
HOMEWORK 6

Due Thursday, March 2, at 11pm

Please enter your answers into a Jupyter notebook and submit by the deadline via canvas.

Fake Goldbach. More accurately: Goldbach’s wrong conjecture. It was proposed by

Goldbach that every odd number can be written as the sum of a prime and twice a square.

For example:

7 = 7 + 02

9 = 7 + 2 × 12

11 = 11 + 02

15 = 7 + 2 × 22

21 = 3 + 2 × 32

25 = 7 + 2 × 32

27 = 19 + 2 × 22

33 = 31 + 2 × 12

Prove Golbach wrong by finding the first odd number not to be a prime plus twice a square.

Random walk. A drunk bear called Randi is standing on the origin in R. At each

time step, he goes 1 unit to the left with probability p = 0.5 and 1 unit to the right

with probability 1 − p = 0.5. Say each random walk is of length M = 30 (at which

point Randi collapses to the ground). An example simulation of Randi’s walk would be

[1,0,1,2,1,0,-1,-2,...,-3].

• Make a numpy array of shape (1000, 30) that stores the result of 1000 simulated

random walks.

• Compute the mean and standard deviation of the ending point of Randi’s walk using

np.mean and np.std.

• Make a histogram of where we will find Randi at the end of his walk.

• Let rM be the ratio of walks where, at any point during the walk, Randi returned

to the origin. For M = 1, 2, 3, 4, 5, 6, 7, 8, 9, . . . , 100, compute rM and make a graph

of rM as a function of M . (idea: you don’t need to make a new numpy array every
1

time, make one numpy array of shape (1000,100) and take subarrays to do your

computation)

Polynomials class v2.0. In the previous homework, we designed a class for Polynomials

(please check last week’s solutions if you are not sure about this). Our class supported

initialization by list (i.e. init (self, xs)), printing (i.e. repr (self)), addition

(add (self, other)), and evaluation (eval(self, x)).

Fill in the deleted parts of the code below to add the following functionality to Polynomial.

For p = Polynomial([1.0, 2.0, 0.0]) corresponding to the polynomial 1 + 2x2 +

0x3 = 1 + 2x2.

• p.cleanup(), should modify p by removing the unnecessary 0-coefficients at the

end of p (assume a float is zero if it is less than epsilon = 0.00000000001). For

example, p = Polynomial([1.0,1.0,0.0000000000000000000000000001]),

p.cleanup(), print(p) should print 1.0 + 1.0xˆ1.

• p.degree() should return the degree of p. For example, Polynomial([1.0,

0.0, 0.5]).degree() should be 2. Be careful: Polynomial([1.0, 0.0,

0.0, 0.00000000000000000001]).degree() should be zero.

• power of x(n), should return xn as a Polynomial. (this function should be out-

side the class) For example print(power of x(4)) should print 1.0xˆ4

(or similar depending on how you implemented print before)

• p == q, should return True if all the coefficients of p and q are within epsilon

of each other, False otherwise. You do this by implementing a method called

eq (self, other) in the Polynomial class.

• p * q, should return the product of two polynomials. You do this by implementing

mul (self, other) within the class.

• p.derivative(), should return the derivative of p(x).

• p.integral(a, b), should return the integral of p(x) from a to b.

• (optional) p.compose(q) should return the composition of p and q. i.e. the

resulting polynomial should be p(q(x)).

Make sure you test each method with a couple of examples.

class Polynomial():

def __init__(self, xs):

self.coeffs = xs

def __repr__(self):

last homework

def __add__(self, other):

last homework

def eval(self, x):

2

last homework

removes 0 coefficients in high degrees

e.g. p = Polynomial([1., 0., 2., 0., 0.])

p.cleanup()

print(p)

should give: 1.0xˆ0 + 0.0xˆ1 + 2.0xˆ2

def cleanup(self):

pass # pass prevents python from error

because function def is empty

returns degree of poynomial (be careful of extra 0’s in high degrees)

def degree(self):

pass

checks if self and other have all coefficients within 10**(-11) of each

other

def __eq__(self, other):

pass

scalar multiplies polynomial by number (modifies polynomial)

def scalar_mult(self, alpha):

pass

returns the product polynomial of self and other

def __mul__(self, other):

pass

returns the derivative of the polynomial with respect to x

def derivative(self):

pass

returns the integral of the polynomial from a to b

def integral(self, a, b):

pass

optional. returns the composition p(q(x))

def compose(self, other):

pass

returns the nth power of x as a polynomial

def power_of_x(n):

pass

3

