Lecture 7: Differential equations.

An ordinary differential equation looks like:

\[y'' - 4y = 12x \]

\[\frac{d^2y}{dx^2} - 4y = 12x \]

There usually are boundary conditions: like \(y(0) = 4 \), \(y'(0) = 1 \)

In general an \(n \)-th order ODE looks like:

\[a_n(x) \frac{d^n y}{dx^n} + a_{n-1}(x) \frac{d^{n-1} y}{dx^{n-1}} + \ldots + a_1(x) \frac{dy}{dx} + a_0(x)y = g(x) \]

with conditions:

\[y(x_0) = y_0, \ y'(x_0) = y_1, \ldots, \ y^{(n-1)}(x_0) = y_{n-1} \]

Since all the conditions are at the same point \(x_0 \),
this is called an initial value problem.

Theorem: Let \(a \)'s and \(g \) be continuous on an interval \(I \).

Let \(a_n(x) \neq 0 \) for every \(x \) in this interval, \(x_0 \in I \).

Then there is a unique solution to the equation \((*)\)
subject to the conditions \((**\))

We won't think about this much, but it's good to know this.

Example: \(3y''' + 5y'' - y' + 7y = 0 \)

\(y(1) = 0, y'(1) = 0, y''(1) = 0 \)

(all conditions are at \(x_0 = 1 \), \(\mathbb{R} \) is bounded and the coefficients are never 0, so this has a unique solution on all of \(\mathbb{R} \).

\(y = 0 \) is already a solution. So that is the only one.
when the conditions are at different points, the theorem does not hold and anything can happen.

Anyway, let's start solving:

\[y' - y = 0 \quad \text{this is a "homogeneous" equation because the right side is 0.} \]

with condition \(y(0) = 1 \).

the solution is \(y_0 = c_1 e^x \). Indeed, try: \(c_1 e^x - c_1 e^x = 0 \).

For \(y(0) = 1 \), we need \(c_1 = 1 \).

\[y' - y = x \quad \text{this is a "non-homogeneous" equation.} \]

\(y' - y = 0 \) is the homogeneous part of the equation.

Try: \(y = Ax + B \) \quad \(y' = A \)

\[y' - y = A - A x + B = x \]

so \(A = -1 \) \quad \(B = 1 \).

So one solution is \(y = -x + 1 \).

Observe that if we add a solution to \(y' - y = 0 \) to this, it will still be a solution:

\[(y + y_0)' - (y + y_0) = \underbrace{y' - y}_{x} + \underbrace{y_0' - y_0}_{0} = x \]

so the general solution is \(y = -x + 1 + c_1 e^x \).

If we have a boundary condition, like \(y(0) = 0 \),

then we could find the value of \(c_1 \) (=1 in this case).
eg: look at \(y'' - y = 0 \)
the solutions are \(y_1 = e^x \) and \(y_2 = e^{-x} \). Any linear combination of these two is also a solution:
\[
y_0 = c_1 y_1 + c_2 y_2 = c_1 e^x + c_2 e^{-x}
\]

This is called the "general solution" of the equation.

- For an \(n \)th order homogeneous ODE, there should be \(n \) solutions. We see that if we have solutions \(y_1, \ldots, y_n \), then any linear combination
\[
y = c_1 y_1 + c_2 y_2 + \cdots + c_n y_n
\]
is also a solution.
This is called the "superposition principle".

Now look at \(y'' - y = x \)

Try \(y = Ax + B \), \(y'' - y = 0 - Ax - B = x \)
so \(B = 0 \) \(A = -1 \)

so \(y_p = -x \) is a solution

\(p \) for "particular".

To find the general solution, look at \(y'' - y = 0 \) the homogeneous equation. We know this has solution
\[
y_0 = c_1 e^x + c_2 e^{-x}
\]
so the general solution is
\[
y = y_p + y_0 = -x + c_1 e^x + c_2 e^{-x}
\]