A NOTE ON PROPERTY (T)

ISAAC GOLDBRING

In this note, we make a small observation about Property (T); this result is known (see Corollary F.2.9 of [1]), but our proof is new and short.

Fix a locally compact group G and a (complex) Hilbert space H. Then a unitary representation of G in H is a group homomorphism $\pi : G \to U(H)$ from G into the group of unitary operators on H which is strongly continuous, that is, the map $g \mapsto \pi(g)(x) : G \to H$ is continuous for every $x \in H$.

Fix a unitary representation $\pi : G \to U(H)$. If $\epsilon \in \mathbb{R} > 0$ and K is a compact subset of G, we say that $x \in H$ is an (ϵ,K)-invariant vector if $\|\pi(g)(x) - x\| < \epsilon$ for all $g \in K$. We say that $x \in H$ is an invariant vector if $\pi(g)(x) = x$ for all $g \in G$.

G is said to have Kazhdan’s property (T) if whenever $\pi : G \to U(H)$ is a unitary representation which has (ϵ,K)-invariant unit vectors for every $\epsilon \in \mathbb{R} > 0$ and every compact $K \subseteq G$, then π has a nonzero invariant vector. The point of this note is to show that the only obstruction to property (T) are infinite-dimensional representations:

Proposition 0.1. Suppose that $\pi : G \to U(H)$ is a unitary representation of G in H, where $\dim(H) < \infty$. Suppose that π has (ϵ,K)-invariant unit vectors for every $\epsilon \in \mathbb{R} > 0$ and every compact $K \subseteq G$. Then π has an invariant unit vector.

Proof. We use nonstandard analysis to prove this fact. We work in a κ-saturated nonstandard universe, where $\kappa > |G|$. Fix a positive infinitesimal ϵ. For each $g \in G$, let

$$A_g := \{ x \in H^* \mid \|x\| = 1, \|\pi(g)(x) - x\| < \epsilon \}.$$

Clearly each A_g is internal. Moreover, by the transfer of our hypothesis, each A_g is nonempty and the family $(A_g \mid g \in G)$ has the finite intersection property. Thus, by saturation, there is $x \in H^*$ such that $\|x\| = 1$ and $\|\pi(g)(x) - x\| < \epsilon$ for each $g \in G$.

Since $\dim(H) < \infty$, there is a (unique) vector in H infinitely close to x; we call this vector $\text{st}(x)$. We claim that $\text{st}(x)$ is an invariant vector for π. Fix $g \in G$. Since $\pi(g) : H \to H$ is continuous, we know that $\pi(g)(\text{st}(x)) \approx \pi(g)(x)$; here \approx means “infinitely close to”. We thus have that

$$\pi(g)(\text{st}(x)) \approx \pi(g)(x) \approx x \approx \text{st}(x).$$

Since $\pi(g)(\text{st}(x)), \text{st}(x) \in H$, we have that $\pi(g)(\text{st}(x)) = \text{st}(x)$. \qed
References