Directions: The exam is 120 minutes long. Please read each question carefully.

When asked to write code, you should write working Python code that has correct syntax. You should explain in 1-2 sentences what the idea for your solution is or write next to your code what it is doing. This will increase your chances of getting full/partial credit.

Use the backs of the pages if needed.

Last Name: \qquad

First Name: \qquad

Student ID \#: \qquad

Question	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
6	20	
7	20	
8	20	
Total:	160	

1. (20 points) Write down the output of the following programs.
2. $x=1$
$s=0$
for i in range (8):
s += x
$\mathrm{x}+=1$
print(s)
3. $\operatorname{def} f(n)$:
if $n>0$:
return n * $g(n)$
return 1
def $g(n)$:
return $f(\mathrm{n} / / 2)$
print(f(6))
4. from functools import reduce
$x=$ reduce (lambda $a, d: 2 * a+d,[1,0,0,0,0,1,0,1])$ print (x)
5. $\operatorname{def} \mathrm{f}(\mathrm{xs})$:
if $\mathrm{xs}==$ []:
return 0
return $\mathrm{xs}[0]+\mathrm{f}(\mathrm{xs}[1:])$
$\mathrm{f}([1,2,3,4,5])$
6. (20 points) Produce the following lists without using for or while loops.
7. $[0,1,3,7,15,31,63,127,255,511]$

2 . $[1,2,4,5,7,8,10,11,13,14,16,17,19]$
3. $[-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14]$
3. (20 points) Write code that will produce the following graphs (or something that looks like it; use plt.plot(X, Y) and plt.scatter (X, Y)).
1.

2.

4. (20 points) Complete the code below to implement the function chessboard (n) that will return a numpy array with 1's and 0's arranged in a chessboard pattern. You can assume n is odd. Examples:

```
In: chessboard(3)
Out: array([[0, 1, 0],
    [1, 0, 1],
    [0, 1, 0]])
In: chessboard(5)
Out array([[0, 1, 0, 1, 0],
    [1, 0, 1, 0, 1],
    [0, 1, 0, 1, 0],
    [1, 0, 1, 0, 1],
    [0, 1, 0, 1, 0]])
def chessboard(n):
    X =
    return
```

Complete the code below to implement the function chessgonewrong(n), which produces a chess-board with the middle 3×3 square having -1 's instead of 1 s .

```
In: chessgonewrong(7)
Out: array([[ 0, 1, 0, 1, 0, 1, 0],
    [ 1, 0, 1, 0, 1, 0, 1],
    [ 0, 1, 0, -1, 0, 1, 0],
    [ 1, 0, -1, 0, -1, 0, 1],
    [ 0, 1, 0, -1, 0, 1, 0],
    [ 1, 0, 1, 0, 1, 0, 1],
    [0, 1, 0, 1, 0, 1, 0]])
def chessgonewrong(n):
    X = chessboard(n)
    return X
```

5. (20 points) Implement a function divisors (n) that returns all positive integer divisors of an integer n as a list. (returns not prints)
6. (20 points) A palindrome is a word that is the same when reversed, e.g. "amanaplanacanalpanama". Write a function ispalin(s) that will return True if a string s is a palindrome and False otherwise. (remark: you can work with s as if it were a list).
7. (20 points) Recall the Polynomial class from the homework that stores a polynomial as a list of its coefficients. Implement the __add_- (self, other) function that returns a new polynomial which represents the sum of the polynomials self and other.
```
class Polynomial():
    def __init__(self, xs):
        self.coeffs = xs
    # returns a string representation of the polynomial
    def __repr__(self):
        if self.coeffs == []:
            return "0"
        c = ""
        for i, x in enumerate(self.coeffs):
            c += str(x) + "x" + "^" + str(i) + "_++""
        return c[:-3]
    def __add__(self, other):
```

8. (20 points) Write code that will find the minimum of the function $f(x, y)=x^{4}+y^{2}+$ $2 x+4 y+1$ using gradient descent. (Start the descent from $(x, y)=(5,5)$ and use the learning rate of $\eta=0.01$). Your code should print the minimum value it finds.
