HOMEWORK 6

Due Thursday, May 25, at the beginning of discussion

1. Suppose that two teams play a series of games that ends when one of the teams has won k games. Say each game played is, independently, won by team A with probability p. Find the expected number of games that are played when (a) $k=2$ and (b) $k=3$. Also show that in both cases this number is maximized when $p=\frac{1}{2}$.
2. Suppose you have two candidates in a presidential election. There are 11 states, and in each state, candidate A wins with probability 0.6 and B wins with probability 0.4 . The candidate who wins 6 of the 11 states wins. What is the probability that A wins the election.
3. An insurance company writes a policy to the effect that an amount of money A must be paid if some event E occurs within a year. If the company estimated that E will occur within a year with probability p, what should it charge the customer in order that its expected profit will be 10 percent of A ?
4. Suppose three coins are to be flipped. The first coin will land heads with probability 0.6 , the second will land heads with probability 0.7 and the third will land heads with probability 0.8 . Assume that the results of the flips are independent. Let X denote the total number of heads when flipping all three coins.
(a) TRUE of FALSE: X is a Binomial random variable? (In either case, explain your answer.)
(b) What are the possible values that X can take?
(c) Find the probability mass function of X.
(d) Find $E[X]$.
5. If X is a random variable with $E[X]=1$ and $\operatorname{Var}(X)=5$, find
(a) $E\left[X^{2}\right]$
(b) $E\left[(3-X)^{2}\right]$
(c) $\operatorname{Var}(6 X-13)$.
6. Suppose that it takes at least 9 votes from a 12 -member jury to convict a defendant (not how it works in real life). Suppose also that the probability that a juror votes a guilty
person innocent is 0.2 , whereas the probability that the juror votes an innocent person guilty is 0.1 . If each juror acts independently and if 65% of the defendants are guilty, (a) find the probability that the jury renders a correct decision.
(b) What percentage of the defendants are convicted?
7. A man claims to have extrasensory perception. As a test, a fair coin is flipped 10 times and the man is asked to predict the outcome in advance. He gets 7 out of 10 correct. What is the probability that he would have done at least this well if he did not have extrasensory perception?
8. Weird random variables: construct a discrete random variable X (i.e. describe its probability mass function) such that
(a) $E[X]=-\infty$.
(b) $E[X]$ does not exist.
(c) $E[X]$ exists, is a finite number, but $\operatorname{Var}(X)=\infty$.
9. Suppose the average number of lions seen on a 1-day safari is 5 . Use the Poisson distribution to find the probability that tourists will see fewer than four lions on the next 1-day safari?
