Lecture 28: Continuing normal random variables.

Last time: \(N(\mu, \sigma^2) \)

Density function:
\[
f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2}
\]

Properties:
- Total probability is 1.
- \[\int_{-\infty}^{\infty} f(x) \, dx = 1 \] (book page 188)
- \(\mathbb{E}[X] = \mu \)
 \[
 \mathbb{E}[X] = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} x \, e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2} \, dx = \mu
 \]
 - Change of variables
 \[
 u = x - \mu \quad \text{then another change of vars} \quad v = u^2
 \]
 - Key property:
 \[N(\mu, \sigma^2) = \mu + \sigma N(0, 1) \]

So going back to the expectation above
\[\mathbb{E}[N(\mu, \sigma^2)] = \mu + \sigma \mathbb{E}[N(0, 1)] \] (a little easier)
\[\text{Var}(\mathcal{N}(\mu, \sigma^2)) = \sigma^2 \] again tricky integral.

\[\mathcal{N}(0,1) \] standard normal distribution

Def. \(\Phi(x) = \text{cumulative distribution function} \)

\[\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} \, dy \]

because this integral is very hard, there is a table for it in book page 190.

Ex. \(X \overset{\text{normal}}{\sim} \) random variable with mean \(\mu = 3 \), std. \(\sigma = 3 \).

find \(P(2 < X < 5) \)

Key fact! For \(X \) normal random variable,

\[F_X(x) = P(X \leq x) = P\left(\frac{X - \mu}{\sigma} \leq \frac{x - \mu}{\sigma} \right) \]

\[= P\left(\mathcal{N}(0,1) \leq \frac{x - \mu}{\sigma} \right) \]

\[= \Phi\left(\frac{x - \mu}{\sigma} \right) \]

so we can use \(\Phi \) to get the C.D.F. of any normal random variable.
Solution to problem: \(P(N(3,9) \leq 5) \)

The area we want is between 2 and 5.
\[F(5) - F(2) \]

\[F(5) = P(N(3,9) \leq 5) = P\left(\frac{N(3,9) - 3}{3} \leq \frac{5 - 3}{3}\right) = P(N(0,1) \leq \frac{2}{3}) = \Phi\left(\frac{2}{3}\right) \]

Similarly, \(F(2) = \Phi\left(\frac{1}{3}\right) \).

So \(F(5) - F(2) = \Phi\left(\frac{2}{3}\right) - \Phi\left(\frac{1}{3}\right) \).

Ex: Binary message 0 or 1 is transmitted on a wire from A to B.