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We would like to find the steady-state temperature of the first quadrant when we keep
the axes at the following temperatures:

u(x, 0) = 1 for 0 < x < 1
u(x, 0) = 0 for x > 1

u(0, y) = 0 for all y > 0

So we need to solve the boundary value problem:

∂2u

∂x2
+
∂2u

∂y2
= 0(1)

u(x, 0) = 1 for 0 < x < 1(2)
u(x, 0) = 0 for x > 1

u(0, y) = 0 for all y > 0(3)

We shall use the Fourier transform. But since we have only half the real line as our
domain (for x), we need to use the sine or cosine Fourier transform. When we apply
the cosine or sine Fourier transform to the equation, we want to get a simpler differential
equation for Uc = Fc{u(x, y)} (or Us = Fs{u(x, y)} if we are taking the sine transform);
where the transform is taken with respect to x. To this end, we need to see what the
Fourier sine transform of the second derivative of u with respect to x is in terms of Uc (or
Us). But this is easy: we just need to use integration by parts. If f is a function that
is absolutely integrable and that converges to zero as x goes to ∞ (we assume that f is
absolutely integrable so that the integrals we take below exist; in general we assume all
our functions are absolutely integrable – recall that absolutely integrable means that the
integral of the absolute value of f on the whole interval we are concerned with exists):

Fc{f ′} =
∫ ∞

0
cosαxf ′(x)dx = (f(x). cosαx)

∣∣∞
0

+ α

∫ ∞
0

f(x) sinαxdx(4)

= f(0) + αFs{f}

Similarly for the sine transform:

Fs{f ′} =
∫ ∞

0
sinαxf ′(x)dx = (f(x). sinαx)

∣∣∞
0
− α

∫ ∞
0

f(x) cosαxdx(5)

= −αFc{f}

Now we can combine these two to get:

Fc{f ′′} = f ′(0)− α2Fc{f}(6)
and Fs{f ′′} = −αf(0)− α2Fs{f}
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If we used the cosine transform, i.e. we applied the cosine transform to the equation, we
would get:

Fc{
∂2u

∂x2
+
∂2u

∂y2
} = Fc{

∂2u

∂x2
}+ Fc{

∂2u

∂y2
} =

∂u

∂x
(0, y)− α2Uc +

∂2Uc
∂y2

= 0(7)

which is not very nice because we don’t know what to do with the first derivative of u.
Whereas:

Fs{
∂2u

∂x2
+
∂2u

∂y2
} = Fs{

∂2u

∂x2
}+ Fs{

∂2u

∂y2
} = u(0, y)− α2Us +

∂2Us
∂y2

= 0(8)

which is much better because one of our assumptions for u in the boundary value problem
is that u(0, y) = 0. So we should prefer the sine transform in this case. (Note that instead
of this boundary problem, we looked at the problem with the y axis being isolated, we
would prefer the cosine transform). Transforming also the boundary consitions using the
sine transform, we have a new boundary value problem for U = Us.

∂2U

∂y2
− α2U = 0(9)

U(0, y) = 0(10)

U(α, 0) =
∫ ∞

0
u(x, 0) sinαxdx =

∫ 1

0
50 sinαxdx = 50

−1
α

sinα(11)

We know the solution to the above differential equation. It must be of the form:

(12) U = c1(α) coshαy + c2(α) sinhαy

Plugging in the boundary condition, we see that:

(13) U(α, 0) = c1(α) = −50
sinα
α

We cannot say anything about c2 by looking at the boundary conditions. However, we
know that the function U must be bounded as α → ∞. We can argue that this should
be true because U must physically make sense. But we can also see this mathematically.
Indeed, U is the transform of an absolutely integrable function, so it must be bounded as
α→∞. Now, recalling the definitions:

(14) cosh(αy) =
eαy + e−αy

2
and sinhαy =

eαy − e−αy

2
we see that the only way to have U bounded is to have the eαy’s cancel. So we must have
c2(α) = −c1(α). Therefore we have:

(15) U(α, y) = −50
sinα
α

e−αy

Finally, taking the inverse Fourier sine transform of U to get u, we have:

(16) u(x, y) = − 2
π

∫ ∞
0

50
sinα
α

e−αysin(xα)dα


