Introduction to C*-Algebras

Thomas Sinclair

Model Theory of Operator Algebras UC Irvine

September 20, 2017

- \blacktriangleright H complex Hilbert space with (\cdot, \cdot) inner product
- $\|\xi\|:=(\xi,\xi)^{1/2}$ (complete) norm
- $ightharpoonup H^*$ continuous linear functionals $\phi: H \to \mathbb{C}$
- ▶ (F. Reisz) $\phi \in H^*$ then $\exists \eta \in H \forall \xi \in H(\phi(\xi) = (\xi, \eta))$

- ightharpoonup H complex Hilbert space with (\cdot, \cdot) inner product
- $\parallel \xi \parallel := (\xi, \xi)^{1/2}$ (complete) norm
- $ightharpoonup H^*$ continuous linear functionals $\phi: H \to \mathbb{C}$
- ► (F. Reisz) $\phi \in H^*$ then $\exists \eta \in H \forall \xi \in H(\phi(\xi) = (\xi, \eta))$

- ightharpoonup H complex Hilbert space with (\cdot, \cdot) inner product
- $ightharpoonup \|\xi\|:=(\xi,\xi)^{1/2}$ (complete) norm
- $ightharpoonup H^*$ continuous linear functionals $\phi: H \to \mathbb{C}$
- ► (F. Reisz) $\phi \in H^*$ then $\exists \eta \in H \forall \xi \in H(\phi(\xi) = (\xi, \eta))$

- ightharpoonup H complex Hilbert space with (\cdot, \cdot) inner product
- $\parallel \xi \parallel := (\xi, \xi)^{1/2}$ (complete) norm
- ▶ H^* continuous linear functionals $\phi: H \to \mathbb{C}$
- ▶ (F. Reisz) $\phi \in H^*$ then $\exists \eta \in H \forall \xi \in H(\phi(\xi) = (\xi, \eta))$

- \triangleright $\mathcal{B}(H,K) = \{T : H \rightarrow K : T \text{ linear, continuous}\}$
- operator norm

$$||T|| := \sup_{\xi \neq 0} \frac{||T\xi||}{||\xi||} < \infty$$

 $\triangleright \mathcal{B}(H,K)$ complete

$$||T|| = \sup_{\|\xi\| = \|\eta\| = 1} |(T\xi, \eta)|$$

- \triangleright $\mathcal{B}(H,K) = \{T : H \rightarrow K : T \text{ linear, continuous}\}$
- operator norm

$$||T|| := \sup_{\xi \neq 0} \frac{||T\xi||}{||\xi||} < \infty$$

 \triangleright $\mathcal{B}(H,K)$ complete

$$\lVert T
Vert = \sup_{\lVert \xi
Vert = \lVert \eta
Vert = 1} \lvert (T \xi, \eta)
vert$$

- \triangleright $\mathcal{B}(H,K) = \{T : H \rightarrow K : T \text{ linear, continuous}\}$
- operator norm

$$||T|| := \sup_{\xi \neq 0} \frac{||T\xi||}{||\xi||} < \infty$$

 \triangleright $\mathcal{B}(H,K)$ complete

$$||T|| = \sup_{\|\xi\| = \|\eta\| = 1} |(T\xi, \eta)|$$

- \triangleright $\mathcal{B}(H,K) = \{T : H \rightarrow K : T \text{ linear, continuous}\}$
- operator norm

$$||T|| := \sup_{\xi \neq 0} \frac{||T\xi||}{||\xi||} < \infty$$

 \triangleright $\mathcal{B}(H,K)$ complete

$$||T|| = \sup_{\|\xi\| = \|\eta\| = 1} |(T\xi, \eta)|$$

- $\triangleright \mathcal{B}(H) := \mathcal{B}(H, H)$
- ▶ $||ST|| \le ||S|| \cdot ||T||$
- ▶ $\mathcal{B}(H) \leftrightarrow \{A(\xi, \eta) \to \mathbb{C} : |A(\xi, \eta)| \le C \|\xi\| \cdot \|\eta\|$, bilinear]
- $Adjoint T^* \leftrightarrow (\xi, T\eta)$

- $\triangleright \mathcal{B}(H) := \mathcal{B}(H, H)$
- ▶ $||ST|| \le ||S|| \cdot ||T||$
- $ightharpoonup \mathcal{B}(H) \leftrightarrow \{A(\xi,\eta) \to \mathbb{C} : |A(\xi,\eta)| \le C \|\xi\| \cdot \|\eta\|, \text{ bilinear}\}$
- $Adjoint T^* \leftrightarrow (\xi, T\eta)$

- $\triangleright \mathcal{B}(H) := \mathcal{B}(H, H)$
- ▶ $||ST|| \le ||S|| \cdot ||T||$
- $\blacktriangleright \ \mathcal{B}(H) \leftrightarrow \{A(\xi,\eta) \to \mathbb{C} : |A(\xi,\eta)| \le C \|\xi\| \cdot \|\eta\|, \ \text{bilinear}\}$
- $Adjoint T^* \leftrightarrow (\xi, T\eta)$

- $\triangleright \mathcal{B}(H) := \mathcal{B}(H, H)$
- ▶ $||ST|| \le ||S|| \cdot ||T||$
- $ightharpoonup \mathcal{B}(H) \leftrightarrow \{A(\xi,\eta) \to \mathbb{C} : |A(\xi,\eta)| \le C \|\xi\| \cdot \|\eta\|, \text{ bilinear}\}$
- ▶ Adjoint $T^* \leftrightarrow (\xi, T\eta)$

- $(T^*)^* = T$
- $(\lambda T)^* = \bar{\lambda} T^*, (ST)^* = T^*S^*$
- $|T^*| = |T|$
- $||T^*T|| = ||T||^2$

$$\sup_{\|\xi\| = \|\eta\| = 1} |(T^*T\xi, \eta)| = \sup_{\|\xi\| = \|\eta\| = 1} |(T\xi, T\eta)| = \sup_{\|\xi\| = 1} ||T\xi||^2$$

$$(T^*)^* = T$$

$$(\lambda T)^* = \bar{\lambda} T^*, (ST)^* = T^* S^*$$

$$||T^*|| = ||T||$$

$$||T^*T|| = ||T||^2$$

$$\sup_{\|\xi\| = \|\eta\| = 1} |(T^*T\xi, \eta)| = \sup_{\|\xi\| = \|\eta\| = 1} |(T\xi, T\eta)| = \sup_{\|\xi\| = 1} ||T\xi||^2$$

- $(T^*)^* = T$
- $(\lambda T)^* = \bar{\lambda} T^*, (ST)^* = T^* S^*$
- $||T^*|| = ||T||$
- $||T^*T|| = ||T||^2$

$$\sup_{\|\xi\|=\|\eta\|=1} |(T^*T\xi,\eta)| = \sup_{\|\xi\|=\|\eta\|=1} |(T\xi,T\eta)| = \sup_{\|\xi\|=1} \|T\xi\|^2$$

$$(T^*)^* = T$$

$$(\lambda T)^* = \bar{\lambda} T^*, (ST)^* = T^*S^*$$

$$||T^*|| = ||T||$$

$$||T^*T|| = ||T||^2$$

$$\sup_{\|\xi\| = \|\eta\| = 1} |(T^*T\xi, \eta)| = \sup_{\|\xi\| = \|\eta\| = 1} |(T\xi, T\eta)| = \sup_{\|\xi\| = 1} ||T\xi||^2$$

Definition

A concrete C*-algebra is a norm closed, adjoint closed, subalgebra of $\mathcal{B}(H)$ for some Hilbert space H.

Definition

A C*-algebra is a:

- lacktriangle complex Banach algebra $\|ab\| \le \|a\| \cdot \|b\|$
- with involution $(\lambda a)^* = \bar{\lambda} a^*$, $(a^*)^* = a$
- which satisfies the C*-identity

$$||a^*a|| = ||a||^2.$$

Definition

A concrete C*-algebra is a norm closed, adjoint closed, subalgebra of $\mathcal{B}(H)$ for some Hilbert space H.

Definition

A C*-algebra is a:

- ightharpoonup complex Banach algebra $\|ab\| \le \|a\| \cdot \|b\|$
- with involution $(\lambda a)^* = \bar{\lambda} a^*$, $(a^*)^* = a$
- which satisfies the C*-identity

$$||a^*a|| = ||a||^2.$$

Definition

A concrete C*-algebra is a norm closed, adjoint closed, subalgebra of $\mathcal{B}(H)$ for some Hilbert space H.

Definition

A C*-algebra is a:

- lacktriangle complex Banach algebra $\|ab\| \leq \|a\| \cdot \|b\|$
- ightharpoonup with involution $(\lambda a)^* = \bar{\lambda} a^*$, $(a^*)^* = a$
- which satisfies the C*-identity

$$||a^*a|| = ||a||^2.$$

Theorem (Big Theorem)

Every C^* -algebra is isometrically *-isomorphic to a concrete C^* -algebra.

Done by Gelfand and Naimark in 1943 with extra axioms. It took almost two decades and the work of many others (Segal, Kaplansky, etc.) to reach this form.

Theorem (Big Theorem)

Every C^* -algebra is isometrically *-isomorphic to a concrete C^* -algebra.

Done by Gelfand and Naimark in 1943 with extra axioms. It took almost two decades and the work of many others (Segal, Kaplansky, etc.) to reach this form.



Here are some examples to finite-dimensional C*-algebras:

- $ightharpoonup \mathbb{C}$
- $M_n(\mathbb{C}) = \mathcal{B}(\ell_n^2)$
- $M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_k}(\mathbb{C})$

Here are some examples to finite-dimensional C*-algebras:

- $ightharpoonup \mathbb{C}$
- $M_n(\mathbb{C}) = \mathcal{B}(\ell_n^2)$
- $M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_k}(\mathbb{C})$

Here are some examples to finite-dimensional C*-algebras:

- $ightharpoonup \mathbb{C}$
- $M_n(\mathbb{C}) = \mathcal{B}(\ell_n^2)$
- $M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_k}(\mathbb{C})$

Here are some examples to finite-dimensional C*-algebras:

- $ightharpoonup \mathbb{C}$
- $M_n(\mathbb{C}) = \mathcal{B}(\ell_n^2)$
- $\blacktriangleright \ M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_k}(\mathbb{C})$

$\mathsf{Theorem}$

Every finite dimensional C*-algebra is of this form.

X is a set. For $f \in \ell^{\infty}(X)$, $M_f \in \mathcal{B}(\ell^2(X))$ by

$$M_f \xi(x) := f(x)\xi(x), \ \forall x \in X$$

Theorem

 $f\mapsto M_f$ gives an isometric *-embedding $\ell^\infty(X)\hookrightarrow \mathcal{B}(\ell^2(X))$

- $M_{\bar{f}} = M_f^*$
- $M_{fg} = M_f M_g = M_g M_f$

$$||M_f|| = \sup_{\|\xi\|_2 = \|\eta\|_2 = 1} |(M_f \xi, \eta)| = \sup_{\|\phi\|_1 = 1} |(\phi, f)| = \sup_{x} |f(x)|$$

X is a set. For $f \in \ell^{\infty}(X)$, $M_f \in \mathcal{B}(\ell^2(X))$ by

$$M_f \xi(x) := f(x)\xi(x), \ \forall x \in X$$

Theorem

 $f\mapsto M_f$ gives an isometric *-embedding $\ell^\infty(X)\hookrightarrow \mathcal{B}(\ell^2(X))$

- $M_{\bar{f}} = M_f^*$
- $M_{fg} = M_f M_g = M_g M_f$

$$|M_f|| = \sup_{\|\xi\|_2 = \|\eta\|_2 = 1} |(M_f \xi, \eta)| = \sup_{\|\phi\|_1 = 1} |(\phi, f)| = \sup_{x} |f(x)|$$

X is a set. For $f \in \ell^{\infty}(X)$, $M_f \in \mathcal{B}(\ell^2(X))$ by

$$M_f \xi(x) := f(x)\xi(x), \ \forall x \in X$$

Theorem

 $f\mapsto M_f$ gives an isometric *-embedding $\ell^\infty(X)\hookrightarrow \mathcal{B}(\ell^2(X))$

- $M_{\bar{f}} = M_f^*$
- $M_{fg} = M_f M_g = M_g M_f$
- •

$$||M_f|| = \sup_{\|\xi\|_2 = \|\eta\|_2 = 1} |(M_f \xi, \eta)| = \sup_{\|\phi\|_1 = 1} |(\phi, f)| = \sup_{x} |f(x)|$$

X compact, Hausdorff.

$$C(X) := \{f : X \to \mathbb{C} : f \text{ is continuous}\}$$

Fact

C(X) is an (abstract) C^* -algebra under pointwise multiplication, pointwise conjugation, and "sup-norm".

X compact, Hausdorff.

$$C(X) := \{f : X \to \mathbb{C} : f \text{ is continuous}\}$$

Fact

C(X) is an (abstract) C^* -algebra under pointwise multiplication, pointwise conjugation, and "sup-norm".

Fact

C(X) is a closed *-subalgebra of $\ell^{\infty}(\check{X}) \subset \mathcal{B}(\ell^2(\check{X}))$

X compact, Hausdorff.

$$C(X) := \{f : X \to \mathbb{C} : f \text{ is continuous}\}$$

Fact

C(X) is an (abstract) C^* -algebra under pointwise multiplication, pointwise conjugation, and "sup-norm".

Fact

C(X) is a closed *-subalgebra of $\ell^{\infty}(\check{X}) \subset \mathcal{B}(\ell^2(\check{X}))$

• " \check{X} " is X considered as a (discrete) set.

X <u>locally</u> compact, Hausdorff. $C_0(X)$ is all $f: X \to \mathbb{C}$ continuous s.t.

$$\forall \epsilon > 0 \exists K \subset X \text{ compact}(|f(x)| \ge \epsilon \Rightarrow x \in K)$$

- $ightharpoonup C_0(X)$ is an (abstract) C*-algebra under pointwise multiplication, pointwise conjugation, and "sup-norm".
- ▶ $C_0(X) \hookrightarrow C(\beta X)$, $\beta X = \text{Stone-Čech compactification}$.
- $ightharpoonup C_0(X)$ is unital iff X is compact.

X locally compact, Hausdorff. $C_0(X)$ is all $f:X\to\mathbb{C}$ continuous s.t.

$$\forall \epsilon > 0 \exists K \subset X \text{ compact}(|f(x)| \ge \epsilon \Rightarrow x \in K)$$

- ▶ $C_0(X)$ is an (abstract) C*-algebra under pointwise multiplication, pointwise conjugation, and "sup-norm".
- ▶ $C_0(X) \hookrightarrow C(\beta X)$, $\beta X = \text{Stone-Čech compactification}$.
- $ightharpoonup C_0(X)$ is unital iff X is compact.

X locally compact, Hausdorff. $C_0(X)$ is all $f:X\to\mathbb{C}$ continuous s.t.

$$\forall \epsilon > 0 \exists K \subset X \text{ compact}(|f(x)| \ge \epsilon \Rightarrow x \in K)$$

- ▶ $C_0(X)$ is an (abstract) C*-algebra under pointwise multiplication, pointwise conjugation, and "sup-norm".
- ▶ $C_0(X) \hookrightarrow C(\beta X)$, $\beta X = \text{Stone-Čech compactification}$.
- $ightharpoonup C_0(X)$ is unital iff X is compact

X locally compact, Hausdorff. $C_0(X)$ is all $f:X\to\mathbb{C}$ continuous s.t.

$$\forall \epsilon > 0 \exists K \subset X \text{ compact}(|f(x)| \ge \epsilon \Rightarrow x \in K)$$

- ▶ $C_0(X)$ is an (abstract) C*-algebra under pointwise multiplication, pointwise conjugation, and "sup-norm".
- ▶ $C_0(X) \hookrightarrow C(\beta X)$, $\beta X = \text{Stone-}\check{C}ech compactification}$.
- $ightharpoonup C_0(X)$ is unital iff X is compact.

Theorem (Gelfand-Naimark, 1943)

An abelian C^* -algebra is isometrically *-isomorphic to $C_0(X)$ for some X locally compact, Hausdorff.

More Examples

Definition

An operator $T \in \mathcal{B}(H)$ is finite rank if

$$T = \sum_{i=1}^{n} (\cdot, \eta_i) \xi_i$$

The compact operators $\mathcal{K}(H) \subset \mathcal{B}(H)$ are the closure of the finite rank operators.

Fact

 $\mathcal{K}(H) = \mathcal{B}(H)$ if dim $H < \infty$. Otherwise $\mathcal{K}(H)$ is a maximal proper closed ideal in $\mathcal{B}(H)$.

More Examples

Fact

$$\mathcal{K}(\ell^2) = \overline{\bigcup_{i=1}^{\infty} M_n(\mathbb{C})}$$
 where

$$M_n(\mathbb{C})\ni A\mapsto \begin{pmatrix}A&0\\0&0\end{pmatrix}\in M_{n+1}(\mathbb{C}).$$

Example

The CAR algebra is $\overline{\bigcup_{i=1}^{\infty} M_{2^n}(\mathbb{C})}$ where

$$M_{2^n}(\mathbb{C})\ni A\mapsto egin{pmatrix}A&0\0&A\end{pmatrix}\in M_{2^{n+1}}(\mathbb{C}).$$

Some Operator Theory

Definition

An operator $T \in \mathcal{B}(H)$ is said to be:

- ▶ self adjoint if $T^* = T$. $\Rightarrow \forall \xi((T\xi, \xi) \in \mathbb{R}))$
- ▶ positive if self adjoint and $\forall \xi ((T\xi, \xi) \geq 0)$.
- normal if $T^*T = TT^*$.

Some Operator Theory

Definition

An operator $T \in \mathcal{B}(H)$ is said to be:

- ▶ self adjoint if $T^* = T$. $\Rightarrow \forall \xi((T\xi, \xi) \in \mathbb{R}))$
- ▶ positive if self adjoint and $\forall \xi ((T\xi, \xi) \geq 0)$.
- normal if $T^*T = TT^*$.

Some Operator Theory

Definition

An operator $T \in \mathcal{B}(H)$ is said to be:

- ▶ self adjoint if $T^* = T$. $\Rightarrow \forall \xi ((T\xi, \xi) \in \mathbb{R}))$
- ▶ positive if self adjoint and $\forall \xi ((T\xi, \xi) \geq 0)$.
- ightharpoonup normal if $T^*T = TT^*$.

Definition

For $T \in \mathcal{B}(H)$, the spectrum

$$\sigma(T) := \{ \lambda \in \mathbb{C} : T - \lambda I \notin \operatorname{GL}(H) \}.$$

Fact

 $\sigma(T)$ is nonempty compact.

Fact

If $\lambda \in \sigma(T)$ then either:

- $\exists \xi \neq 0 (T\xi = \lambda \xi)$
- $\forall \epsilon > 0 \exists \xi (\|\xi\| = 1 \land \|T\xi \lambda\xi\| < \epsilon)$
- $ightharpoonup (T \lambda I)(H) \neq H.$

Definition

For $T \in \mathcal{B}(H)$, the spectrum

$$\sigma(T) := \{ \lambda \in \mathbb{C} : T - \lambda I \notin \operatorname{GL}(H) \}.$$

Fact

 $\sigma(T)$ is nonempty compact.

Fact

If $\lambda \in \sigma(T)$ then either:

- $\exists \xi \neq 0 (T\xi = \lambda \xi)$
- $\forall \epsilon > 0 \exists \xi (\|\xi\| = 1 \land \|T\xi \lambda\xi\| < \epsilon)$
- $T = \frac{T}{T} (T \lambda I)(H) \neq H.$

Definition

For $T \in \mathcal{B}(H)$, the spectrum

$$\sigma(T) := \{ \lambda \in \mathbb{C} : T - \lambda I \notin GL(H) \}.$$

Fact

 $\sigma(T)$ is nonempty compact.

Fact

If $\lambda \in \sigma(T)$ then either:

- $\Rightarrow \exists \xi \neq 0 (T\xi = \lambda \xi)$
- $\forall \epsilon > 0 \exists \xi (\|\xi\| = 1 \land \|T\xi \lambda\xi\| < \epsilon)$
- $ightharpoonup \overline{(T-\lambda I)(H)} \neq H.$

Fact

If $T \in \mathcal{B}(H)$ is normal and $\lambda \in \sigma(T)$, then there exists (ξ_n) , $\|\xi_n\| = 1$ s.t.

$$||T\xi_n-\xi_n||\to 0.$$

Proof.

 $T \text{ normal } \Rightarrow \|T\xi - \lambda\xi\| = \|T^*\xi - \bar{\lambda}\xi\|.$

Definition

 $T \in \mathcal{B}(H)$ the spectral radius $|\sigma|(T)$ is $\max\{|\lambda| : \lambda \in \sigma(T)\}$.

Fact

 $|\lambda| > ||T||$ then $T - \lambda I \in GL(H)$.

Proof.

Use power series to invert $T - \lambda I$.

Corollary

 $|\sigma|(T) \leq ||T||$

Spectral Radius

Theorem

If $T \in \mathcal{B}(H)$, $T \geq 0$, then $||T|| = |\sigma|(T)$

Proof.

Wlog $\|T\|=1$. Choose (ξ_n) , $\|\xi_n\|=1$, $\|T\xi_n\|\to 1$. Define $(\xi,\eta)_T:=(T\xi,\eta)$ positive semidefinite. We have $1=\lim_n(\xi_n,T\xi_n)_T$ and $\lim_n(\xi_n,\xi_n)_T$, $\lim_n(T\xi_n,T\xi_n)_T\le 1$ whence $\xi_n=T\xi_n+\eta_n$ where $\|T\eta_n\|\to 0$ (Cauchy-Schwarz). But then $\|\eta_n\|\to 0$ by optimality of norm estimate. Thus $\|T\xi_n-\xi_n\|\to 0$ and $1\in\sigma(T)$.

Spectral Mapping

p(z) complex *-polynomial,

$$p(z)=(z-a_1)\cdots(z-a_m)(\bar{z}-b_1)\cdots(\bar{z}-b_n).$$

 $T \in \mathcal{B}(H)$, normal,

$$p(T) := (T - a_1 I) \cdots (T - a_j I) (T^* - b_1 I) \cdots (T^* - b_k I)$$

Theorem (Spectral Mapping I)

If $T \in \mathcal{B}(H)$, T normal, then $p(\sigma(T)) = \sigma(p(T))$.

Proof.

 $\|p(T)\xi_n\| \to 0 \Leftrightarrow \text{ either lim inf } \|T\xi_n - a_i\xi_n\| = 0 \text{ for some } i \text{ or lim inf } \|T^*\xi_n - b_i\xi_n\| = 0 \text{ for some } j.$

Spectral Mapping

 $\{p_n(x)\}$ uniformly convergent on $\sigma(T)$ to f, $T = T^*$.

Theorem (Spectral Mapping II)

 $(f(T)\xi,\eta) := \lim_n (p_n(T)\xi,\eta)$ exists and $f(\sigma(T)) = \sigma(f(T))$.

Proof.

Uniformly over pairs ξ, η in unit ball $\{(p_n(T)\xi, \eta)\}$ is Cauchy by spectral mapping, so defines a (bounded) bilinear form, thus an operator f(T). Then $\|p_n(T) - f(T)\| \to 0$.

 $T \in \mathcal{B}(H), T = T^*, C^*_{\mathbb{R}}(T)$ smallest norm closed, real algebra containing T and I.

Theorem (Spectral Theorem I)

There is an isometric isomorphism

$$C_{\mathbb{R}}(\sigma(T)) \leftrightarrow C_{\mathbb{R}}^*(T)$$

sending $id_{\sigma(T)}$ to T.

 $T \in \mathcal{B}(H), T = T^*, C^*_{\mathbb{R}}(T)$ smallest norm closed, real algebra containing T and I.

Theorem (Spectral Theorem I)

There is an isometric isomorphism

$$C_{\mathbb{R}}(\sigma(T)) \leftrightarrow C_{\mathbb{R}}^*(T)$$

sending $id_{\sigma(T)}$ to T.

Corollary

 $T \in \mathcal{B}(H)$, then $T \ge 0$ iff $\exists S(T = S^*S)$ iff $\exists S(T = S^2 \land S = S^*)$.

 $T \in \mathcal{B}(H), T = T^*, C^*_{\mathbb{R}}(T)$ smallest norm closed, real algebra containing T and I.

Theorem (Spectral Theorem I)

There is an isometric isomorphism

$$C_{\mathbb{R}}(\sigma(T)) \leftrightarrow C_{\mathbb{R}}^*(T)$$

sending $id_{\sigma(T)}$ to T.

Corollary

 $T \in \mathcal{B}(H)$, then $T \ge 0$ iff $\exists S(T = S^*S)$ iff $\exists S(T = S^2 \land S = S^*)$.

Corollary

Every element of a C^* -algebra is a linear combination of four positive elements.

Corollary

In a unital C^* -algebra the set of positive elements A_+ is a complete cone

Definition

$$x, y \in A_+$$
, $x \le y$ if $y - x \ge 0$.

Fact

If $x \in A_+$, then $x \le ||x|| \cdot 1$.

 $T \in \mathcal{B}(H)$, T normal, $C^*(T)$ smallest C^* -algebra containing T, I.

Theorem (Spectral Theorem II)

There is an isometric isomorphism

$$C(\sigma(T)) \leftrightarrow C^*(T)$$

sending $id_{\sigma(T)}$ to T.

- ▶ How to bootstrap to abelian C*-algebras?
- ▶ Need a complete set of "eigenvectors".

 $T \in \mathcal{B}(H)$, T normal, $C^*(T)$ smallest C^* -algebra containing T, I.

Theorem (Spectral Theorem II)

There is an isometric isomorphism

$$C(\sigma(T)) \leftrightarrow C^*(T)$$

sending $id_{\sigma(T)}$ to T.

- ▶ How to bootstrap to abelian C*-algebras?
- Need a complete set of "eigenvectors".

 $A \subset \mathcal{B}(H)$ unital C*-subalgebra

Definition

$$\phi \in A^*$$
 is positive if $a \ge 0 \Rightarrow \phi(a) \ge 0$ and a state if $\phi \ge 0$ and $\phi(1) = 1$.

$$\phi(x):=(x\xi,\xi),\ \|\xi\|=1\ \text{is a state on}\ \mathcal{B}(H).\ \text{Also } \lim_{\omega}(x\xi_n,\xi_n),\ \|\xi_n\|=1.$$

 $A \subset \mathcal{B}(H)$ unital C*-subalgebra

Definition

 $\phi \in A^*$ is positive if $a \ge 0 \Rightarrow \phi(a) \ge 0$ and a state if $\phi \ge 0$ and $\phi(1) = 1$.

$$\phi(x):=(x\xi,\xi),\ \|\xi\|=1\ \text{is a state on}\ \mathcal{B}(H).\ \text{Also } \lim_{\omega}(x\xi_n,\xi_n),\ \|\xi_n\|=1.$$

Let S(A) be the set of states. S(A) is nonempty, convex, weak* compact.

 $A \subset \mathcal{B}(H)$ unital C*-subalgebra

Definition

 $\phi \in A^*$ is positive if $a \ge 0 \Rightarrow \phi(a) \ge 0$ and a state if $\phi \ge 0$ and $\phi(1) = 1$.

$$\phi(x):=(x\xi,\xi),\ \|\xi\|=1 \text{ is a state on } \mathcal{B}(H). \text{ Also } \lim_{\omega}(x\xi_n,\xi_n),\ \|\xi_n\|=1.$$

▶ Let S(A) be the set of states. S(A) is nonempty, convex, weak* compact.

Fact

 $\phi \in A^*$ is positive iff $\phi(1) = \|\phi\|$.

Fact (Cauchy–Schwarz)

$$\phi \in A^*$$
, $\phi \ge 0$, then

$$|\phi(y^*x)| \le \phi(x^*x)^{1/2}\phi(y^*y)^{1/2}.$$

Corollary

$$\phi \geq 0$$
, $\phi(1) = 0$, then $\phi \equiv 0$.

Fact (State extension)

Any state $\phi \in \mathcal{S}(A)$ extends to a state $\phi' \in \mathcal{S}(\mathcal{B}(H))$.

Proof.

Hahn-Banach

September 20, 2017

Pure States

Definition

A state $\phi \in \mathcal{S}(A)$ is <u>pure</u> if ϕ is an extreme in $\mathcal{S}(A)$. Let $\mathcal{P}(A)$ denote the pure states.

Fact (Krein–Milman)

The convex hull of $\mathcal{P}(A)$ is $\mathcal{S}(A)$.

Fact

 $a \in A$, $a \neq 0$, there is a pure state such that $\phi(a) \neq 0$

Proof.

If H is a complex Hilbert space, then $(T\xi,\xi)=0$, $\forall \xi \in H \Rightarrow T \equiv 0$.

Let $A = \ell^{\infty}(\mathbb{N})$. What is $\mathcal{P}(A)$?

 $\delta_n(f) := f(n).$

Fact

In general, $\phi \in \mathcal{S}$, $X \subset \mathbb{N}$, $\mu(X) := \phi(\chi_X)$ defines a finitely additive probability measure. Conversely for any such measure μ , $f \mapsto \int f d\mu$ is a state.

- $ightharpoonup \mathcal{P}(\ell^{\infty}(\mathbb{N})) \leftrightarrow \{\text{ultrafilters on } \mathbb{N}\}!!$

Let $A = \ell^{\infty}(\mathbb{N})$. What is $\mathcal{P}(A)$?

 $\delta_n(f) := f(n).$

Fact

In general, $\phi \in \mathcal{S}$, $X \subset \mathbb{N}$, $\mu(X) := \phi(\chi_X)$ defines a finitely additive probability measure. Conversely for any such measure μ , $f \mapsto \int f d\mu$ is a state.

- $\qquad \phi \in \mathcal{P}(\ell^{\infty}(\mathbb{N})) \leftrightarrow \mu(X) \in \{0,1\}, \ \forall X \subset \mathbb{N}$
- $ightharpoonup \mathcal{P}(\ell^{\infty}(\mathbb{N})) \leftrightarrow \{\text{ultrafilters on } \mathbb{N}\}!!$

Definition

 $\phi, \psi \in A^*$, $\psi \leq \phi$ is $\psi(a) \leq \phi(a)$ for all $a \geq 0$.

Fact

 $0 \le \psi \le \phi$, $\phi \in \mathcal{P}(A)$, then $\psi = c \cdot \phi$ for some $c \in [0,1]$.

Wlog
$$\kappa := \psi(1) \in (0, 1)$$
.

$$\phi = \kappa \cdot [\kappa^{-1}\psi] + (1 - \kappa) \cdot [(1 - \kappa)^{-1}(\phi - \psi)].$$

Definition

- $ightharpoonup a \geq 0$, $\phi(a) = \phi(x^*x) = \overline{\phi(x)}\phi(x) \geq 0$, so $\phi \in \mathcal{S}(A)$.
- $\phi \in \mathcal{P}(A)$.
- $lack A = C(X), \ X \ \text{compact} \ \mathsf{T}_2, \ \forall x \in X, \ \delta_x(f) := f(x) \ \text{character}.$
- Any character on C(X) is of the form δ_X . (Reisz representation theorem)
- ▶ May be no characters, e.g., $M_n(\mathbb{C})$, $n \ge 2$

Definition

- ightharpoonup $a \ge 0$, $\phi(a) = \phi(x^*x) = \overline{\phi(x)}\phi(x) \ge 0$, so $\phi \in \mathcal{S}(A)$.
- $\phi \in \mathcal{P}(A)$.
- ▶ A = C(X), X compact T_2 , $\forall x \in X$, $\delta_x(f) := f(x)$ character.
- Any character on C(X) is of the form δ_X . (Reisz representation theorem)
- ▶ May be no characters, e.g., $M_n(\mathbb{C})$, $n \ge 2$

Definition

- ightharpoonup $a \ge 0$, $\phi(a) = \phi(x^*x) = \overline{\phi(x)}\phi(x) \ge 0$, so $\phi \in \mathcal{S}(A)$.
- $\phi \in \mathcal{P}(A)$.
- ▶ A = C(X), X compact T_2 , $\forall x \in X$, $\delta_x(f) := f(x)$ character.
- Any character on C(X) is of the form δ_x . (Reisz representation theorem)
- ▶ May be no characters, e.g., $M_n(\mathbb{C})$, $n \ge 2$.

Definition

- ightharpoonup $a \ge 0$, $\phi(a) = \phi(x^*x) = \overline{\phi(x)}\phi(x) \ge 0$, so $\phi \in \mathcal{S}(A)$.
- $\phi \in \mathcal{P}(A)$.
- ▶ A = C(X), X compact T_2 , $\forall x \in X$, $\delta_x(f) := f(x)$ character.
- Any character on C(X) is of the form δ_x . (Reisz representation theorem)
- May be no characters, e.g., $M_n(\mathbb{C})$, $n \geq 2$.

Definition

- ightharpoonup $a \ge 0$, $\phi(a) = \phi(x^*x) = \overline{\phi(x)}\phi(x) \ge 0$, so $\phi \in \mathcal{S}(A)$.
- $\phi \in \mathcal{P}(A)$.
- ▶ A = C(X), X compact T_2 , $\forall x \in X$, $\delta_x(f) := f(x)$ character.
- Any character on C(X) is of the form δ_x . (Reisz representation theorem)
- ▶ May be no characters, e.g., $M_n(\mathbb{C})$, $n \ge 2$.

Theorem

If A is a unital, abelian C^* -algebra, then any pure state is a character.

$$\phi \in \mathcal{P}(A)$$
, $a, b \ge 0$, $||a||, ||b|| \le 1$.

- $x \ge 0 \Rightarrow \phi_b(x) := \phi(xb) = \phi(b^{1/2}xb^{1/2}) \ge 0$
- $\phi_b(x) = \phi(xb) = \phi(x^{1/2}bx^{1/2}) \le ||b||\phi(x^{1/2}1x^{1/2}) \le \phi(x) \Rightarrow 0 \le \phi_b \le \phi$
- $\phi(b) = \phi_b(1) = \kappa \cdot \phi(1) = \kappa$

Theorem

If A is a unital, abelian C^* -algebra, then any pure state is a character.

$$\phi \in \mathcal{P}(A)$$
, $a, b \ge 0$, $||a||, ||b|| \le 1$.

- $x \ge 0 \Rightarrow \phi_b(x) := \phi(xb) = \phi(b^{1/2}xb^{1/2}) \ge 0$
- $\phi_b(x) = \phi(xb) = \phi(x^{1/2}bx^{1/2}) \le ||b||\phi(x^{1/2}1x^{1/2}) \le \phi(x) \Rightarrow 0 \le \phi_b \le \phi$
- $\phi(b) = \phi_b(1) = \kappa \cdot \phi(1) = \kappa$

Theorem

If A is a unital, abelian C^* -algebra, then any pure state is a character.

$$\phi \in \mathcal{P}(A)$$
, $a, b \ge 0$, $||a||, ||b|| \le 1$.

- $x \ge 0 \Rightarrow \phi_b(x) := \phi(xb) = \phi(b^{1/2}xb^{1/2}) \ge 0$
- $\phi_b(x) = \phi(xb) = \phi(x^{1/2}bx^{1/2}) \le ||b||\phi(x^{1/2}1x^{1/2}) \le \phi(x) \Rightarrow 0 \le \phi_b \le \phi$
- $\phi(b) = \phi_b(1) = \kappa \cdot \phi(1) = \kappa$
- $\qquad \phi(ab) = \phi(a)\phi(b)$

Abelian C*-Algebras

Theorem

If A is a unital, abelian C^* -algebra, then any pure state is a character.

Proof.

$$\phi \in \mathcal{P}(A)$$
, $a, b \ge 0$, $||a||, ||b|| \le 1$.

- $x \ge 0 \Rightarrow \phi_b(x) := \phi(xb) = \phi(b^{1/2}xb^{1/2}) \ge 0$
- $\phi_b(x) = \phi(xb) = \phi(x^{1/2}bx^{1/2}) \le ||b||\phi(x^{1/2}1x^{1/2}) \le \phi(x) \Rightarrow 0 \le \phi_b \le \phi$
- $\phi(b) = \phi_b(1) = \kappa \cdot \phi(1) = \kappa$
- $\qquad \phi(ab) = \phi(a)\phi(b)$

Abelian C*-Algebras

Theorem

If A is a unital, abelian C^* -algebra, then any pure state is a character.

Proof.

$$\phi \in \mathcal{P}(A)$$
, $a, b \ge 0$, $||a||, ||b|| \le 1$.

- $x \ge 0 \Rightarrow \phi_b(x) := \phi(xb) = \phi(b^{1/2}xb^{1/2}) \ge 0$
- $\phi_b(x) = \phi(xb) = \phi(x^{1/2}bx^{1/2}) \le ||b||\phi(x^{1/2}1x^{1/2}) \le \phi(x) \Rightarrow 0 \le \phi_b \le \phi$
- $\phi(b) = \phi_b(1) = \kappa \cdot \phi(1) = \kappa$



Gel'fand Spectrum

Definition

Let A be a unital, abelian C^* -algebra. The Gel'fand spectrum is

$$\Sigma_A := \mathcal{P}(A) = \{ \text{all characters of } A \}$$

 Σ_A is a weak* closed subset of S(A), whence is compact, Hausdorff itself.

Fact (Gel'fand–Mazur)

 $\Sigma_A \leftrightarrow \{\text{maximal proper closed ideals of } A\}$

Gel'fand Transform

Definition

 $\Gamma: A \to C(\Sigma_A), \ \Gamma(a)(\phi) := \phi(a), \ \underline{\mathsf{Gel'fand\ transform}}.$

Fact

Easy to check that Γ is a unital contractive *-homomorphism.

Fact

 Γ is an isometry.

Proof.

A, abelian *-algebra \Rightarrow every $a \in A$ is normal. Hence there is a state ϕ s.t.

$$\phi(a) = \|a\|.$$

Gel'fand Transform

Theorem

Γ is surjective.

Proof.

Image of Γ is a*-subalgebra that separates points. The image is closed since $\Gamma(a)$ determines the values of $(a\xi,\xi), \ \forall \xi \in H$, whence the bilinear form $(a\xi,\eta)$. Γ an isometry, thus $\Gamma(a_n)$ converges uniformly implies a_n converges uniformly and $\lim_n \Gamma(a_n) = \Gamma(\lim_n a_n)$. Stone–Weierstrass finishes the job.

Gel'fand transform

Fact

$$\exists \phi(\Gamma(a)(\phi) = \lambda) \Leftrightarrow \lambda \in \sigma(a)$$

Proof.

$$\Gamma(\operatorname{GL}(A)) = \operatorname{GL}(C(\Sigma_A))$$

Corollary

T normal invertible in $\mathcal{B}(H)$ iff invertible in $C^*(T)$.

Corollary (Gel'fand–Naimark)

A an abelian C^* -algebra, then A is *-isomorphic to $C(\Sigma_A)$.

Useful Facts

Fact

A unital, then every self-adjoint $a \in A$ is an average of two unitaries $(u^*u = 1 = uu^*)$. A is the span of $\mathcal{U}(A)$, unitary group of A.

Fact

A *-homomorphism of C^* -algebras in contractive.

Proof.

Gel'fand-Naimark

Fact

The image of a C^* -algebra under a *-homomorphism is a C^* -algebra, i.e., images are closed.

Representations of C*-Algebras

Definition

A representation is a *-homomorphism $\pi: A \to \mathcal{B}(K)$.

Definition

- A rep'n π is <u>faithful</u> if injective (=isometric).
- ▶ A rep'n π is cyclic if $\pi(A)\xi$ dense in K for some $\xi \in K$.

Gel'fand-Naimark-Segal Construction

Theorem (GNS Construction)

A a unital C^* -algebra. For every $\phi \in \mathcal{S}(A)$ there is:

- A cyclic rep'n $\pi_{\phi}: A \to \mathcal{B}(K_{\phi})$
- A distinguished cyclic vector ξ_{ϕ}
- $(\pi_{\phi}(a)\xi_{\phi},\xi_{\phi}) = \phi(a), \forall a \in A$
- \blacktriangleright $\pi: A \to \mathcal{B}(K), \ \xi \in K, \ \|\xi\| = 1$, then $(\pi(a)\xi, \xi)$ is a state.

Proof of GNS

Proof.

- $(x,y)_{\phi} := \phi(y^*x)$ positive semidefinite on A.
- ▶ complete to Hilbert space K_{ϕ} , $A \ni a \mapsto \hat{a} \in K_{\phi}$ dense.
- $\pi_{\phi}(a)\hat{b} := \widehat{ab}, \text{ well-defined by C-S}.$
- $\|\pi_{\phi}(a)\hat{b}\|_{\phi} = \phi(b^*a^*ab)^{1/2} \le \|a^*a\|^{1/2}\phi(b^*1b) = \|a\| \cdot \|b\|_{\phi}.$
- $\xi_{\phi} = \hat{1}.$

Universal Representation

Definition

 $\pi_u:A\to \mathcal{B}(H_u)$ is the universal representation of A where

$$H_u := \bigoplus_{\phi \in \mathcal{S}(A)} H_{\phi}, \ \pi_u := \bigoplus_{\phi \in \mathcal{S}(A)} \pi_{\phi}$$

Ultraproducts of Representations

- ▶ ${A_i : i \in I}$, I a directed set.
- $\blacktriangleright \{\pi_i : i \in I\}, \ \pi_i : A_i \to \mathcal{B}(H_i).$
- $\triangleright \mathcal{U}$ ultrafilter on I.

$$\prod_{\mathcal{U}} A_i := \prod_{I} A_i / \{(a_i) : \lim_{\mathcal{U}} \|a_i\| = 0\}$$

Fact

The direct product representation \prod_I descends to a representation

$$\pi_{\mathcal{U}}:\prod_{\mathcal{U}}A_i
ightarrow\prod_{\mathcal{U}}\mathcal{B}(H_i)\subset\mathcal{B}(H_{\mathcal{U}})$$

which is faithful iff π_i is \mathcal{U} -almost always faithful.

Building C*-Algebras from Relations

- $G = \{x_i : i \in I\}$ set of variables. "generators"
- ▶ $R = \{p_i : j \in J\}$ set of noncommuting polynomials in x_i 's and x_i^* 's "relations"

Definition

A a C*-algebra models (G|R), $A \models (G|R)$ if there is a map $x_i \to T_i \in A$ s.t. $\{T_i, T_i^*\}$ generates A and $p_j(T) = 0$ for all $j \in J$.

Definition

We say (G|R) consistent if it admits a model.

Building C*-Algebras from Relations

Theorem (Compactness)

(G|R) is consistent iff every subcollection of finitely many generators and relations is consistent.

Proof.

F finite subcollection of generators and relations. \mathcal{F} directed set of all finite subcollections. \mathcal{U} ultrafilter on \mathcal{F} .

If $A_F \models F$, then

$$\prod_{\mathcal{U}} A_F \models (G|R).$$

Universal Models

Theorem

If (G|R) is consistent, then there is a unique C^* -algebra $C^*(G|R)$ s.t.

- $ightharpoonup C^*(G|R) \models (G|R).$
- ▶ if $B \models (G|R)$ then there is a *-epimorphism $\pi : C^*(G|R) \rightarrow B$.

Proof.

K isomorphism classes of models of (G|R), then

$$x_i \mapsto (T_i^{(k)})_{k \in K} \in \mathcal{B}(\bigoplus_{k \in K} H_k)$$

generates $C^*(G|R)$.

Group C*-Algebras

Theorem

Generators and relations defining a group are consistent.

Proof.

 $g \in G$, define $u_g \in \mathcal{U}(\ell^2 G)$

$$u_{\mathbf{g}}\xi(h) := \xi(\mathbf{g}h), \ \xi \in \ell^2 G.$$

We define the <u>reduced</u> group C*-algebra

$$C_r^*(G) := C^*(u_g, g \in G) \subset \mathcal{B}(\ell^2 G)$$

Group C*-Algebras

 $C^*(G)$ the universal C^* -algebra given by group G generators and relations.

Fact

Any unitary rep'n $\pi: G \to \mathcal{U}(H)$ extends to a rep'n $\pi: C^*(G) \to \mathcal{B}(H)$.

Fact

 $C_r^*(\mathbb{Z}) \cong C(\mathbb{T}).$

Proof.

Fourier transform

Group C*-Algebras

Fact

$$C^*(\mathbb{Z}) \cong C^*(1, u|1 = 1^* = 1^2, u^*u = 1 = uu^*) \cong C_r^*(\mathbb{Z})$$

 $ightharpoonup C^*(G)\cong C^*_r(G)$ iff G is amenable. (Fell)

Fact

 \mathbb{F}_{∞} free group on countably many generators. $C^*(\mathbb{F}_{\infty})$ is the universal separable C^* -algebra.

- $ightharpoonup C_r^*(\mathbb{F}_{\infty})$ is simple. (Powers)
- $C^*(\mathbb{F}_{\infty} \times \mathbb{F}_{\infty}) \cong C^*(\mathbb{F}_{\infty}) \otimes C^*(\mathbb{F}_{\infty}) \subset \mathcal{B}(H_u \otimes H_u)?? \text{ (Kirchberg, Connes)}$

More Universal Algebras

Example

$$C^*(x|x=x^*)\cong C[0,1)$$

Theorem (Coburn)

$$C^*(1, v|1 = 1^* = 1^2, v^*v = 1)$$
 -isomorphic to the Toeplitz algebra $C^(S)$, $S: \ell^2 \mathbb{N} \to \ell^2 \mathbb{N}$ shift.

Example

$$G = \{1, v_1, \dots, v_n\}, R = \{1 = 1^* = 1^2, v_i^* v_i = 1, \sum_i v_i v_i^* = 1\}$$
 The Cuntz algebra \mathcal{O}_n is $C^*(G|R)$.

Cuntz Algebras

Theorem (Cuntz)

Let $S_1, \ldots, S_n \in \mathcal{B}(\ell^2 N)$ isometries such that $S_i^* S_j = 0$ $i \neq j$ and $\sum_i S_i S_i^* = I$. Then $C^*(S_1, \ldots, S_n) \cong \mathcal{O}_n$.

Theorem (Cuntz)

 \mathcal{O}_n , $n \geq 2$, is separable, simple, <u>purely infinite</u>. ("simple + purely infinite" $\Leftrightarrow \forall a \in A_+$, $a \neq 0$, $\exists x(x^*ax = 1)$.)

Cuntz algebras can be generalized to Cuntz–Kreiger algebras, etc.

Stable Relations

Definition

 $(G|R)=(x_i|p_j)$ is stable if for any $\delta>0$, there exists $\epsilon>0$ such that for any C*-algebra A and any map $x_i\mapsto a_i$ such that $\|p_j(a)\|<\epsilon$ for all j, there exist (b_i) in A s.t.

$$\sup_{i} \|a_i - b_i\| \leq \delta$$

such that

$$p_j(b) = 0$$
 for all j .

Fact

This is equivalent to:

$$\pi: C^*(G|R) \to \prod_{\mathcal{U}} A_i \Rightarrow \exists \pi_i: C^*(G|R) \to A_i, \mathcal{U}$$
-almost always.

Stable Relations

Theorem

 $(p|p = p^* = p^2)$ is stable.

Proof.

Wlog
$$p^* = p$$
, so $C^*(p)$ is abelian. $p \sim p^2 \Rightarrow \sigma(p) \subset [0, \epsilon)(\epsilon, 1]$. $p \leftrightarrow \mathrm{id}_{\sigma(p)}$. Define $f = 0$ on $[0, \epsilon) \cap \sigma(p)$, $f = 1$ on $(\epsilon, 1] \cap \sigma(p)$. f corresponds to an element $q \in C^*(p)$ s.t. $q = q^* = q^2$ and $\|p - q\| = \|\mathrm{id} - f\|_{\infty}$.

Stable Relations

Theorem

 $(1, u|1 = 1^* = 1^2, u^*u = 1 = uu^*)$ is stable.

Proof.

Wlog 1 is $1 \in A$. $1 \sim u^*u$ implies u^*u invertible. Let $v = u(u^*u)^{-1/2}$.

$$v^*v = (u^*u)^{-1/2}u^*u(u^*u)^{-1/2} = u^*u(u^u*)^{-1} = 1.$$

This implies that $(vv^*)^2 = vv^* =: p$. But $p \le 1$, $p \sim 1$ implies that p = 1.

