HOMEWORK 7

Due Thursday, March 9, at 11pm

Please enter your answers into a Jupyter notebook and submit by the deadline via canvas.

Monte-Carlo Estimation of π. Estimate π by using the following method. Generate $N=5000$ (or more) pairs of numbers that are each uniformly random in the interval (0,1). Count the number of pairs that are within the circle defined by $x^{2}+y^{2}=1$.

Estimate π this way and make the above plot using the code below:

```
plt.figure(figsize=(5,5))
plt.scatter(X_out, Y_out, color="red")
plt.scatter(X_in,Y_in)
plt.plot(X, Y)
plt.axis([0, 1, 0, 1])
```

Random walks in two and three dimensions. In the last homework, we had the drunk bear Randi do a random walk in one dimension. We will now to the same in 2 and 3 dimensions.

- Imagine Randi is on a grid, at position $(0,0)$. At each time step, Randi goes, with equal probability, up, down, left or right (up means y increases by 1 and right means x increases by 1). Simulate 1000 random walks of length $m=1000,2000, \ldots, 10000$ in this 2-dimensional grid, and count the number of 2 -dimensional random walks of

Randi that end up with him going back to the origin at some point; and plot this as a function of m. Don't fill a giant numpy array with every simulation like we did in the last lecture (uses too much memory; instead, generate random walks one by one and store only the information you need).

- Do the same in a three-dimensional grid (6 different directions for Randi to go at each step).

As we discussed in class, this problem is about Polya's theorem. Which says that if you take a random walk in a 1 or 2-dimensional grid, then you will eventually return to the starting position with probability 1 (i.e. the probability goes to 1 as m goes to infinity). On the other hand, this is not true in 3 dimensions and above. For the 2D-random-walk plot you made, notice (mentally) how slowly the value goes to 1 , whereas for the 3 d version, it's not even close.

Simulation of the Law of Large numbers and the Central Limit Theorem. We are drawing n uniform random numbers. The average of these numbers will also be random but will have a different distribution. We want to see how the average changes (as a distribution) as n increases.

More precisely, let $x_{1}, x_{2}, x_{2}, \ldots$ be drawn from the uniformly distribution between 0 and 1 (i.e. random.random()). Let

$$
y_{n}=\frac{x_{1}+\cdots+x_{n}}{n}
$$

be the average.

- Write a function get_x () that will return a uniformly random number between 0 and 1.
- Write a function get_y (n) that will return the average of n random numbers picked by get_x().
- (You can copy this from Lecture 20) Write a function make_hist (YY) that will take a numpy array YY, make a histogram (use normed=True in plt.hist (...)) and plot the best fitting Gaussian curve to the content of YY.
- For each of $n=1,10,100,1000,10000,100000$, sample 1000 values of y_{n} (using get_y (n)) and draw a histogram and the best fitting distribution. Print out the standard deviation of the data when $n=1$ (i.e. average of one single x ; it should be 0.28).
- For $n=1,2, \ldots, 100$, draw 1000 values from get_y () and compute the standard deviation of the data (don't draw the histogram). Then plot the standard deviation value versus n. Also plot, in the same graph, the function $0.28 / \sqrt{n}$.
- Write briefly, why the results you got are consistent with the law of large numbers and the central limit theorem.

