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Abstract. In the paper Randomizations of Scattered Sentences, Keisler
showed that if Martin’s axiom for aleph one holds, then every scattered
sentence has few separable randomizations, and asked whether the con-
clusion could be proved in ZFC alone. We show here that the answer is
“yes”. It follows that the absolute Vaught conjecture holds if and only
if every Lω1ω-sentence with few separable randomizations has countably
many countable models.

1. Introduction

This note answers a question posed in the paper [K2], and results from
a discussion following a lecture by Keisler at the Midwest Model Theory
meeting in Chicago on April 5, 2016.

Fix a countable first order signature L. A sentence ϕ of the infinitary
logic Lω1ω is scattered if there is no countable fragment LA of Lω1ω such
that ϕ has a perfect set of countable models that are not LA-equivalent.
Scattered sentences were introduced by Morley [M], motivated by Vaught’s
conjecture. The absolute form of Vaught’s conjecture for an Lω1ω-sentence
ϕ says that if ϕ is scattered then ϕ has countably many (non-isomorphic)
countable models 1.

In continuous logic, the pure randomization theory PR (from [BK]) is a
theory whose signature LR has a sort K for random elements and a sort E for
events. For each formula θ(·) of L with n free variables, LR has a function
symbol Jθ(·)K of sort Kn → E for the event at which θ(·) is true. LR also
has Boolean operations t,u,¬ in the event sort, a predicate µ from events
to [0, 1], and distance predicates dK, dE for each sort. The set of axioms for
PR is recursive in L. It insures that the functions Jθ(·)K respect validity,
connectives, and quantifiers, that each event is equal to the set where some
pair of random elements agree, and that µ is an atomless probability measure
on the events. There are also axioms that define dK and dE in the natural
way.

The work of Andrews was partially supported by NSF grant DMS-1600228. The work
of Goldbring was partially supported by NSF CAREER grant DMS-1708802.

1Here, countable means of cardinality at most ℵ0.
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Pre-models of PR are called randomizations, and models of PR are called
complete randomizations. In Theorem 5.1 of [K2] (stated as Fact 2.4 below),
it is shown that in a complete separable randomization, there is a unique
mapping J·K from Lω1ω-sentences to events that respects validity, countable
connectives, and quantifiers. A separable randomization of an Lω1ω-sentence
ϕ is a separable randomization whose completion satisfies µ(JϕK) = 1. In-
tuitively, in a separable randomization of ϕ, a random element is obtained
by randomly picking an element of a random countable model of ϕ, with
respect to some underlying probability space. An especially simple kind
of randomization of ϕ, called a basic randomization, has random elements
picked from some fixed countable family of countable models of ϕ, with
the underlying probability space being the Lebesgue measure on the unit
interval. ϕ is said to have few separable randomizations if every complete
separable randomization of ϕ is isomorphic to a basic randomization.

The main results of [K2] are: If an Lω1ω-sentence ϕ has countably many
countable models, then ϕ has few separable randomizations. If ϕ has few
separable randomizations, then ϕ is scattered. If Martin’s axiom for ℵ1

holds and ϕ is scattered, then ϕ has few separable randomizations. [K2]
asks whether the conclusion of this last result can be proved in ZFC. Here
we will show that the answer to that question is “yes”. The idea will be
to use the Shoenfield absoluteness theorem to eliminate the use of Martin’s
axiom.

The results in the preceding paragraph show that being scattered is equiv-
alent to having few separable randomizations. The absolute Vaught conjec-
ture for ϕ says that if ϕ is scattered then ϕ has countably many countable
models. Thus the absolute Vaught conjecture is equivalent to the property
that having few separable randomizations implies having countably many
countable models.

2. Background

We refer to [BBHU] for background in continuous logic, [J] for background
on absoluteness and Martin’s axiom, and [K1] for background on Lω1ω. We
assume throughout that ϕ is an Lω1ω-sentence that implies (∃x)(∃y)x 6= y.
We will not need the formal statement of the axioms of PR, or the formal
definition of Jψ(·)K for Lω1ω-formulas ψ(·). In this section we will state the
definitions and results from [K2] that we will need.

Given two pre-structures N and P with signature LR, an isomorphism
h : N → P is a mapping from N into P such that h preserves the truth
values of all formulas of LR, and every element of P is at distance zero
from some element of h(N ). We call P a reduction of N if P is obtained
from N by identifying elements at distance zero, and call P a completion
of N if P is a structure obtained from a reduction of N by completing the
metrics. Up to isomorphism, every pre-structure has a unique reduction and
completion. The mapping that identifies elements at distance zero is called
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the reduction mapping, and is an isomorphism from a pre-structure onto
its reduction.

The axioms of PR have the following consequences:

dK(f , g) = µ(Jf 6= gK), dE(A,B) = µ(A4B).

µ(J(∃x)(∃y)x 6= yK) = 1.
By the latter, every separable randomization is a separable randomization
of (∃x)(∃y)x 6= y. Since PR has axioms saying that the functions Jθ(·)K for
first order θ respect connectives, and that every event is equal to Ja = bK
for some a, b, it follows that:

Fact 2.1. Suppose N = (K,B) and N ′ = (K′,B′) are models of PR, h maps
K onto K′, and

N |= µ(Jθ(~a)K) ≥ r ⇔ N ′ |= µN
′
(Jθ(h~a)K) ≥ r

for all first order θ, tuples ~a in K, and rational r. Then h can be extended
to a unique isomorphism from N onto N ′.

The simplest examples of randomizations are the Borel randomizations,
defined as follows. Let L be the family of Borel subsets of [0, 1) and λ be
the restriction of Lebesgue measure to L.

Definition 2.2. The Borel randomization of a model M |= (∃x)(∃y)x 6= y
is the structure (ML,L) of sort LR where ML is the set of all functions
f : [0, 1) → M with countable range such that {t | f(t) = a} ∈ L for each
a ∈M , L has the usual Boolean operations, µ is interpreted by λ, and

Jθ(~f)K = {t | M |= θ(~f(t))}.
A basic randomization of ϕ is formed by “gluing together” countably

many Borel randomizations of countable models of ϕ.

Definition 2.3. Suppose that
• [0, 1) =

⋃
n Bn is a partition of [0, 1) into countably many Borel sets

of positive measure;
• for each n, Mn is a countable model of ϕ;
•

∏
nMBn

n is the set of all functions f : [0, 1)→
⋃

nMn such that for
all n,

(∀t ∈ Bn)f(t) ∈Mn and (∀a ∈Mn){t ∈ Bn | f(t) = a} ∈ L;

• (
∏

nMBn
n ,L) has the usual Boolean operations, µ is interpreted by

λ, and the Jθ(·)K functions are

Jθ(~f)K =
⋃
n

{t ∈ Bn | Mn |= θ(~f(t))}.

(
∏

nMBn
n ,L) is called a basic randomization of ϕ.

Fact 2.4. (Theorem 5.1 in [K2]) Let P = (K, E) be a complete separable
randomization, and let Ψn be the class of Lω1ω formulas with n free variables.
There is a unique family of functions Jψ(·)KP , ψ ∈

⋃
n Ψn, such that:
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(i) When ψ ∈ Ψn, Jψ(·)KP : Kn → E .
(ii) When ψ is a first order formula, Jψ(·)KP is the usual event function

for the structure P.
(iii) J¬ψ(~f)KP = ¬Jψ(~f)KP .
(iv) J(ψ1 ∨ ψ2)(~f)KP = Jψ1(~f)KP t Jψ2(~f)KP .
(v) J

∨
k ψk(~f)KP = supkJψk(~f)KP .

(vi) J(∃u)θ(u, ~f)KP = supg∈KJθ(g, ~f)KP .
Moreover, for each ψ ∈ Ψn, the function Jψ(·)KP is Lipschitz continuous
with bound one, that is, for any pair of n-tuples ~f , ~h ∈ Kn we have

dE(Jψ(~f)KP , Jψ(~h)KP) ≤
∑
m<n

dK(fm,hm).

Definition 2.5. Let N be a separable randomization with completion P,
and ϕ be an Lω1ω-sentence. We write

µN (JϕK) = µP(JϕK) = µ(JϕKP).

If µN (JϕK) = 1, we say that N is a randomization of ϕ.
We say that ϕ has few separable randomizations if every complete sepa-

rable randomization of ϕ is isomorphic to a basic randomization of ϕ.

Fact 2.6. ([K2], Lemma 4.3 and Theorem 4.6.) Every basic randomization
of ϕ is isomorphic to its reduction, which is a complete separable random-
ization of ϕ (and thus a model of PR).

Fact 2.7. (Lemma 9.4 in [K2]) Let (
∏

j∈JM
Bj

j ,L) be a basic randomization.
For each j ∈ J , let δj be a Scott sentence of Mj. Then for each complete
separable randomization P of ϕ, the following are equivalent.

• P is isomorphic to (
∏

j∈JM
Bj

j ,L).
• µP(JδnK) = λ(Bj) for each j ∈ J .

Fact 2.8. (Lemma 9.5 in [K2]) ϕ has few separable randomizations if and
only if for every complete separable randomization (or every countable ran-
domization) N of ϕ there is a Scott sentence δ such that µN (JδK) > 0.

Fact 2.9. (Theorem 10.1 in [K2]). If ϕ has few separable randomizations,
then ϕ is scattered.

Fact 2.10. (Theorem 10.3 in [K2]). Assume that Lebesgue measure is ℵ1-
additive (e.g. assume that MA(ℵ1) holds). Then every scattered sentence
has few separable randomizations.

Question 11.4 in [K2] asks whether or not the conclusion of Fact 2.10 can
be proved in ZFC.

3. The Main Result

We will prove the following theorem, which answers Question 11.4 in [K2]
affirmatively.
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Theorem 3.1. Every scattered sentence has few separable randomizations.

Fact 2.9 and Theorem 3.1 give us the following two corollaries.

Corollary 3.2. A sentence of Lω1ω is scattered if and only if it has few
separable randomizations.

Corollary 3.3. For each Lω1ω-sentence ϕ, the following are equivalent.
(i) The absolute Vaught conjecture for ϕ holds.
(ii) If ϕ has few separable randomizations, then ϕ has countably many

countable models.

Note that each countable pre-structure N = (K,B) in the signature LR

can be coded in a natural way by a first order structure with universe N and
a countable signature indexed by N. In particular, the function µ : B → [0, 1]
can be coded by the set of (e,m, n) ∈ N3 such that e codes an event E and
m/n ≤ µ(E).

Let A be the set of subsets of [0, 1) that are finite unions of intervals
with rational endpoints. Given a countable modelM of (∃x)(∃y)x 6= y with
countable signature L, let MA be the set of functions f : [0, 1) → M with
finite range such that for each a ∈M, f−1(a) ∈ A. Let M̃ be the completion
of (MA,A). M̃ is isomorphic to the Borel randomization (ML,L) ofM. A,
M, andMA are countable and can be coded in the natural way by subsets
of N.

Lemma 3.4. Let N = (K,B) be a countable randomization with a coding.
Then the statement (S) below is equivalent (in ZFC) to a Σ1

1 formula with
parameter N .

(S) There exists a Scott sentence δ such that µN (JδK) > 0.

Proof. For each event C in the completion of N such that µ(C) > 0, let µ|C
be the conditional measure such that

(µ|C)(E) = µ(E u C)/µ(C),

and let N|C be the completion of the pre-structure obtained from N by
replacing µ by µ|C. We first show that (S) is equivalent to the following
statement.

(S’) There exists a countable modelM of (∃x)(∃y)x 6= y and an event C

in the completion of N such that µ(C) > 0 and N|C ∼= M̃.
Assume (S). Let δ be a Scott sentence δ such that µN (JδK) > 0. Let

C = JδK, which is an event of positive measure in the completion of N .
Then µN|C(JδK) = 1, so N|C is a separable randomization of δ. LetM be a
countable model of δ. By Fact 2.7, we have N|C ∼= M̃, so (S’) holds.

Now assume (S’). By Scott’s theorem, M has a Scott sentence δ. Then
by Fact 2.7, µfM(JδK) = 1, so

1 = µN|C(JδK) = µN (C u JδK)/µN (C).
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Hence
µN (JδK) ≥ µN (C u JδK) = µN (C) > 0,

so (S) holds.
We now show that (S’) is equivalent to the following statement.
(S”) There exists a countable coded structureM with at least 2 elements,

a sequence B : N → B, and double sequences α : N × N → MA,
β : N× N→ K such that
(a) B is Cauchy convergent in dE, and limn→∞ µ(Bn) > 0.
(b) For each m ∈ N, 〈αm,n | n ∈ N〉 and 〈βm,n | n ∈ N〉 are Cauchy

convergent in dK.
(c) For each x ∈MA, there exists mx ∈ N such that αmx,n = x for

all n ∈ N, and for each y ∈ K, there exists my ∈ N such that
βmy ,n = y for all n ∈ N.

(d) For each L-formula ψ(v1, . . . , vk),

lim
n→∞

µ
fM(Jψ(α1,n, . . . , αk,n)K) = lim

n→∞
µN (Jψ(β1,n, . . . , βk,n)K u Bn)/µN (Bn).

In (S”), N andM are coded structures, so (S”) is clearly Σ1
1 with param-

eter N .
The functions Jψ(·)K are uniformly continuous in each model of PR.

Whenever (a) and (b) hold, for each m,n ∈ N the reduction maps send
αm,n to an element α′′m,n of M̃, and βm,n to an element β′′m,n of N|C, and
the limits α′m = limn→∞ α

′′
m,n in M̃ and β′m = limn→∞ β

′′
m,n in N|C exist.

Therefore, (a) and (b) imply that for each L-formula ψ(v1, . . . , vk),

(3.1) µ
fM(Jψ(α′1, . . . , α

′
k)K) = lim

n→∞
µ

fM(Jψ(α1,n, . . . , αk,n)K)

and

(3.2) µN|C(Jψ(β′1, . . . , β
′
k)K) = lim

n→∞
µN (Jψ(β1,n, . . . , βk,n)K u Bn)/µN (Bn).

We next assume that (S’) holds for some M and C, and prove (S”). We
may takeM to be a coded structure, and let h be an isomorphism from N|C
to M̃. We may choose mappings α′ from N into M̃ and β′ from N into N|C
such that range(α′), range(β′) contain the images of MA and K under the
reduction maps, and α′n = h(β′n) for each n ∈ N. Then for each L-formula
ψ(v1, . . . , vk),

(3.3) µ
fM(Jψ(α′1, . . . , α

′
k)K) = µN|C(Jψ(β′1, . . . , β

′
k)K).

One can choose a sequence B : N → B, and double sequences α : N × N →
MA, β : N × N → K such that (c) holds, the reduction of Bn converges to
C, and for each m ∈ N the reductions of αm,n and βm,n converge to α′m and
β′m respectively. Then conditions (a) and (b) hold, so (3.1) and (3.2) hold
for each L-formula ψ(v1, . . . , vk), By (3.3), condition (d) holds, and hence
(S”) holds.
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Finally, we assume (S”) and prove (S’). Let C = limn→∞ Bn in the com-
pletion of B. Since (a) and (b) hold, (3.1) and (3.2) hold for each L-formula
ψ(v1, . . . , vk). Then by (d), (3.3) holds for every ψ. By (c), range(α′) ⊇MA
and range(β′) ⊇ K. Therefore range(α′) is dense in the K-sort of M̃, and
range(β′) is dense in the K-sort of N|C. Hence every element of M̃ of sort
K is equal to limk→∞ α

′
mk

for some sequence (m0,m1, . . .) ∈ NN, and sim-
ilarly for N|C and β′. Since dK(a, b) = µ(Ja 6= bK) in any model of PR,
limk→∞ α

′
mk

exists in M̃ if and only if limk→∞ β
′
mk

exists in N|C. When-
ever limk→∞ α

′
mk

exists in M̃, let h(limk→∞ α
′
mk

) = limk→∞ β
′
mk

. Then h

maps the K-sort of M̃ onto the K-sort of N|C. Since (3.3) holds and the
functions Jψ(·)K are uniformly continuous in M̃ and N|C,

µ
fM(Jψ(~a)K) = µN|C(Jψ(h~a)K)

for each L-formula ψ and tuple ~a of sort K in M̃. Therefore by Fact 2.1, h
can be extended to an isomorphism from M̃ onto N|C. This proves (S’). �

By a transitive model of a set of sentences Z we mean a transitive set V
such that (V,∈) |= Z. It is well known that there is a finite subset ZFC0

of the set of axioms of ZFC such that the Shoenfield absoluteness theorem
holds for all transitive models of ZFC0. Assume hereafter that ZFC0 is a
finite subset of ZFC with that property, and also that ZFC0 implies every
result stated in Section 2, Lemma 3.4 above, and every consequence of ZFC
that is used in the proofs of Lemmas 3.5 and 3.6 below.

Lemma 3.5. Let V, V [G] be transitive models of ZFC0 such that the signa-
ture L is in V , and V ⊆ V [G]. Suppose that in V it is true that ϕ is an
Lω1ω-sentence and N = (K,B) is a countable randomization. Then in V [G]
it is also true that ϕ is an Lω1ω-sentence and N = (K,B) is a countable
randomization, and µN (JϕK) has the same value in V as in V [G]. Hence

V |= N is a countable randomization of ϕ

if and only if

V [G] |= N is a countable randomization of ϕ.

Proof. It is easily proved using induction on the complexity of formulas that

V [G] |= ϕ is a an Lω1ω-sentence.

Since the set of axioms of PR is recursive in L, the property of being a
countable randomization is Σ1, and hence

V [G] |= N is a countable randomization.

Let P be the completion ofN in V , andQ be the completion ofN in V [G].
In V [G], P is a separable randomization that is not necessarily complete,
and Q is the completion of N and also the completion of P. For each Lω1ω-
formula ψ(·) in V , let Jψ(·)KP be the function obtained by applying Fact 2.4
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to P in V , and let Jψ(·)KQ be the function obtained by applying Fact 2.4
to Q in V [G]. Using Conditions (i)–(vi) of Fact 2.4, we show by induction
on complexity that for every Lω1ω-formula ψ(·) in V and tuple ~f in the
reduction of K, Jψ(~f)KP = Jψ(~f)KQ. The base step for first order formulas
and the steps for negation and finite disjunction are easy.

Countable disjunction step: Let ψ =
∨

k ψk, and suppose ~f is in the
reduction of K and that Jψk(~f)KP = Jψk(~f)KQ holds for each k ∈ N. Let
ψ′k =

∨
n≤k ψn. Then Jψ′k(~f)KP = Jψ′k(~f)KQ for each k ∈ N, and

Jψ(~f)KP = lim
k→∞

Jψ′k(~f)KP = lim
k→∞

Jψ′k(~f)KQ = Jψ(~f)KQ.

Existential quantifier step: Let ψ(~u) = (∃v)θ(~u, v) and suppose that
Jθ(~f , g)KP = Jθ(~f , g)KQ for all ~f , g in the reduction of K. Since the re-
duction of K is dense in the sort K parts of both P and Q, and the functions
Jθ(·)KP and Jθ(·)KQ are both Lipschitz continuous with bound 1 by Fact 2.4,
it follows that Jψ(~f)KP = Jψ(~f)KQ. This completes the induction.

Every event in P has the same measure in V as in V [G]. In particular,
for the sentence ϕ, the measure of JϕKP is the same in V as in V [G]. We
have

V |= µN (JϕK) = µ(JϕKP)

and
V [G] |= µN (JϕK) = µ(JϕKQ) = µ(JϕKP).

Therefore µN (JϕK) has the same value in V as in V [G]. �

Lemma 3.5 can also be proved by using the continuous analogue of the
infinitary logic Lω1ω. Lemma 5.18 in the paper [EV] shows that for any
metric structure P and continuous infinitary sentence Θ in V , the value of
Θ in P computed in V is the same as the value computed in V [G]. Using
Fact 2.4, one can find a continuous infinitary sentence Θ that has the same
value as µ(JθKP) in any complete separable randomization P, and then use
Lemma 5.18 in [EV] to get Lemma 3.5.

Lemma 3.6. In any countable transitive model V of ZFC0, it is true that
every scattered sentence has few separable randomizations.

Proof. By the result of Solovay and Tennenbaum, there is a countable tran-
sitive model V [G] of ZFC0 with the same ordinals as V such that V ⊆ V [G]
and Martin’s Axiom for ℵ1 holds in V [G]. Suppose that in V it is true that
ϕ is a scattered sentence, N is a countable randomization with a coding,
and µN (JϕK) = 1.

We now work in V [G], and prove the statement (S) of Lemma 3.4. The
property of being a scattered sentence is Π1

2, so by the Shoenfield abso-
luteness theorem, ϕ is a still scattered sentence. By Lemma 3.5, N is still
a countable randomization with µN (JϕK) = 1. So the completion of N is a
complete separable randomization of ϕ. By Fact 2.10 and Martin’s axiom, ϕ
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has few separable randomizations. By Fact 2.8, there exists a Scott sentence
δ such that µN (JδK) > 0, so (S) holds.

By Lemma 3.4 and the Shoenfield absoluteness theorem (or even the
weaker Mostowski absoluteness theorem), (S) also holds in V . So by Fact
2.8, it is true in V that ϕ has few separable randomizations. �

Proof. (Proof of Theorem 3.1) The following argument is well-known, and is
included for completeness. Let η be the sentence in the vocabulary of ZFC
that says that every scattered sentence has few separable randomizations.
Assume ¬η. By the reflection theorem, ZFC0∪{¬η} has a transitive model.
By the downward Löwenheim-Skolem theorem and the Mostowski collapsing
lemma, ZFC0 ∪ {¬η} has a countable transitive model. This contradicts
Lemma 3.6, so η holds. �
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