HOMEWORK 4

Due Thursday, Feb 9, at 11pm

Please enter your answers into a Jupyter notebook and submit by the deadline via canvas.

Problem 1. Write a function to binary (n) that will return the binary representation of
an integer. E.g. tobinary (13) should return 1101. Write a function from_binary (n)
that will return the base 10 representation of a binary number. e.g. frombinary (1101)
should return 13. These two functions should be inverses of each other.

Problem 2. Goldbach’s conjecture.

The famous Goldbach conjecture states that every even number n > 2 is a sum of two
prime numbers. For example: 4 =2+2,6=3+3,8=5+3,10=74+3,12=T7+5,...

Write Python code that checks Goldbach’s conjecture for n up to 10000. Print out how
the even numbers from 9900 to 9998 can be written as sums of prime numbers. (feel free to
use your primes (n), which returned a list of primes up to n from the previous assignment

to save time)

Problem 4. Recursion problems. Here is an example of a recursive function: (if you

understand how this works, you understand recursion)

returns the reverse of the list xs
def reverso(xs):
if xs == []:
return xs

return xs[-1l:]+reverso(xs[:-1])

Write the following functions only using recursion. (Please don’t use loops, the idea is
for us to learn to use recursion. If I gave you only recursion exercises that are easier to do
with recursion and hard to do with loops, they would be very difficult and it would make
it much harder for you to learn to use recursion. Also don’t use the built-in function max

for solving max etc.)

(1) maximo (xs), returns the maximum of a list of numbers.
(2) lengtho (xs), returns the length of a list.
(3) ispalin (xs) returns True if xs is a palindrome (a palindrom is a sequnce that is

the same in reverse, example: “amanaplanacanalpanama”).
1

(4) gcd (a,b), returns the greatest common divisor of two integers a and b. Use
Euclid’s algorithm, but implement it using recursion. Look at the notes from lecture
6 to remember (key fact: if a = bxg + r, then gcd(a,b) = gcd (b, r)).

Problem 5. Make the following picture by modifying the code below. (use recursion, you
will need the python file libhwO1.py that came with the first homework)

1.0

0.5

0.0

-0.5

import 1libhwOl as libhw

def circ(x,vy):
return 0.0 if x*x + yxy < 0.8 else 1.0

def f (x,y,count):
if, when you call f recursively you use f(?,?,count+1), then the count
variable will keep track of how many times f called itself (how deep you
are 1in the recursion tree 1f you like) and will stop calling itself
indefinitely for bad values
if count > 500:

return 1.0

if

def g(x,vy):
return f(x,y,0)

libhw.drawfunction (g)

