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Cell Polarity: Quantitative Modeling
as a Tool in Cell Biology
Alex Mogilner,1* Jun Allard,1 Roy Wollman2

Among a number of innovative approaches that have modernized cell biology, modeling has a
prominent yet unusual place. One popular view is that we progress linearly, from conceptual to ever
more detailed models. We review recent discoveries of cell polarity mechanisms, in which modeling
played an important role, to demonstrate that the experiment-theory feedback loop requires diverse
models characterized by varying levels of biological detail and mathematical complexity. We argue that
a quantitative model is a tool that has to fit an experimental study, and the model’s value should
be judged not by how complex and detailed it is, but by what could be learned from it.

Four hundred years ago, Galileo observed
that “Nature’s great book is written in math-
ematical language.” Since that time, physical

phenomena have been described by mathematical
equations, yet biology has remained qualitative.
A possible explanation is that complex behavior
in physics emerges from relatively simple inter-
actions between many copies of few elements,
whereas biological complexity results from non-
linear interactions of many heterogeneous spe-
cies. In this sense, biological systems are similar
to engineered machines (1): Inventories of both
airplane parts and animal cell proteins consist of
tens of thousands entries; cell interactomes look
similar to machine blueprints; and performances
of both engineering and biological structures are
characterized by robustness and noise resistance
(2). This analogy has limitations: Biological sys-
tems are built from stochastic and unreliable parts;
are evolved rather than designed; and are subject
to reverse, not direct, engineering. Nevertheless,
in the last two decades, the mathematics usually
applied to engineering and physics has been often
used in cell biological studies where quantitative
models serve as a guide for failing intuition (3).

The foundation for this surge was laid by two
seminal papers that appeared 60 years ago. One
was the biologically abstract and mathematically
simple manuscript by Alan Turing (4) proposing
that a pattern can emerge in an initially homo-
geneous mixture of two chemicals. Turing used
two linear partial differential equations (PDEs)
(Box 1) with few parameters to demonstrate that
two chemicals, a slowly diffusing “activator” and
a rapidly diffusing “inhibitor,” could concentrate
in different regions of space. Untested and un-
substantiated at the time, this conceptual model
has served as a basis for many studies of polar-
ity, chemotaxis, and development. Another work

by Hodgkin and Huxley (5) was mathemati-
cally complex, grounded in experimental data
and very detailed: Many ordinary differential equa-
tions (ODEs) (Box 1) with many parameters and

nonlinearities were used to describe ion currents
through voltage-gated channels in the axon mem-
brane. The parameters and nonlinearities were
measured, and the model reproduced the observed
electric bursts in nerve cells, which revolution-
ized our understanding of excitable systems.

These two papers symbolize the opposite
ends of “modeling space” (Fig. 1A). It is tempting
to pronounce that we will be describing cells in
ever more accurate terms and minute detail,
moving from focused and conceptual (like ODEs
describing three-node motifs in regulatory net-
works) to accurate and broad models (6), perhaps
ending with a “whole-cell model” that complete-
ly recapitulates cell behavior on a computer, sub-
stitutes for wet laboratory experiments and makes
personalized medicine possible. This is an ap-
pealing, if distant, goal. Meanwhile, this view
subtly puts broad models above focused ones
and suggests that there is a modeling “Road to
Valhalla.” Note, however, that our understand-
ing of the nerve impulse progressed from the
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Fig. 1. Modeling space. (A) Computational models can be characterized by their scope and level of
realism. Mathematically, focused models are simple, whereas broad ones are complex. Biologically, the
models range from conceptual, offering mainly qualitative insight, to accurate and mechanistic, making
many quantitative predictions. (B) Polarity models in modeling space marked by the first author, year in
which the model was published, biological system the model applied to and mathematical method. Color
corresponds to physical dimensionality of the model. Mathematical scope and level of realism do not
correlate with dimensionality, type of math, or biological system.
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complex Hodgkin-Huxley model through the
FitzHugh-Nagumomodel (7) that reduced the sys-
tem radically to two PDEs and few parameters.
Although simplistic, the FitzHugh-Nagumomodel
was amenable to deeper mathematical analysis,
by building intuition that could be applied to full
biophysical reality. Besides, increasing a model’s
realism does not necessarily mean more difficult
math: There are simple and accurate models, like

Michaelis-Menten kinetics equations (Fig. 1A)
(Box 1). There are also broad and detailed, yet con-
ceptual models, such as the Boolean description
(Fig. 1A) (Box 1) of segment polarity gene expres-
sion (8). Here, we review recent studies of bud-
ding yeast to illustrate how a variety of modeling
approaches advanced our understanding of cell
polarity (Fig. 2). We argue that quantitative mod-
eling is a versatile tool that has to fit the biological

problem and can be judged by its usefulness rather
than its comprehensiveness or sophistication.

Modeling Yeast Polarity
Many cells polarize in response to external cues
such as preexisting landmarks, chemoattractants,
or contact with other cells (9). In budding yeast
cells, cortical landmark proteins inherited from
previous division cause localized activation of the

Box 1. MODELING TOOLS

In mathematical biology, an ODE normally expresses the time derivative
of a dynamic variable in terms of a function, usually nonlinear, of this
variable. More frequently, a system of ODEs (dynamical system) appears.
For example, if [E], [S], and [C] are concentrations of enzyme, substrate,
and complex, respectively, then the dynamical system

d[E]
dt

= −k1[E][S] + k2[C],
d[S]
dt

= −k1[E][S],
d[C]
dt

= k1[E][S] − k2[C]

describes Michaelis-Menten kinetics. In this system, rates k1 and k2 are
model parameters. ODEs are an extremely powerful tool as (i) vast
mathematical apparatus (bifurcation diagrams and phase portraits,
perturbation theory, and numerical analysis) has been developed to solve
them; (ii) solving ODEs is almost trivial with much available user-friendly
software; and (iii) their solutions provide very detailed mechanistic insight.
The caveats of using ODEs for modeling are (i) chemicals have to be well
mixed in the cell or their spatial gradients have to be neglected, (ii)
detailed information about molecular interactions has to be available,
and (iii) many data are necessary to validate the model.

A PDE is a generalization of an ODE: concentrations of chemicals (or
distributions of molecular players, in general) can change not only in
time, but in space as well, so not only time derivatives, but also (so-
called “partial”) derivatives with respect to spatial coordinates appear
in the equations. For example, Michaelis-Menten kinetics in a 3D cell
in the presence of diffusion will have the form:

∂[E]
∂t

= −k1[E][S] + k2[C] + DED[E],
∂[S]
∂t

= −k1[E][S] + DSD[S],

∂[C]
∂t

= k1[E][S] − k2[C] + DCD[C]

where D’s are diffusion coefficients, and D = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2.
These PDEs constitute a so-called reaction-diffusion system. Instead of
diffusion, other transport processes (e.g., directed motor-driven transport)
can be represented mathematically as well. PDEs have to be accompanied
by boundary conditions that have to be chosen carefully. Similar to ODEs,
PDEs are great for mechanistic insight. Solving PDEs is far from trivial.
ODEs’ caveats (ii) and (iii) apply to PDEs as well.

Unlike deterministic models, stochastic simulations usually describe
molecules not as concentrations, but as random numbers. These numbers
change in time with certain probabilities that are functions of random
variables (numbers of these and other molecules) in the system. Many
different types of stochastic models exist, for example: (i) direct Monte
Carlo simulations, in which the computer generates random changes in
the random variables at equal time increments; (ii) Gillespie simulations,
in which computer calculates random time intervals at which the state
of the system changes; (iii) Langevin equations that allow the addition
of random steps to deterministic changes; (iv) Smoluchowski equations

that introduce a probability density for system states and transform
random equations into deterministic PDEs, and so on. The great
advantage of stochastic simulations is that they expose the effects of
fluctuations and noise that are often enormous in cells because of the
relatively small number of molecules involved. The caveat is that usually
stochastic simulations produce but a single random trajectory of the
system (Smoluchowski equations are a notable exception, but these are
often very hard to solve), so multiple, computationally expensive
simulation runs and nontrivial statistical tools are needed for thorough
investigation.

Agent-based simulations that are sometime deterministic, but more
often stochastic, rely on explicitly tracking all essential molecules so that,
on the basis of the current positions and states of these molecules, all
interactions (chemical and mechanical) are computed and movements
and states of every molecule are calculated based on the rules of physical
chemistry and classical mechanics. Usually, thousands of such molecule-
agents are simulated, the numerical codes are very involved, and
computational expense is enormous. Often, these simulations suffer
from limited qualitative insight—in a way, they substitute a
computational “black box” for the live cell—but these problems are
usually more than offset by two benefits: life-like resulting movies
that can be compared directly with time-lapse microscopy and the
ability to perform lifelike perturbation experiments on the
computer. Other useful modeling techniques, such as cellular
automata and Potts models, are midway between PDEs and
agent-based simulations.

Boolean networks are well suited to reproduce the qualitative
behavior of extensive networks when the amount of quantitative
experimental data is limited. In a Boolean representation, the
biological active or inactive state of a species are represented by the
on-off states of nodes in an “interactome” network. Logical rules
based on qualitative insight prescribe switches between states of each
node, depending on the state of the nodes to which the node is
connected in the network. Boolean models are useful for a fast
quantitative look at the dynamics of large biological networks, but
because of the difficulties of treating physical time and some
mathematical artifacts, such models are gradually falling out of favor.

Bayesian models use the rules of probability theory (Bayes’ formula
for conditional probabilities) and experimental multivariate data that
depict causal relationships between biological variables to uncover
statistical (and/or causal) relations among these variables. These models
lack a time dimension and therefore cannot include feedback loops
that are prevalent in biology.

Network analysis uses the sophisticated methods of graph theory,
topology, statistics, and combinatorics to find modules, motifs, and
other building blocks representing small standard dynamic systems in
large biological networks. The methods of network analysis are
extremely useful for large networks, and relevant software is becoming
better and more widely available.
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guanosine triphosphatase (GTPase) Rsr1, leading
to recruitment of the polarization machinery com-
ponents, including the key GTPase Cdc42 (Fig.
2A) and, ultimately, to symmetry breaking and
switching from isotropic growth to growth along a
polarized axis (10). However, landmark proteins
are not essential for the emergence of the Cdc42
cluster that marks future growth site: When the
landmark is bypassed by Rsr1 removal or consti-
tutive activation of Cdc42Q61L (in which glutamine
at position 61 is replaced by leucine and which
cannot hydrolyze guanosine triphosphate and re-
spond to upstream signals), clusters of concentrated
Cdc42 still form, albeit at random locations, so the
cell is able to self-polarize (Fig. 2A). This phe-
nomenon is arguably the best understood par-
adigm of cell polarity, in no small measure owing
to the power of yeast genetics and many studies
that judiciously combined microscopy and mod-
eling to allow detailed mechanistic insights.

Turing’s pioneering paper and several mod-
els it inspired (11, 12) predict that locally acting
positive-feedback loops and globally acting neg-
ative regulators can lead to self-polarization. [The
models we review below share the general phi-
losophy of Turing’s mechanism, but in a nar-
rower, mathematical sense they differ from Turing
system; see (12) for details.] Immediate ques-
tions arise from this prediction: Is it indeed the
Turing mechanism that is responsible for self-
polarization? What are the molecular identities
of the activators and inhibitors? What are the
transport mechanisms underlying the process?
How are complex, specific combinations of reg-
ulatory pathways wired to achieve polarity?

Less than a decade ago, Wedlich-Soldner et al.
(13) started to answer these questions quantitative-
ly by using mutants to establish that actin-myosin–
directed vesicle transport and fusion were essential
for Cdc42Q61L polarization. They proposed that
Cdc42 molecules would be recruited to a localized
cap on the membrane through transport along actin
cables, whereas deposition of Cdc42 to the cap
would stimulate further actin accumulation at this
site (Fig. 2B). As it was hard to prove experimen-
tally that such a positive-feedback circuit is suffi-
cient to induce polarization, Wedlich-Soldner et al.
performed simple stochastic simulations (Box 1)
in which actin cables nucleated at a rate propor-
tional to the local membrane Cdc42 concentration,
Cdc42 was delivered along each cable at a rate
proportional to Cdc42 cytoplasmic concentration,
and Cdc42 settled on the plasma membrane in a
bell-shaped distribution around the cable. Multiple
caps were often observed in a single cell, and the
model predicted, correctly, that the cap number in-
creases with initial membrane Cdc42 concentration.

Two years later, Ozbudak et al. (14) studied
the dynamics of this symmetry breaking with Rsr1
deleted, rather than by expressing higher levels of
activated Cdc42. To their surprise, they found that
the single Cdc42 peak moved around the cell.
When actin was inhibited, the Cdc42 peak re-

mained, but its movement ceased. To explain this
phenomenon, Ozbudak et al. turned to the ex-
perimental finding that the scaffold protein Bem1
is an essential component in an actin-independent
self-polarization pathway (15) and to the theoret-
ical finding that certain negative-feedback loops
can result in traveling waves (16). They assumed that
actin cables deliver molecules initiating an actin patch
on the membrane causing a dispersal, rather than
concentration of Cdc42, which ultimately means
that Cdc42 molecules on the membrane inhibit fur-
ther local accumulation of Cdc42 with a time de-
lay dependent on the actin dynamics. A PDE with
respective negative feedback and a time-delayed
term, in addition to a hypothetical autocatalytic re-
action term describing Bem1-dependent accumu-
lation of Cdc42 on the membrane and Cdc42
diffusion term, mathematically explained the trav-
eling wave. This conceptual model, besides making
sense of the data, proposed that actin dynamics are
part of a negative-, not positive-, feedback loop.

Marco et al. proposed an alternative solution
(17) based on data showing that endocytosis and
lateral diffusion in the membrane are essential
for yeast polarization (18). They suggested that
a combination of three processes—actin-Cdc42–
positive accumulation, Cdc42 lateral diffusion, and
removal by endocytosis, together, could main-
tain the polarized state (Fig. 2B). By combining
three respective mathematical terms in a simple
PDE and solving this equation, Marco et al. found
that both emergence and maintenance of the po-
larization cap could be explained. The model made
a nontrivial prediction: There is an optimal rate of
endocytosis in terms of how “sharp” the Cdc42

polarization is, because slower endocytosis causes
spreading of the Cdc42 cap over the surface,
whereas faster endocytosis depletes the Cdc42
cluster. Measurements of the rates of transport,
endocytosis, and geometric parameters indeed re-
sulted in the predicted optimal rate. Compared with
the previous model, this one was more accurate
and detailed, with parameters fitted from the data.

The model of Marco et al. was based on the
measurements of a mutant, Cdc42Q61L, which is
stably associated with the membrane. A couple
of years later, Slaughter et al. (19) took their
model to the next level of accuracy by trying to
explain how cells maintain the dynamic distribu-
tion of the wild-type Cdc42, which transitions
between the membrane and cytoplasm at higher
rates than Cdc42Q61L. Slaughter et al. based their
model on data indicating that actin-dependent and
independent pathways play redundant but essen-
tial roles in maintaining Cdc42 polarization. By
assuming that these two pathways work in par-
allel to control Cdc42 recycling at the polar cap
and by adding respective mathematical terms
[making the model in (17) more detailed and
precise], Slaughter et al. found that, depending on
the data-supported model parameters, the shape
of the Cdc42 peak resembles either a bud that
the cell grows to enter the mitotic cycle or a shmoo
that grows as a mating projection (Fig. 2A). Thus,
the model made a provocative prediction that pa-
rameters of Cdc42 recycling in yeast are adapted
not to achieve maximum polarity but to fulfill
specific morphogenetic outcomes.

A recent study (20) carefully examined the
assumptions used in (17) and noticed that the

A

B

Cdc42

Bud

or

shmoo (mating)

ii

i iii

Bem1

Cdc42

Cdc42p

Vesicle

Actin cable

Fig. 2. Budding yeast polarization. (A) Initially symmetric cell with uniform distribution of Cdc42 becomes
polarized, either in response to an extracellular cue or spontaneously. Polarization of Cdc42 distribution
leads to polarized growth, either for budding or mating. (B) Feedback loops leading to Cdc42 polarization:
(i) positive, actin-dependent feedback, (ii) endocytosis, and (iii) positive feedback via autocatalytic Cdc42
membrane recruitment mediated by Bem1.
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previous model treated Cdc42 traffic to and from
the polarization cap as a direct protein flux, with-
out taking into account the membranes that
actually transport the Cdc42. However, if the
membrane flux is taken into account, then, in the
steady state, the amount of membrane in vesicles
undergoing endo- and exocytosis with the cap
have to be the same, so Cdc42 concentrations in the
endo- and exocytic vesicles have to be the same.
The problem is that, if the Cdc42 concentrations
in the endo- and exocytic vesicles are equal to local
concentrations in the cap and cytoplasm, respec-
tively, then higher Cdc42 concentration in the cap
would cause faster Cdc42 endocytosis and, ulti-
mately, depolarization. In fact, new data and math-
ematical analysis in (20) suggested that Cdc42
would have to be significantly and unevenly con-
centrated into the endo- and exocytic vesicles
for the model of (17) to work. Results of (20) will
undoubtedly stimulate future studies to deter-
mine whether such traffic mechanisms exist.

Altschuler et al. (21) reversed the apparent trend
toward more accurate and detailed models. They
investigated the actin-independent polarization
pathway using a simple, stochastic—
rather than deterministic—model in
which Cdc42 molecules on the mem-
brane catalyzed recruitment to the
membrane of cytoplasmic Cdc42.
They found that, if the total number
of Cdc42 molecules is small, then
the stochastic effect of one emerg-
ing Cdc42 cluster “grabbing” a ma-
jority of signaling molecules leads
to self-polarization, whereas greater
Cdc42 numbers predicted global and
homogeneous Cdc42 membrane re-
cruitment. The data indeed showed
that the frequency of polarization de-
creases as the number of molecules
becomes large. This conceptual mod-
el illustrated the role of stochastic
effects, fundamental for cell biolog-
ical processes in which the number
of molecules involved is often small.

In the same year, another math-
ematical model investigated the actin-
independent pathway (22) on the
basis of a very different philosophy.
All previous models were top-down,
based on coupling “modules,” with
molecular details left to be clarified
later, by assumed nonlinear inter-
actions. In contrast, Goryachev and
Pokhilko (22) built a bottom-up
model by describing simple mass-
action reactions and diffusion for
all known components of the actin-
independent pathway in mathematical
terms, solving respective equations
and confirming that this fine-grained
model predicts self-polarization with-
out any additional assumptions. Then,

using network analysis (Box 1), Goryachev and
Pokhilko found a motif in the large signaling
network responsible for the polarization in-
stability. They predicted that competition of the
Cdc42 clusters in the membrane for the limited
cytoplasmic pool of rapidly diffusing Bem1-
containing complexes is at the core of this motif.
Hence, two separate modeling approaches, de-
tailed and schematic, used in the same paper,
both demonstrated the model’s feasibility and
built intuition.

All these models inspired a recent power-
ful study (23) in which Howell et al. tested the
redundant polarization mechanisms by creating
a fusion protein that effectively tethered Bem1
to the membrane. This effectively weakened the
diffusion-mediated mechanism and validated
actin-mediated positive feedback. They noted that
the synthetically rewired cells often polarized to
two sites simultaneously. Combined experimental-
theoretical analysis of both wild-type and rewired
cells led to the understanding that yeast cells po-
larize to a single “front” because of competition
of membrane Cdc42p clusters for a limiting pool

of Bem1-Cdc42 complexes. If such competition is
slow, as in rewired cells, two buds could form.

A power of conceptual modeling is that ideas
that arise in one model are often applicable to
other phenomena. Polarization plays an important
role in a wide variety of systems from neurons
(Fig. 3A) (24–26) to Caenorhabditis elegans de-
velopment (Fig. 3D) (27–29) to cell migration
(Fig. 3B) (30–34) to mechanical symmetry break-
ing in actin gels (Fig. 3C) (35–38). In all these
cases, a critical role in the establishment of
polarity is played by the intricate interplay of
positive- and negative-feedback loops, understand-
ing of which is impossible without modeling.

Summary
Much progress has been made in understanding
cell polarity by using models that not only sum-
marized experimental findings but inspired fur-
ther experiments by forcing researchers to think
rigorously about what can be assumed and mo-
tivating more accurate observations. As the his-
tory of the yeast polarization modeling illustrates,
modelers did not simply increase the models’

Cytoplasmic
PAR1/2

Membrane
PAR1/2

Cytoplasmic
PAR3/6

Membrane
PAR3/6

Myosin

B

Actin 
polymerization

D

H-RasH-Ras

A

PI3K

??

H-Ras

C

Microtubule
Kinesin-1
Actin
Myosin
PAR1/2
PAR3/6

Fig. 3. Models of polarization in nonyeast systems. (A) Neuronal protrusions compete for limited pool of H-Ras. This
competition acquires “winner-takes-all” features because of a local positive feedback between H-Ras and phospha-
tidylinositol 3-kinase (PI3K) at the protrusion tips and increased microtubule-based transport in the nascent axon. (B)
Polarization of cell motility initiation is based on local actin polymerization that generates membrane tension, which
propagates and inhibits actin polymerization globally. Myosin is an additional, local, inhibitor of the actin polymerization.
(C) Symmetry breaking of actin gel that grows around a bead is driven by positive mechanical feedback (yellow arrow)
between pushing actin filaments at denser actin arrays. Uniform pushing and tension around the bead (blue arrows) play
the role of global inhibition. Autocatalytic breaking of the actin gel can also be a local activator. (D) Mechanochemical
polarization of PAR proteins in C. elegans. Polarization is based on mutual inhibition of PAR proteins via their transitions
between the cortex and the cytoplasm and myosin-dependent transient cortical flow (outside arrows).
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complexity but rather moved nimbly within quad-
rants of the two-dimensional (2D) modeling space
charted by two orthogonal axes characterizing
model scope and level of realism (Fig. 1B).

A look at this space illustrates that to achieve
qualitative insight, simple Boolean (39), Bayesian
(40) (Box 1), ODE (41), or stochastic (13, 21)
models or physical estimates (37) that are focused
and conceptual may include few details and make
few predictions, but these predictions can be im-
portant. A model can be “bigger” and its scope
more broad, but the level of realism can stay sim-
ilar to that of the focused conceptual models. For
example, broad and conceptual PDE (42), Boolean
(8), or network (43) models can describe mathe-
matically very large interacting systems but use
only causal links between genes and/or proteins
and so predict just qualitative features of emergent
spatial-temporal patterns. However, focused mod-
els with relatively few mathematical details (25, 36)
can be accurate and mechanistic when precise
numbers matter as well as qualitative insight. The
broad and mechanistic models (17, 19, 22, 23, 44)
are useful when there is a need to mathemati-
cally integrate detailed quantitative data and to
test precisely formulated hypotheses.

Outlook
Cell biology is transitioning into a quantitative sci-
ence characterized by increasing integration of
modeling into experiment. In this transition, we
have to proceed with numerous, often arbitrary,
assumptions about the nature of processes and pa-
rameter values governing cell systems. One great
future challenge is to improve quantitative exper-
imental methods with an eye toward synchronizing
modeling and experiments. Then, frequent back-

and-forth between theory and experiment using
models of varying scope and level of realism
will allow us to overcome the arbitrariness and
uncertainty. Another significant challenge is to
make switching from one type of model to an-
other a more standard, less ad hoc procedure, to
ease modeling use and integration between theory
and experiment. Models along this course should
be considered impermanent and should be judged
by how useful they are and what we can learn
from them, not by how close we are to the elusive
whole-cell model.
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REVIEW

Integrating Genomes
D. R. Zerbino,1 B. Paten,1 D. Haussler1,2*

As genomic sequencing projects attempt ever more ambitious integration of genetic, molecular, and
phenotypic information, a specialization of genomics has emerged, embodied in the subdiscipline of
computational genomics. Models inherited from population genetics, phylogenetics, and human disease
genetics merge with those from graph theory, statistics, signal processing, and computer science to
provide a rich quantitative foundation for genomics that can only be realized with the aid of a computer.
Unleashed on a rapidly increasing sample of the planet’s 1030 organisms, these analyses will have an
impact on diverse fields of science while providing an extraordinary new window into the story of life.

Since the first genome sequences were ob-
tained in the mid-1970s (1, 2), computers
have been necessary for processing (3) and

archiving (2, 4) sequence data. However, the dis-
cipline of computational genomics traces its roots
to 1980, when Smith and Waterman developed an
algorithm to rapidly find the optimal comparison
(alignment) of two sequences of length n among the
more than 3n possibilities (2, 5), and Stormo et al.
built a linear threshold function to search a library of
78,000 nucleotides of Escherichia coli messenger
RNA sequence for ribosome binding sites (6).What

seemed large data sets for biology then don’t seem
so today, as high-throughput, short-read sequenc-
ing machines churn out terabytes of data (2, 7). We
have seen a 10,000-fold sequencing performance
improvement in the past 8 years, far outpacing the
estimated 16-fold improvement in computational
power underMoore’s law (8). Using genomics data
to model genome evolution, mechanism, and func-
tion is now the heart of a lively field.

Every genome is the result of a mostly shared,
but partly unique, 3.8-billion-year evolutionary
journey from the origin of life. Diversity is created
mostly by copy errors during replication. These
create single-base changes, which are known as
substitutions if spread to the whole population
(fixed) or single-nucleotide polymorphisms (SNPs)
if not uniformly present in the population (segre-
gating). Replication errors also create insertions
and deletions (collectively, indels), as well as tan-
dem duplications where a short sequence is re-
peated sequentially. Chromosomes often exchange
long similar segments through the process of ho-
mologous recombination. Specific sequences of
DNA, known as transposable elements, have the
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