\Gamma)$ and $x = \sum_{g \in \Gamma} x_g \lambda(g)$, $y = \sum_{h \in \Gamma} y_h \lambda(h)$ be their Fourier expansions. Show that $xy = \sum_{g \in \Gamma} (\sum_{h \in \Gamma} x_h y_{h^{-1}g}) \lambda(g)$.

Definition. Let $x \in L(\Gamma)$ and write $x\delta_e = \sum_{g \in \Gamma} x_g \delta_g \in \ell^2 \Gamma$. Then $\{x_g\}_{g \in \Gamma}$ are called the **Fourier coefficients** of x.

Remark. Since $\|x\|_2 = \tau(x^*x)^{1/2} = \|x\delta_e\|_2$ and $x_g\delta_g = (x_g\lambda(g))\delta_e$, we have that $x = \sum_{g \in \Gamma} x_g\lambda(g)$, w.r.t. convergence in $\|.\|_2$.

Exercise 7. Let $x, y \in L(\Gamma)$ and $x = \sum_{g \in \Gamma} x_g \lambda(g)$, $y = \sum_{h \in \Gamma} y_h \lambda(h)$ be their Fourier expansions. Show that $xy = \sum_{g \in \Gamma} (\sum_{h \in \Gamma} x_h y_{h^{-1}g}) \lambda(g)$.

Proposition 3

 $L(\Gamma)$ is a II₁ factor $\Leftrightarrow \Gamma$ is infinite conjugacy class (icc): $\{hgh^{-1}|h\in\Gamma\}$ is infinite, for all $g\in\Gamma\setminus\{e\}$.

Proof of \Rightarrow . If $C = \{hgh^{-1} | h \in \Gamma\}$ is finite, for some $g \in \Gamma \setminus \{e\}$, then $x = \sum_{k \in C} \lambda(k) \in \mathcal{Z}(L(\Gamma))$.

Definition. Let $x \in L(\Gamma)$ and write $x\delta_e = \sum_{g \in \Gamma} x_g \delta_g \in \ell^2 \Gamma$. Then $\{x_g\}_{g \in \Gamma}$ are called the **Fourier coefficients** of x.

Remark. Since $\|x\|_2 = \tau(x^*x)^{1/2} = \|x\delta_e\|_2$ and $x_g\delta_g = (x_g\lambda(g))\delta_e$, we have that $x = \sum_{g \in \Gamma} x_g\lambda(g)$, w.r.t. convergence in $\|.\|_2$.

Exercise 7. Let $x, y \in L(\Gamma)$ and $x = \sum_{g \in \Gamma} x_g \lambda(g)$, $y = \sum_{h \in \Gamma} y_h \lambda(h)$ be their Fourier expansions. Show that $xy = \sum_{g \in \Gamma} (\sum_{h \in \Gamma} x_h y_{h^{-1}g}) \lambda(g)$.

Proposition 3

 $L(\Gamma)$ is a II₁ factor $\Leftrightarrow \Gamma$ is infinite conjugacy class (icc): $\{hgh^{-1}|h\in\Gamma\}$ is infinite, for all $g\in\Gamma\setminus\{e\}$.

Proof of \Rightarrow . If $C = \{hgh^{-1} | h \in \Gamma\}$ is finite, for some $g \in \Gamma \setminus \{e\}$, then $x = \sum_{k \in C} \lambda(k) \in \mathcal{Z}(L(\Gamma))$.

Since $L(\Gamma)$ is a factor $\Rightarrow x \in \mathbb{C}1 \Rightarrow x = \tau(x)1 = 0$, a contradiction.

Proof of \Leftarrow **.** Assume Γ is icc and let $x \in \mathcal{Z}(L(\Gamma))$.

Proof of \Leftarrow . Assume Γ is icc and let $x \in \mathcal{Z}(L(\Gamma))$. Let $x = \sum_{g \in \Gamma} x_g \lambda(g)$ be the Fourier expansion of x.

Proof of \Leftarrow . Assume Γ is icc and let $x \in \mathcal{Z}(L(\Gamma))$. Let $x = \sum_{g \in \Gamma} x_g \lambda(g)$ be the Fourier expansion of x. If $h \in \Gamma$, then $x = \lambda(h)x\lambda(h^{-1}) = \sum_{g \in \Gamma} x_{h^{-1}gh}\lambda(g)$

Proof of \Leftarrow . Assume Γ is icc and let $x \in \mathcal{Z}(L(\Gamma))$. Let $x = \sum_{g \in \Gamma} x_g \lambda(g)$ be the Fourier expansion of x. If $h \in \Gamma$, then $x = \lambda(h)x\lambda(h^{-1}) = \sum_{g \in \Gamma} x_{h^{-1}gh}\lambda(g)$ Uniqueness of the Fourier expansion $\Rightarrow x_{h^{-1}gh} = x_g$, for all $g, h \in \Gamma$.

```
Proof of \Leftarrow. Assume \Gamma is icc and let x \in \mathcal{Z}(L(\Gamma)). Let x = \sum_{g \in \Gamma} x_g \lambda(g) be the Fourier expansion of x. If h \in \Gamma, then x = \lambda(h)x\lambda(h^{-1}) = \sum_{g \in \Gamma} x_{h^{-1}gh}\lambda(g) Uniqueness of the Fourier expansion \Rightarrow x_{h^{-1}gh} = x_g, for all g, h \in \Gamma. Since \sum_{g \in \Gamma} |x_g|^2 = \|\sum_{g \in \Gamma} x_g \delta_g\|^2 = \|x\delta_e\|^2 < \infty and \Gamma is icc we get that x_g = 0, for all g \in \Gamma \setminus \{e\}. Hence x = x_e 1 \in \mathbb{C}1.
```

Group von Neumann algebras, V

```
Proof of \Leftarrow. Assume \Gamma is icc and let x \in \mathcal{Z}(L(\Gamma)).
 Let x = \sum_{g \in \Gamma} x_g \lambda(g) be the Fourier expansion of x.
 If h \in \Gamma, then x = \lambda(h)x\lambda(h^{-1}) = \sum_{g \in \Gamma} x_{h^{-1}gh}\lambda(g)
 Uniqueness of the Fourier expansion \Rightarrow x_{h^{-1}gh} = x_g, for all g, h \in \Gamma.
 Since \sum_{g \in \Gamma} |x_g|^2 = \|\sum_{g \in \Gamma} x_g \delta_g\|^2 = \|x\delta_e\|^2 < \infty and \Gamma is icc we get that x_g = 0, for all g \in \Gamma \setminus \{e\}. Hence x = x_e 1 \in \mathbb{C}1.
```

Exercise 8. Show that the following groups are icc:

• $S_{\infty} = \{\pi \text{ permutation of } \mathbb{N} | \pi(n) \neq n, \text{ for finitely many } n\}.$

Group von Neumann algebras, V

```
Proof of \Leftarrow. Assume \Gamma is icc and let x \in \mathcal{Z}(L(\Gamma)).
 Let x = \sum_{g \in \Gamma} x_g \lambda(g) be the Fourier expansion of x.
 If h \in \Gamma, then x = \lambda(h)x\lambda(h^{-1}) = \sum_{g \in \Gamma} x_{h^{-1}gh}\lambda(g)
 Uniqueness of the Fourier expansion \Rightarrow x_{h^{-1}gh} = x_g, for all g, h \in \Gamma.
 Since \sum_{g \in \Gamma} |x_g|^2 = \|\sum_{g \in \Gamma} x_g \delta_g\|^2 = \|x\delta_e\|^2 < \infty and \Gamma is icc we get that x_g = 0, for all g \in \Gamma \setminus \{e\}. Hence x = x_e 1 \in \mathbb{C}1.
```

Exercise 8. Show that the following groups are icc:

- $S_{\infty} = \{\pi \text{ permutation of } \mathbb{N} | \pi(n) \neq n, \text{ for finitely many } n\}.$
- the free group $\mathbb{F}_n = \langle a_1, ..., a_n \rangle$ on $n \geq 2$ generators.

Group von Neumann algebras, V

Proof of \Leftarrow . Assume Γ is icc and let $x \in \mathcal{Z}(L(\Gamma))$. Let $x = \sum_{g \in \Gamma} x_g \lambda(g)$ be the Fourier expansion of x. If $h \in \Gamma$, then $x = \lambda(h)x\lambda(h^{-1}) = \sum_{g \in \Gamma} x_{h^{-1}gh}\lambda(g)$ Uniqueness of the Fourier expansion $\Rightarrow x_{h^{-1}gh} = x_g$, for all $g, h \in \Gamma$. Since $\sum_{g \in \Gamma} |x_g|^2 = \|\sum_{g \in \Gamma} x_g \delta_g\|^2 = \|x\delta_e\|^2 < \infty$ and Γ is icc we get that $x_g = 0$, for all $g \in \Gamma \setminus \{e\}$. Hence $x = x_e 1 \in \mathbb{C}1$.

Exercise 8. Show that the following groups are icc:

- $S_{\infty} = \{\pi \text{ permutation of } \mathbb{N} | \pi(n) \neq n, \text{ for finitely many } n\}.$
- the free group $\mathbb{F}_n = \langle a_1, ..., a_n \rangle$ on $n \geq 2$ generators.
- $SL_3(\mathbb{Z})$; more generally, $PSL_n(\mathbb{Z})$, for $n \geq 2$.

Let $\Gamma \curvearrowright (X, \mu)$ be a measure preserving action of a countable group Γ on a probability space (X, μ) . For $f \in L^2(X), g \in \Gamma$, let $\sigma_g(f)(x) = f(g^{-1}x)$.

Let $\Gamma \curvearrowright (X, \mu)$ be a measure preserving action of a countable group Γ on a probability space (X, μ) . For $f \in L^2(X), g \in \Gamma$, let $\sigma_g(f)(x) = f(g^{-1}x)$. Define the Hilbert space $H = L^2(X, \mu) \otimes \ell^2\Gamma$

$$\langle \xi_1 \otimes \delta_{g_1}, \xi_2 \otimes \delta_{g_2} \rangle = \langle \xi_1, \xi_2 \rangle \langle \delta_{g_1}, \delta_{g_2} \rangle = \delta_{g_1, g_2} \int_X \xi_1 \bar{\xi_2} \ \mathrm{d}\mu$$

Let $\Gamma \curvearrowright (X, \mu)$ be a measure preserving action of a countable group Γ on a probability space (X, μ) . For $f \in L^2(X), g \in \Gamma$, let $\sigma_g(f)(x) = f(g^{-1}x)$. Define the Hilbert space $H = L^2(X, \mu) \otimes \ell^2\Gamma$

$$\langle \xi_1 \otimes \delta_{\mathbf{g}_1}, \xi_2 \otimes \delta_{\mathbf{g}_2} \rangle = \langle \xi_1, \xi_2 \rangle \langle \delta_{\mathbf{g}_1}, \delta_{\mathbf{g}_2} \rangle = \delta_{\mathbf{g}_1, \mathbf{g}_2} \int_X \xi_1 \bar{\xi_2} \; \mathrm{d}\mu$$

a *-homomorphism $\pi:L^\infty(X) o \mathbb{B}(H)$ and a unitary rep. $u:\Gamma o \mathcal{U}(H)$

$$\pi(f)(\xi\otimes\delta_h)=f\xi\otimes\delta_h \ \ \text{and} \ \ u_g(\xi\otimes\delta_h)=\sigma_g(\xi)\otimes\delta_{gh}.$$

Let $\Gamma \curvearrowright (X, \mu)$ be a measure preserving action of a countable group Γ on a probability space (X, μ) . For $f \in L^2(X), g \in \Gamma$, let $\sigma_g(f)(x) = f(g^{-1}x)$. Define the Hilbert space $H = L^2(X, \mu) \otimes \ell^2\Gamma$

$$\langle \xi_1 \otimes \delta_{g_1}, \xi_2 \otimes \delta_{g_2} \rangle = \langle \xi_1, \xi_2 \rangle \langle \delta_{g_1}, \delta_{g_2} \rangle = \delta_{g_1, g_2} \int_X \xi_1 \bar{\xi_2} \; \mathrm{d} \mu$$

a *-homomorphism $\pi:L^\infty(X)\to \mathbb{B}(H)$ and a unitary rep. $u:\Gamma\to \mathcal{U}(H)$

$$\pi(f)(\xi\otimes\delta_h)=f\xi\otimes\delta_h \ \ \text{and} \ \ u_g(\xi\otimes\delta_h)=\sigma_g(\xi)\otimes\delta_{gh}.$$

Fact. View $L^{\infty}(X) \subset \mathbb{B}(H)$. Then $u_g f u_g^* = \sigma_g(f)$, for $f \in L^{\infty}(X), g \in \Gamma$.

Let $\Gamma \curvearrowright (X, \mu)$ be a measure preserving action of a countable group Γ on a probability space (X, μ) . For $f \in L^2(X), g \in \Gamma$, let $\sigma_g(f)(x) = f(g^{-1}x)$. Define the Hilbert space $H = L^2(X, \mu) \otimes \ell^2\Gamma$

$$\langle \xi_1 \otimes \delta_{\mathbf{g}_1}, \xi_2 \otimes \delta_{\mathbf{g}_2} \rangle = \langle \xi_1, \xi_2 \rangle \langle \delta_{\mathbf{g}_1}, \delta_{\mathbf{g}_2} \rangle = \delta_{\mathbf{g}_1, \mathbf{g}_2} \int_X \xi_1 \bar{\xi_2} \; \mathrm{d}\mu$$

a *-homomorphism $\pi:L^\infty(X) \to \mathbb{B}(H)$ and a unitary rep. $u:\Gamma \to \mathcal{U}(H)$

$$\pi(f)(\xi \otimes \delta_h) = f\xi \otimes \delta_h$$
 and $u_g(\xi \otimes \delta_h) = \sigma_g(\xi) \otimes \delta_{gh}$.

Fact. View $L^{\infty}(X) \subset \mathbb{B}(H)$. Then $u_g f u_g^* = \sigma_g(f)$, for $f \in L^{\infty}(X), g \in \Gamma$. Let $\mathcal{A} := \{ \sum_{g \in F} a_g u_g | F \subset \Gamma \text{ finite}, \ a_g \in L^{\infty}(X), \forall g \in \Gamma \}$.

Let $\Gamma \curvearrowright (X, \mu)$ be a measure preserving action of a countable group Γ on a probability space (X, μ) . For $f \in L^2(X), g \in \Gamma$, let $\sigma_g(f)(x) = f(g^{-1}x)$. Define the Hilbert space $H = L^2(X, \mu) \otimes \ell^2\Gamma$

$$\langle \xi_1 \otimes \delta_{\mathbf{g}_1}, \xi_2 \otimes \delta_{\mathbf{g}_2} \rangle = \langle \xi_1, \xi_2 \rangle \langle \delta_{\mathbf{g}_1}, \delta_{\mathbf{g}_2} \rangle = \delta_{\mathbf{g}_1, \mathbf{g}_2} \int_X \xi_1 \bar{\xi_2} \; \mathrm{d}\mu$$

a *-homomorphism $\pi:L^\infty(X) \to \mathbb{B}(H)$ and a unitary rep. $u:\Gamma \to \mathcal{U}(H)$

$$\pi(f)(\xi \otimes \delta_h) = f\xi \otimes \delta_h$$
 and $u_g(\xi \otimes \delta_h) = \sigma_g(\xi) \otimes \delta_{gh}$.

Fact. View $L^{\infty}(X) \subset \mathbb{B}(H)$. Then $u_g f u_g^* = \sigma_g(f)$, for $f \in L^{\infty}(X), g \in \Gamma$. Let $\mathcal{A} := \{ \sum_{g \in F} a_g u_g | F \subset \Gamma \text{ finite}, \ a_g \in L^{\infty}(X), \forall g \in \Gamma \}$. Then $\mathcal{A} \subset \mathbb{B}(H)$ is a *-subalgebra.

Let $\Gamma \curvearrowright (X, \mu)$ be a measure preserving action of a countable group Γ on a probability space (X, μ) . For $f \in L^2(X), g \in \Gamma$, let $\sigma_g(f)(x) = f(g^{-1}x)$. Define the Hilbert space $H = L^2(X, \mu) \otimes \ell^2\Gamma$

$$\langle \xi_1 \otimes \delta_{\mathbf{g}_1}, \xi_2 \otimes \delta_{\mathbf{g}_2} \rangle = \langle \xi_1, \xi_2 \rangle \langle \delta_{\mathbf{g}_1}, \delta_{\mathbf{g}_2} \rangle = \delta_{\mathbf{g}_1, \mathbf{g}_2} \int_X \xi_1 \bar{\xi_2} \; \mathrm{d}\mu$$

a *-homomorphism $\pi:L^\infty(X) o \mathbb{B}(H)$ and a unitary rep. $u:\Gamma o \mathcal{U}(H)$

$$\pi(f)(\xi\otimes\delta_h)=f\xi\otimes\delta_h \ \ \text{and} \ \ u_g(\xi\otimes\delta_h)=\sigma_g(\xi)\otimes\delta_{gh}.$$

Fact. View $L^{\infty}(X) \subset \mathbb{B}(H)$. Then $u_g f u_g^* = \sigma_g(f)$, for $f \in L^{\infty}(X), g \in \Gamma$. Let $\mathcal{A} := \{ \sum_{g \in F} a_g u_g | F \subset \Gamma \text{ finite}, \ a_g \in L^{\infty}(X), \forall g \in \Gamma \}$. Then $\mathcal{A} \subset \mathbb{B}(H)$ is a *-subalgebra.

Definition

 $L^{\infty}(X) \rtimes \Gamma := \overline{\mathcal{A}}^{WOT} \subset \mathbb{B}(H)$ is called the **group measure space von** Neumann algebra (or crossed product vNa) of $\Gamma \curvearrowright (X, \mu)$.

Proposition 4

 $\tau: L^{\infty}(X) \rtimes \Gamma \to \mathbb{C}$ given by $\tau(x) = \langle x(1 \otimes \delta_e), 1 \otimes \delta_e \rangle$ is a trace.

Proposition 4

 $\tau: L^{\infty}(X) \rtimes \Gamma \to \mathbb{C}$ given by $\tau(x) = \langle x(1 \otimes \delta_e), 1 \otimes \delta_e \rangle$ is a trace.

Definition. Let $a \in L^{\infty}(X) \rtimes \Gamma$. Since $a(1 \otimes \delta_e) \in L^2(X) \otimes \ell^2\Gamma$, we can write $a(1 \otimes \delta_e) = \sum_{g \in \Gamma} a_g \otimes \delta_g$, where $a_g \in L^2(X)$.

Proposition 4

 $\tau: L^{\infty}(X) \rtimes \Gamma \to \mathbb{C}$ given by $\tau(x) = \langle x(1 \otimes \delta_e), 1 \otimes \delta_e \rangle$ is a trace.

Definition. Let $a \in L^{\infty}(X) \rtimes \Gamma$. Since $a(1 \otimes \delta_e) \in L^2(X) \otimes \ell^2\Gamma$, we can write $a(1 \otimes \delta_e) = \sum_{g \in \Gamma} a_g \otimes \delta_g$, where $a_g \in L^2(X)$.

Remark. We have $a = \sum_{g \in \Gamma} a_g u_g$, w.r.t. $\|.\|_2$ -convergence.

Proposition 4

 $\tau: L^{\infty}(X) \rtimes \Gamma \to \mathbb{C}$ given by $\tau(x) = \langle x(1 \otimes \delta_e), 1 \otimes \delta_e \rangle$ is a trace.

Definition. Let $a \in L^{\infty}(X) \rtimes \Gamma$. Since $a(1 \otimes \delta_e) \in L^2(X) \otimes \ell^2\Gamma$, we can write $a(1 \otimes \delta_e) = \sum_{g \in \Gamma} a_g \otimes \delta_g$, where $a_g \in L^2(X)$.

Remark. We have $a = \sum_{g \in \Gamma} a_g u_g$, w.r.t. $\|.\|_2$ -convergence.

Exercise 9. If $a = \sum_{g \in \Gamma} a_g u_g$, $b = \sum_{g \in \Gamma} b_g u_g \in L^{\infty}(X) \rtimes \Gamma$, then $ab = \sum_{g \in \Gamma} (\sum_{h \in \Gamma} a_h \sigma_h(b_{h^{-1}g}))$.

Proposition 4

 $\tau: L^{\infty}(X) \rtimes \Gamma \to \mathbb{C}$ given by $\tau(x) = \langle x(1 \otimes \delta_e), 1 \otimes \delta_e \rangle$ is a trace.

Definition. Let $a \in L^{\infty}(X) \rtimes \Gamma$. Since $a(1 \otimes \delta_e) \in L^2(X) \otimes \ell^2\Gamma$, we can write $a(1 \otimes \delta_e) = \sum_{g \in \Gamma} a_g \otimes \delta_g$, where $a_g \in L^2(X)$.

Remark. We have $a = \sum_{g \in \Gamma} a_g u_g$, w.r.t. $\|.\|_2$ -convergence.

Exercise 9. If $a = \sum_{g \in \Gamma} a_g u_g$, $b = \sum_{g \in \Gamma} b_g u_g \in L^{\infty}(X) \rtimes \Gamma$, then $ab = \sum_{g \in \Gamma} (\sum_{h \in \Gamma} a_h \sigma_h(b_{h^{-1}g}))$.

Definition

A p.m.p. (probability measure preserving) action $\Gamma \curvearrowright (X, \mu)$ is

- **free** if $\{x \in X | gx = x\}$ is a μ -null set, for all $g \in \Gamma \setminus \{e\}$.
- **ergodic** if any Γ -invariant mess. set $A \subset X$ has $\mu(A) \in \{0,1\}$.

Proposition 5

Let $\Gamma \curvearrowright (X, \mu)$ be a free ergodic p.m.p. action.

Then $L^{\infty}(X) \rtimes \Gamma$ is a II_1 factor.

Proof. Let $a \in \mathcal{Z}(L^{\infty}(X) \rtimes \Gamma)$. Write $a = \sum_{g \in \Gamma} a_g u_g$.

Proposition 5

Let $\Gamma \curvearrowright (X, \mu)$ be a free ergodic p.m.p. action.

Then $L^{\infty}(X) \rtimes \Gamma$ is a II_1 factor.

Proof. Let $a \in \mathcal{Z}(L^{\infty}(X) \rtimes \Gamma)$. Write $a = \sum_{g \in \Gamma} a_g u_g$.

Claim 1. $a \in L^{\infty}(X)$.

Proposition 5

Let $\Gamma \curvearrowright (X, \mu)$ be a free ergodic p.m.p. action.

Then $L^{\infty}(X) \rtimes \Gamma$ is a II_1 factor.

Proof. Let $a \in \mathcal{Z}(L^{\infty}(X) \rtimes \Gamma)$. Write $a = \sum_{g \in \Gamma} a_g u_g$.

Claim 1. $a \in L^{\infty}(X)$.

If $b \in L^{\infty}(X)$, then $\sum_{g \in \Gamma} ba_g u_g = ba = ab = \sum_{g \in \Gamma} a_g \sigma_g(b) u_g$.

Proposition 5

Let $\Gamma \curvearrowright (X, \mu)$ be a free ergodic p.m.p. action.

Then $L^{\infty}(X) \rtimes \Gamma$ is a II_1 factor.

Proof. Let $a \in \mathcal{Z}(L^{\infty}(X) \rtimes \Gamma)$. Write $a = \sum_{g \in \Gamma} a_g u_g$.

Claim 1. $a \in L^{\infty}(X)$.

If $b \in L^{\infty}(X)$, then $\sum_{g \in \Gamma} ba_g u_g = ba = ab = \sum_{g \in \Gamma} a_g \sigma_g(b) u_g$. Identifying coefficients $\Rightarrow a_g b = a_g \sigma_g(b)$.

Proposition 5

Let $\Gamma \curvearrowright (X, \mu)$ be a free ergodic p.m.p. action.

Then $L^{\infty}(X) \rtimes \Gamma$ is a II_1 factor.

Proof. Let $a \in \mathcal{Z}(L^{\infty}(X) \rtimes \Gamma)$. Write $a = \sum_{g \in \Gamma} a_g u_g$.

Claim 1. $a \in L^{\infty}(X)$.

If $b \in L^{\infty}(X)$, then $\sum_{g \in \Gamma} ba_g u_g = ba = ab = \sum_{g \in \Gamma} a_g \sigma_g(b) u_g$. Identifying coefficients $\Rightarrow a_g b = a_g \sigma_g(b)$. Let $Y_g = \{x \in X | a_g(x) \neq 0\}$. For all $b \in L^{\infty}(X)$ we have $b(x) = b(g^{-1}x)$, for almost every $x \in Y_g$.

164 / 174

Proposition 5

Let $\Gamma \curvearrowright (X, \mu)$ be a free ergodic p.m.p. action.

Then $L^{\infty}(X) \rtimes \Gamma$ is a II_1 factor.

Proof. Let
$$a \in \mathcal{Z}(L^\infty(X) \rtimes \Gamma)$$
. Write $a = \sum_{g \in \Gamma} a_g u_g$.
Claim 1. $a \in L^\infty(X)$.
If $b \in L^\infty(X)$, then $\sum_{g \in \Gamma} ba_g u_g = ba = ab = \sum_{g \in \Gamma} a_g \sigma_g(b) u_g$.
Identifying coefficients $\Rightarrow a_g b = a_g \sigma_g(b)$. Let $Y_g = \{x \in X \mid a_g(x) \neq 0\}$.
For all $b \in L^\infty(X)$ we have $b(x) = b(g^{-1}x)$, for almost every $x \in Y_g$.
The action is free $\Rightarrow \mu(Y_g) = 0$ hence $a_g = 0$, for all $g \in \Gamma \setminus \{e\}$.
Thus, $a = a_e 1 \in L^\infty(X)$.

Proposition 5

Let $\Gamma \curvearrowright (X, \mu)$ be a free ergodic p.m.p. action.

Then $L^{\infty}(X) \rtimes \Gamma$ is a II_1 factor.

Proof. Let $a \in \mathcal{Z}(L^{\infty}(X) \rtimes \Gamma)$. Write $a = \sum_{g \in \Gamma} a_g u_g$.

Claim 1. $a \in L^{\infty}(X)$.

If $b \in L^{\infty}(X)$, then $\sum_{g \in \Gamma} ba_g u_g = ba = ab = \sum_{g \in \Gamma} a_g \sigma_g(b) u_g$. Identifying coefficients $\Rightarrow a_{\sigma}b = a_{\sigma}\sigma_{\sigma}(b)$. Let $Y_{\sigma} = \{x \in X | a_{\sigma}(x) \neq 0\}$. For all $b \in L^{\infty}(X)$ we have $b(x) = b(g^{-1}x)$, for almost every $x \in Y_{\sigma}$. The action is free $\Rightarrow \mu(Y_g) = 0$ hence $a_g = 0$, for all $g \in \Gamma \setminus \{e\}$.

Thus, $a = a_e 1 \in L^{\infty}(X)$.

Claim 2. *a* is a constant function, i.e. $a \in \mathbb{C}1$.

Proposition 5

Let $\Gamma \curvearrowright (X, \mu)$ be a free ergodic p.m.p. action.

Then $L^{\infty}(X) \rtimes \Gamma$ is a II_1 factor.

Proof. Let $a \in \mathcal{Z}(L^{\infty}(X) \rtimes \Gamma)$. Write $a = \sum_{g \in \Gamma} a_g u_g$.

Claim 1. $a \in L^{\infty}(X)$.

If $b \in L^{\infty}(X)$, then $\sum_{g \in \Gamma} ba_g u_g = ba = ab = \sum_{g \in \Gamma} a_g \sigma_g(b) u_g$. Identifying coefficients $\Rightarrow a_g b = a_g \sigma_g(b)$. Let $Y_g = \{x \in X | a_g(x) \neq 0\}$. For all $b \in L^{\infty}(X)$ we have $b(x) = b(g^{-1}x)$, for almost every $x \in Y_g$.

The action is free $\Rightarrow \mu(Y_n) = 0$ hence $a_n = 0$ for all $\sigma \in \Gamma \setminus \{e\}$

The action is free $\Rightarrow \mu(Y_g) = 0$ hence $a_g = 0$, for all $g \in \Gamma \setminus \{e\}$.

Thus, $a = a_e 1 \in L^{\infty}(X)$.

Claim 2. *a* is a constant function, i.e. $a \in \mathbb{C}1$.

For all $g \in \Gamma$, $\sigma_g(a) = u_g a u_g^* = a$, hence $a(g^{-1}x) = a(x)$, a.e. $x \in X$.

Proposition 5

Let $\Gamma \curvearrowright (X, \mu)$ be a free ergodic p.m.p. action.

Then $L^{\infty}(X) \rtimes \Gamma$ is a II_1 factor.

Proof. Let $a \in \mathcal{Z}(L^{\infty}(X) \rtimes \Gamma)$. Write $a = \sum_{g \in \Gamma} a_g u_g$.

Claim 1. $a \in L^{\infty}(X)$.

If $b \in L^{\infty}(X)$, then $\sum_{g \in \Gamma} ba_g u_g = ba = ab = \sum_{g \in \Gamma} a_g \sigma_g(b) u_g$. Identifying coefficients $\Rightarrow a_{\sigma}b = a_{\sigma}\sigma_{\sigma}(b)$. Let $Y_{\sigma} = \{x \in X | a_{\sigma}(x) \neq 0\}$. For all $b \in L^{\infty}(X)$ we have $b(x) = b(g^{-1}x)$, for almost every $x \in Y_{\sigma}$.

The action is free $\Rightarrow \mu(Y_g) = 0$ hence $a_g = 0$, for all $g \in \Gamma \setminus \{e\}$.

Thus, $a = a_e 1 \in L^{\infty}(X)$.

Claim 2. a is a constant function, i.e. $a \in \mathbb{C}1$.

For all $g \in \Gamma$, $\sigma_g(a) = u_g a u_g^* = a$, hence $a(g^{-1}x) = a(x)$, a.e. $x \in X$.

If a has two essential values $v_1 \neq v_2$, put $\delta = |v_1 - v_2|/2$.

Then $X_i = \{x | |f(x) - v_i| < \delta\}, i = 1, 2$, is non-negligible and Γ -invariant.

Proposition 5

Let $\Gamma \curvearrowright (X, \mu)$ be a free ergodic p.m.p. action.

Then $L^{\infty}(X) \rtimes \Gamma$ is a II_1 factor.

Proof. Let $a \in \mathcal{Z}(L^{\infty}(X) \rtimes \Gamma)$. Write $a = \sum_{g \in \Gamma} a_g u_g$.

Claim 1. $a \in L^{\infty}(X)$.

If $b \in L^{\infty}(X)$, then $\sum_{g \in \Gamma} ba_g u_g = ba = ab = \sum_{g \in \Gamma} a_g \sigma_g(b) u_g$. Identifying coefficients $\Rightarrow a_g b = a_g \sigma_g(b)$. Let $Y_g = \{x \in X | a_g(x) \neq 0\}$. For all $b \in L^{\infty}(X)$ we have $b(x) = b(g^{-1}x)$, for almost every $x \in Y_g$.

The action is free $\Rightarrow \mu(Y_g) = 0$ hence $a_g = 0$, for all $g \in \Gamma \setminus \{e\}$.

Thus, $a = a_e 1 \in L^{\infty}(X)$.

Claim 2. *a* is a constant function, i.e. $a \in \mathbb{C}1$.

For all $g \in \Gamma$, $\sigma_g(a) = u_g a u_g^* = a$, hence $a(g^{-1}x) = a(x)$, a.e. $x \in X$.

If a has two essential values $v_1 \neq v_2$, put $\delta = |v_1 - v_2|/2$.

Then $X_i = \{x | |f(x) - v_i| < \delta\}$, i = 1, 2, is non-negligible and Γ -invariant.

Since $X_1 \cap X_2 = \emptyset$, this contradicts that the action is ergodic.

The following actions are free ergodic p.m.p.

• Let Γ be a countable ∞ group and put $(X, \mu) = ([0, 1], \mathbf{Leb})^{\Gamma}$.

The following actions are free ergodic p.m.p.

• Let Γ be a countable ∞ group and put $(X, \mu) = ([0, 1], \mathbf{Leb})^{\Gamma}$. The **Bernoulli action** $\Gamma \curvearrowright (X, \mu)$ is given by: $g \cdot x = (x_{g^{-1}h})_{h \in \Gamma}$ for all $g \in \Gamma$ and $x = (x_g)_{g \in \Gamma} \in X$.

The following actions are free ergodic p.m.p.

- Let Γ be a countable ∞ group and put $(X, \mu) = ([0, 1], \mathbf{Leb})^{\Gamma}$. The **Bernoulli action** $\Gamma \curvearrowright (X, \mu)$ is given by: $g \cdot x = (x_{g^{-1}h})_{h \in \Gamma}$ for all $g \in \Gamma$ and $x = (x_g)_{g \in \Gamma} \in X$.
- Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and $\mathbb{T} = \{z \in \mathbb{C} | |z| = 1\}$.

The following actions are free ergodic p.m.p.

- Let Γ be a countable ∞ group and put $(X, \mu) = ([0, 1], \mathbf{Leb})^{\Gamma}$. The **Bernoulli action** $\Gamma \curvearrowright (X, \mu)$ is given by: $g \cdot x = (x_{g^{-1}h})_{h \in \Gamma}$ for all $g \in \Gamma$ and $x = (x_g)_{g \in \Gamma} \in X$.
- Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and $\mathbb{T} = \{z \in \mathbb{C} | |z| = 1\}$. The **irrational rotation action** $\mathbb{Z} \curvearrowright (\mathbb{T}, \mathbf{Leb})$ is given by: $n \cdot z = \exp(2\pi i n \alpha)z$, for all $n \in \mathbb{Z}$ and $z \in \mathbb{T}$.

The following actions are free ergodic p.m.p.

- Let Γ be a countable ∞ group and put $(X, \mu) = ([0, 1], \mathbf{Leb})^{\Gamma}$. The **Bernoulli action** $\Gamma \curvearrowright (X, \mu)$ is given by: $g \cdot x = (x_{g^{-1}h})_{h \in \Gamma}$ for all $g \in \Gamma$ and $x = (x_g)_{g \in \Gamma} \in X$.
- Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and $\mathbb{T} = \{z \in \mathbb{C} | |z| = 1\}$. The **irrational rotation action** $\mathbb{Z} \curvearrowright (\mathbb{T}, \mathbf{Leb})$ is given by: $n \cdot z = \exp(2\pi i n \alpha)z$, for all $n \in \mathbb{Z}$ and $z \in \mathbb{T}$.
- The usual matrix multiplication action $SL_n(\mathbb{Z}) \curvearrowright (\mathbb{T}^n \equiv \mathbb{R}^n/\mathbb{Z}^n, \mathbf{Leb})$, for $n \geq 2$.