
Math 9 Practice Final

Directions: The exam is 120 minutes long. Please read each question

carefully.

When asked to write code, you should write working Python code that has

correct syntax. You should explain in 1-2 sentences what the idea for your

solution is or write next to your code what it is doing. This will increase

your chances of getting full/partial credit.

Use the backs of the pages if needed.

Last Name:

First Name:

Student ID #:

Question Points Score

1 20

2 20

3 20

4 20

5 20

6 20

7 20

8 20

Total: 160

Math 9 Practice Final, Page 2 of 9

1. (20 points) Write down the output of the following programs.

1. x = 1

s = 0

for i in range(8):

s += x

x += 1

print(s)

Answer: This computes 1 + 2 + · · · + 7 = 36

2. def f(n):

if n > 0:

return n * g(n)

return 1

def g(n):

return f(n // 2)

print(f(6))

Answer: f(6) = 6 ∗ g(6), g(6) = f(3), f(3) = 3 ∗ g(3), g(3) = f(1), f(1) = 1 ∗ g(1),

g(1) = f(0), f(0) = 1. So f(6) = 6 ∗ 3 ∗ 1 = 18

3. from functools import reduce

x = reduce(lambda a,d: 2*a+d, [1,0,0,0,0,1,0,1])

print(x)

Answer: Recall how the reduce function works. You apply the function to the first

two elements, then apply the function to the answer and the next element,. . . In this

case you keep multiplying by two and adding. The answer is 133. If you think about

it, you will notice that this computes the base 10 version of the binary number.

4. def f(xs):

if xs == []:

return 0

return xs[0] + f(xs[1:])

f([1,2,3,4,5])

Answer: f([1,2,3,4,5] = 1 + f([2,3,4,5])),

f(2,3,4,5) = 2 + f([3,4,5]),. . . It’s computing the sum. Which is 15.

Math 9 Practice Final, Page 3 of 9

2. (20 points) Produce the following lists without using for or while loops.

1. [0, 1, 3, 7, 15, 31, 63, 127, 255, 511]

Solution: Powers of two minus 1.

[2 ** x - 1 for x in range(10)]

2. [1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19]

Solution: all the numbers except multiples of 3.

[x for x in range(20) if x % 3 != 0]

3. [-1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14]

Solution: all the numbers in range but multiply by alternating sign.

[x * (-1)**x for x in range(1,15)]

Math 9 Practice Final, Page 4 of 9

3. (20 points) Write code that will produce the following graphs (or something that looks

like it; use plt.plot(X, Y) and plt.scatter(X, Y)).

1.

Solution: exponential function.

X = np.linspace(-5,5,400)

Y = 2 ** X

plt.plot(X, Y)

(it doesn’t matter if you said 2**x or some other exponential)

2.

Solution: adding some noise to y = x.

X = np.linspace(-1,1,200)

Y = X + np.random.normal(0,0.2,X.shape[0])

plt.scatter(X, Y)

(Of course, the 0.2 doesn’t matter as long as you knew how to add some noise.)

Math 9 Practice Final, Page 5 of 9

4. (20 points) Complete the code below to implement the function chessboard(n) that

will return a numpy array with 1’s and 0’s arranged in a chessboard pattern. You can

assume n is odd. Examples:

In: chessboard(3)

Out: array([[0, 1, 0],

[1, 0, 1],

[0, 1, 0]])

In: chessboard(5)

Out array([[0, 1, 0, 1, 0],

[1, 0, 1, 0, 1],

[0, 1, 0, 1, 0],

[1, 0, 1, 0, 1],

[0, 1, 0, 1, 0]])

Solution: reshape an array with alternating 0’s and 1’s.

def chessboard(n):

X = np.array([x % 2 for x in range(n * n)]).reshape([n,n])

return X

Complete the code below to implement the function chessgonewrong(n), which

produces a chess-board with the middle 3 × 3 square having −1’s instead of 1s.

In: chessgonewrong(7)

Out: array([[0, 1, 0, 1, 0, 1, 0],

[1, 0, 1, 0, 1, 0, 1],

[0, 1, 0, -1, 0, 1, 0],

[1, 0, -1, 0, -1, 0, 1],

[0, 1, 0, -1, 0, 1, 0],

[1, 0, 1, 0, 1, 0, 1],

[0, 1, 0, 1, 0, 1, 0]])

def chessgonewrong(n):

X = chessboard(n)

return X

Solution: multiply a 3 × 3 square at the center by -1.

def chessgonewrong(n):

X = chessboard(n)

X[n // 2 - 1 : n // 2 + 2, n // 2 - 1 : n // 2 + 2] *= -1

return X

Math 9 Practice Final, Page 6 of 9

5. (20 points) Implement a function divisors(n) that returns all positive integer divi-

sors of an integer n as a list. (returns not prints)

Solution: Loop through i=1,. . . ,n and add them to the list if they divide.

def divisors(n):

xs = []

for i in range(1,n+1):

if n % i == 0:

xs.append(i)

return xs

Math 9 Practice Final, Page 7 of 9

6. (20 points) A palindrome is a word that is the same when reversed, e.g. “amana-

planacanalpanama”. Write a function ispalin(s) that will return True if a string

s is a palindrome and False otherwise. (remark: you can work with s as if it were a

list).

Solution: as you loop to the middle, check to see if the character matches with the

corresponding character from the other side. If there are any mismatches, return False.

If you finish the loop without any mismatches, then return True.

def ispalin(s):

n = len(s)

for i in range(n//2):

if s[i] != s[n-1-i]:

return False

return True

Math 9 Practice Final, Page 8 of 9

7. (20 points) Recall the Polynomial class from the homework that stores a polynomial

as a list of its coefficients. Implement the add (self, other) function that returns

a new polynomial which represents the sum of the polynomials self and other.

class Polynomial():

def __init__(self, xs):

self.coeffs = xs

returns a string representation of the polynomial

def __repr__(self):

if self.coeffs == []:

return "0"

c = ""

for i, x in enumerate(self.coeffs):

c += str(x) + "x" + "ˆ" + str(i) + " + "

return c[:-3]

def __add__(self, other):

Solution: This was a problem in Homework 5. You add the corresponding coefficients

(but have to be careful about not getting index out of bounds errors because you are

looking too far to the right).

def __add__(self, other):

i = 0

new_coeffs = [0.0 for i in range(max(len(self.coeffs), len(other.

coeffs)))]

for i in range(len(new_coeffs)):

coefa = self.coeffs[i] if i < len(self.coeffs) else 0.0

coefb = other.coeffs[i] if i < len(other.coeffs) else 0.0

new_coeffs[i] = coefa + coefb

return Polynomial(new_coeffs)

Math 9 Practice Final, Page 9 of 9

8. (20 points) Write code that will find the minimum of the function f(x, y) = x4 + y2 +

2x + 4y + 1 using gradient descent. (Start the descent from (x, y) = (5, 5) and use the

learning rate of η = 0.01). Your code should print the minimum value it finds.

Solution: Please refer to the lecture notes on gradient descent for a careful explanation.

f = lambda x, y: x**4 + y**2 + 2*x + 4*y + 1

delfdelx = lambda x, y: 4 * x**3 + 2

delfdely = lambda x, y: 2*y + 4

num_steps = 1000

eta = 0.01

x = 5

y = 5

for i in range(num_steps):

dx = delfdelx(x,y)

dy = delfdely(x,y)

x -= eta * dx

y -= eta * dy

print(x,y,f(x,y))

