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This semester will be about complex manifolds and Kähler geometry.
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1 Lecture 1

1.1 Example of R4 = C2

We consider R4 and take coordinates x1, y1, x2, y2. Letting zj = xj + iyj and z̄j =
xj − iyj, define complex one-forms

dzj = dxj + idyj,

dz̄j = dxj − idzj,

and tangent vectors

∂/∂zj = (1/2) (∂/∂xj − i∂/∂yj) ,
∂/∂z̄j = (1/2) (∂/∂xj + i∂/∂yj) .

Note that

dzj(∂/∂zk) = dz̄j(∂/∂z̄k) = δjk,

dzj(∂/∂z̄k) = dz̄j(∂/∂zk) = 0.

Let 〈·, ·〉 denote the complexified Euclidean inner product, so that

〈∂/∂zj, ∂/∂zk〉 = 〈∂/∂z̄j, ∂/∂z̄k〉 = 0,

〈∂/∂zj, ∂/∂z̄k〉 =
1

2
δjk.

Similarly, on 1-forms we have

〈dzj, dzk〉 = 〈dz̄j, dz̄k〉 = 0,

〈dzj, dz̄k〉 = 2δjk.

The standard complex structure J0 : TR4 → TR4 on R4 is given by

J0(∂/∂xj) = ∂/∂yj, J0(∂/∂yj) = −∂/∂xj,

which in matrix form is written

J0 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 . (1.1)

Next, we complexify the tangent space T ⊗ C, and let

T (1,0)(J0) = span{∂/∂z1, ∂/∂z2} = {X − iJ0X,X ∈ TpR4} (1.2)

be the i-eigenspace and

T (0,1)(J0) = span{∂/∂z̄1, ∂/∂z̄2} = {X + iJ0X,X ∈ TpR4} (1.3)
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be the −i-eigenspace of J0, so that

T ⊗ C = T (1,0)(J0)⊕ T (0,1)(J0). (1.4)

The map J0 also induces an endomorphism of 1-forms by

J0(ω)(v1) = ω(J0v1).

Since the components of this map in a dual basis are given by the transpose, we have

J0(dxj) = −dyj, J0(dyj) = +dxj.

Then complexifying the cotangent space T ∗ ⊗ C, we have

Λ1,0(J0) = span{dz1, dz2} = {α− iJ0α, α ∈ T ∗pR4} (1.5)

is the i-eigenspace, and

Λ0,1(J0) = span{dz̄1, dz̄2} = {α + iJ0α, α ∈ T ∗pR4} (1.6)

is the −i-eigenspace of J0, and

T ∗ ⊗ C = Λ1,0(J0)⊕ Λ0,1(J0). (1.7)

We note that

Λ1,0 = {α ∈ T ∗ ⊗ C : α(X) = 0 for all X ∈ T (0,1)}, (1.8)

and similarly

Λ0,1 = {α ∈ T ∗ ⊗ C : α(X) = 0 for all X ∈ T (1,0)}. (1.9)

1.2 Complex structure in R2n

The above works in a more general setting, in any even dimension. We only need
assume that J : R2n → R2n is linear and satisfies J2 = −I. In this more general
setting, we have

T ⊗ C = T (1,0)(J)⊕ T (0,1)(J), (1.10)

where

T (1,0)(J) = {X − iJX,X ∈ TpR2n} (1.11)

is the i-eigenspace of J and

T (0,1)(J) = {X + iJX,X ∈ TpR2n} (1.12)

is the −i-eigenspace of J .
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As above, The map J also induces an endomorphism of 1-forms by

J(ω)(v1) = ω(Jv1).

We then have

T ∗ ⊗ C = Λ1,0(J)⊕ Λ0,1(J), (1.13)

where

Λ1,0(J) = {α− iJα, α ∈ T ∗pR2n} (1.14)

is the i-eigenspace of J , and

Λ0,1(J) = {α + iJα, α ∈ T ∗pR2n} (1.15)

is the −i-eigenspace of J .
Again, we have the characterizations

Λ1,0 = {α ∈ T ∗ ⊗ C : α(X) = 0 for all X ∈ T (0,1)}, (1.16)

and

Λ0,1 = {α ∈ T ∗ ⊗ C : α(X) = 0 for all X ∈ T (1,0)}. (1.17)

We define Λp,q ⊂ Λp+q⊗C to be the span of forms which can be written as the wedge
product of exactly p elements in Λ1,0 and exactly q elements in Λ0,1. We have that

Λk ⊗ C =
⊕
p+q=k

Λp,q, (1.18)

and note that

dimC(Λp,q) =

(
n

p

)
·
(
n

q

)
. (1.19)

Note that we can characterize Λp,q as those forms satisfying

α(v1, . . . , vp+q) = 0, (1.20)

if more than p if the vj-s are in T (1,0) or if more than q of the vj-s are in T (0,1).
Finally, we can extend J : Λk ⊗ C→ Λk ⊗ C by letting

Jα = ip−qα, (1.21)

for α ∈ Λp,q, p+ q = k.
In general, J is not a complex structure on the space Λk

C for k > 1. Also, note
that if α ∈ Λp,p, then α is J-invariant.
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1.3 Cauchy-Riemann equations

Let f : Cn → Cm. Let the coordinates on Cn be given by

{z1, . . . zn} = {x1 + iy1, . . . , xn + iyn}, (1.22)

and coordinates on Cm given by

{w1, . . . zm} = {u1 + iv1, . . . , um + ivm} (1.23)

Write

TR(Cn) = span{∂/∂x1, . . . ∂/∂xn, ∂/∂y1, . . . ∂/∂yn}, (1.24)

TR(Cm) = span{∂/∂u1, . . . ∂/∂um, ∂/∂v1, . . . ∂/∂vm}. (1.25)

Then the real Jacobian of

f = (f 1, . . . f 2m) = (u1 ◦ f, u2 ◦ f, . . . , v2m ◦ f). (1.26)

in this basis is given by

JRf =


∂f1

∂x1
. . . ∂f1

∂yn

... . . .
...

∂f2m

∂x1
. . . ∂f2m

∂yn

 (1.27)

Definition 1. A differentiable mappging f is pseudo-holomorphic if

f∗ ◦ J0 = J0 ◦ f∗. (1.28)

That is, the differential of f commutes with J0.

We have the following characterization of pseudo-holomorphic maps.

Proposition 1.1. A mapping f : Cm → Cn is pseudo-holomorphic if and only if the
Cauchy-Riemann equations are satisfied, that is, writing

f(z1, . . . zm) = (f1, . . . , fn) = (u1 + iv1, . . . un + ivn), (1.29)

and zj = xj + iyj, for each j = 1 . . . n, we have

∂uj
∂xk

=
∂vj
∂yk

∂uj
∂yk

= − ∂vj
∂xk

, (1.30)

for each k = 1 . . .m, and these equations are equivalent to

∂

∂z̄k
fj = 0, (1.31)

for each j = 1 . . . n and each k = 1 . . .m
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Proof. First, we consider m = n = 1. We compute(
∂f1
∂x1

∂f1
∂y1

∂f2
∂x1

∂f2
∂y1

)(
0 −1
1 0

)
=

(
0 −1
1 0

)( ∂f1
∂x1

∂f1
∂y1

∂f2
∂x1

∂f2
∂y1

)
, (1.32)

says that (
∂f1
∂y1

− ∂f1
∂x1

∂f2
∂y1

− ∂f2
∂x1

)
=

(
− ∂f2
∂x1

− ∂f2
∂y1

∂f1
∂x1

∂f1
∂y1

)
, (1.33)

which is exactly the Cauchy-Riemann equations. In the general case, rearrange
the coordinates so that (x1, . . . , xm, y1, . . . , ym) are the real coordinates on R2m and
(u1, . . . , un, v1, . . . , vn), such that the complex structure J0 is given by

J0(R2m) =

(
0 −Im
Im 0

)
, (1.34)

and similarly for J0(R2n). Then the computation in matrix form is entirely analogous
to the case of m = n = 1.

Finally, we compute

∂

∂z̄k
fj =

1

2

( ∂

∂xk
+ i

∂

∂yk

)
(uj + ivj) (1.35)

=
1

2

{ ∂

∂xk
uj −

∂

∂yk
vj + i

( ∂

∂xk
vj +

∂

∂yk
uj

)}
, (1.36)

the vanishing of which again yields the Cauchy-Riemann equations.

From now on, if f is a mapping satisfying the Cauchy-Riemann equations, we will
just say that f is holomorphic.

For any differentiable f , the mapping f∗ : TR(Cn)→ TR(Cm) extends to a mapping

f∗ : TC(Cn)→ TC(Cm). (1.37)

Consider the bases

TC(Cn) = span{∂/∂z1, . . . ∂/∂zn, ∂/∂z1, . . . ∂/∂zn}, (1.38)

TR(Cm) = span{∂/∂w1, . . . ∂/∂wm, ∂/∂w1, . . . ∂/∂wm}. (1.39)

The matrix of f∗ with respect to these bases is the complex Jacobian, and is given by

JCf =



∂f1

∂z1
· · · ∂f1

∂zn
∂f1

∂z1
· · · ∂f1

∂zn

... · · · ...
... · · · ...

∂fm

∂z1
· · · ∂fm

∂zn
∂fm

∂z1
· · · ∂fm

∂zn

∂f
1

∂z1
· · · ∂f

1

∂zn
∂f

1

∂z1
· · · ∂f

1

∂zn

... · · · ...
... · · · ...

∂f
m

∂z1
· · · ∂f

m

∂zn
∂f

m

∂z1
. . . ∂f

m

∂zn
,


(1.40)
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where (f 1, . . . fm) = f now denotes the complex components of f . This is equivalent
to saying that

df j =
∑
k

∂f j

∂zk
dzk +

∑
k

∂f 1

∂zk
dzk. (1.41)

Notice that (1.40) is of the form

JCf =

(
A B
B A

)
(1.42)

which is equivalent to the condition that the complex mapping is the complexification
of a real mapping.

What we have done here is to embed

HomR(R2n,R2m) ⊂ HomC(C2n,C2m), (1.43)

where C-linear means with respect to i (not J0), via(
A B
C D

)
7→ 1

2

(
A+D + i(C −B) A−D + i(B + C)
A−D − i(B + C) A+D − i(C −B)

)
. (1.44)

Notice that if f is holomorphic, the condition that f∗ commutes with J0 says that the
real Jacobian must have the form

(f∗)R =

(
A −B
B A

)
. (1.45)

This corresponds to the embeddings

HomC(Cn,Cm) ⊂ HomR(R2n,R2m) ⊂ HomC(C2n,C2m), (1.46)

where the left C-linear is with respect to J0, via

A+ iB 7→
(
A −B
B A

)
7→
(
A+ iB 0

0 A− iB

)
. (1.47)

Note the first embedding acts as

(z1, . . . , zn)T 7→ (A+ iB)(z1, . . . , zn)T (1.48)

Therefore if m = n, then

det(JR) = det(A+ iB) det(A− iB) = | det(A+ iB)|2 ≥ 0, (1.49)

which implies that holomorphic maps are orientation-preserving. Note also that f is
holomorphic if and only if

f∗(T
(1,0)) ⊂ T (1,0). (1.50)
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A formula which will be useful later is the following for the volume form:(
i

2

)n
dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn = dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn (1.51)

Notice that if f is anti-holomorphic, which is the condition that f∗ anti-commutes
with J0, then the real Jacobian must have the form

(f∗)R =

(
A B
B −A

)
. (1.52)

This corresponds to the embeddings

HomC(Cn,Cm) ⊂ HomR(R2n,R2m) ⊂ HomC(C2n,C2m) (1.53)

via

A+ iB 7→
(
A B
B −A

)
7→
(

0 A+ iB
A− iB 0

)
. (1.54)

The first embedding acts as

(z1, . . . , zn)T 7→ (A+ iB)(z1, . . . , zn)T . (1.55)

Finally, note that f is anti-holomorphic if and only if

f∗(T
(1,0)) ⊂ T (0,1). (1.56)

2 Lecture 2

2.1 Complex Manifolds

Now we can define a complex manifold

Definition 2. A complex manifold of dimension n is a smooth manifold of real di-
mension 2n with a collection of coordinate charts (Uα, φα) covering M , such that
φα : Uα → Cn and with overlap maps φα ◦ φ−1

β : φβ(Uβ) → φα(Uα) satisfying the
Cauchy-Riemann equations.

Definition 3. An almost complex structure is an endomorphism J : TM → TM
satisfying J2 = −Id. An almost complex structure J is said to be integrable if J is
induced from a collection of holomorphic coordinates on M .

If M is of real dimension n, and admits an almost complex structure, then

(det(J))2 = det(J2) = det(−I) = (−1)n, (2.1)

which implies that n is even. Furthermore, M is orientable and carries a natural
orientation by the discussion in the previous section.

Complex manifolds have a uniquely determined compatible almost complex struc-
ture on the tangent bundle:
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Proposition 2.1. In any coordinate chart, define Jα : TMUα → TMUα by

J(X) = (φα)−1
∗ ◦ J0 ◦ (φα)∗X. (2.2)

Then Jα = Jβ on Uα ∩ Uβ and therefore gives a globally defined almost complex
structure J : TM → TM satisfying J2 = −Id.

Proof. On overlaps, the equation

(φα)−1
∗ ◦ J0 ◦ (φα)∗ = (φβ)−1

∗ ◦ J0 ◦ (φβ)∗ (2.3)

can be rewritten as

J0 ◦ (φα)∗ ◦ (φβ)−1
∗ = (φα)∗ ◦ (φβ)−1

∗ ◦ J0. (2.4)

Using the chain rule this is

J0 ◦ (φα ◦ φ−1
β )∗ = (φα ◦ φ−1

β )∗ ◦ J0, (2.5)

which is exactly the condition that the overlap maps satisfy the Cauchy-Riemann
equations.

Obviously,

J2 = (φα)−1
∗ ◦ J0 ◦ (φα)∗ ◦ (φα)−1

∗ ◦ J0 ◦ (φα)∗

= (φα)−1
∗ ◦ J2

0 ◦ (φα)∗

= (φα)−1
∗ ◦ (−Id) ◦ (φα)∗ = −Id.

Let (M2, g) be any oriented Riemannian surface. Then ∗ : Λ1 → Λ1 satisfies
∗2 = −Id, and using the metric we obtain an endomorphism J : TM → TM satisfying
J2 = −Id, which is an almost complex structure.

In the case of surfaces, this always comes from a collection of holomorphic coor-
dinate charts (we wil prove this later), but this is not true in higher dimensions. To
understand this we proceed as follows.

2.2 The Nijenhuis tensor

Proposition 2.2. The Nijenhuis tensor of an almost complex structure defined by

N(X, Y ) = 2{[JX, JY ]− [X, Y ]− J [X, JY ]− J [JX, Y ]} (2.6)

is a tensor of type (1, 2) and satisfies
(i) N(Y,X) = −N(X, Y ).
(ii) N(JX, JY ) = −N(X, Y ).
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Proof. Given a function f : M → R, we compute

N(fX, Y ) = 2{[J(fX), JY ]− [fX, Y ]− J [fX, JY ]− J [J(fX), Y ]}
= 2{[fJX, JY ]− [fX, Y ]− J [fX, JY ]− J [fJX, Y ]}
= 2{f [JX, JY ]− (JY (f))JX − f [X, Y ] + (Y f)X

− J(f [X, JY ]− (JY (f))X)− J(f [JX, Y ]− (Y f)JX)}
= fN(X, Y ) + 2{−(JY (f))JX + (Y f)X + (JY (f))JX + (Y f)J2X.

Since J2 = −I, the last 4 terms vanish. A similar computation proves thatN(X, fY ) =
fN(X, Y ). Consequently, N is a tensor. The skew-symmetry in X and Y is obvious,
and (ii) follows easily using J2 = −Id.

Notice that if M is of complex dimension 1, then there is a basis of the tangent
space of the form {X, JX}, so

N(X, JX) = −N(JX,X) = −N(JX, J2X) = N(JX,X), (2.7)

which shows that the Nijenhuis tensor of any almost complex structure on a surface
vanishes.

We have the following local formula for the Nijenhuis tensor.

Proposition 2.3. In local coordinates, the Nijenhuis tensor is given by

N i
jk = 2

2n∑
h=1

(Jhj ∂hJ
i
k − Jhk ∂hJ ij − J ih∂jJhk + J ih∂kJ

h
j ) (2.8)

Proof. We compute

1

2
N(∂j, ∂k) = [J∂j, J∂k]− [∂j, ∂k]− J [∂j, J∂k]− J [J∂j, ∂k]

= [J lj∂l, J
m
k ∂m]− [∂j, ∂k]− J [∂j, J

l
k∂l]− J [J lj∂l, ∂k]

= I + II + III + IV.

The first term is

I = J lj∂l(J
m
k ∂m)− Jmk ∂m(J lj∂l)

= J lj(∂lJ
m
k )∂m + J ljJ

m
k ∂l∂m − Jmk (∂mJ

l
j)∂l − Jmk J lj∂m∂l

= J lj(∂lJ
m
k )∂m − Jmk (∂mJ

l
j)∂l.

The second term is obviously zero. The third term is

III = −J(∂j(J
l
k)∂l) = −∂j(J lk)Jml ∂m. (2.9)

Finally, the fourth term is

III = ∂k(J
l
j)J

m
l ∂m. (2.10)

Combining these, we are done.
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Next, we have

Theorem 2.1. An almost complex structure J is integrable if and only if the Nijenhuis
tensor vanishes.

Proof. If J is integrable, then we can always find local coordinates so that J = J0,
and Proposition 2.3 shows that the Nijenhuis tensor vanishes. For the converse, the
vanishing of the Nijenhuis tensor is the integrability condition for T 1,0 as a complex
sub-distribution of T ⊗ C. To see this, if X and Y are both sections of T 1,0 then we
can write X = X ′ − iJX ′ and Y = Y ′ − iJY ′ for real vector fields X ′ and Y ′. The
commutator is

[X ′ − iJX ′, Y ′ − iJY ′] = [X ′, Y ′]− [JX ′, JY ′]− i([X ′, JY ′] + [JX ′, Y ′]). (2.11)

But this is also a (1, 0) vector field if and only if

[X ′, JY ′] + [JX ′, Y ′] = J [X ′, Y ′]− J [JX ′, JY ′], (2.12)

applying J , and moving everything to the left hand side, this says that

[JX ′, JY ′]− [X ′, Y ′]− J [X ′, JY ′]− J [JX ′, Y ′] = 0, (2.13)

which is exactly the vanishing of the Nijenhuis tensor. In the analytic case, the
converse then follows using a complex version of the Frobenius Theorem. The C∞-
case is more difficult, and is the content of the Newlander-Nirenberg Theorem, which
we will discuss a bit later.

2.3 The operators ∂ and ∂

We can apply all of the linear algebra from the previous sections to almost complex
manifolds, in particular we have the complex bundles T (1,0)(M), T (0,1)(M), and the
bundles of (p, q)-forms, denoted by Λp,q(M). The real operator d : Λk

R → Λk+1
R ,

extends to an operator

d : Λk
C → Λk+1

C (2.14)

by complexification. On a complex manifold, if α is a (p, q)-form, then locally we can
write

α =
∑
I,J

αI,Jdz
I ∧ dzJ , (2.15)

where I and J are multi-indices of length p and q, respectively, and αI,J are complex-
valued functions. Using (1.41), we have the formula

dα =
∑
I,J

(∑
k

∂αI,J
∂zk

dzk +
∑
k

∂αI,J
∂zk

dzk
)
∧ dzI ∧ dzJ . (2.16)
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Proposition 2.4. For an almost complex structure J

d(Λp,q) ⊂ Λp+2,q−1 + Λp+1,q + Λp,q+1 + Λp−1,q+2, (2.17)

and J is integrable if and only if

d(Λp,q) ⊂ Λp+1,q + Λp,q+1. (2.18)

(In a slight abuse of notation, by Λp,q, we mean the space of smooth sections of this
bundle. )

Proof. Let α ∈ Λp,q, and write p+ q = r. Then we have the basic formula

dα(X0, . . . , Xr) =
∑

(−1)jXjα(X0, . . . , X̂j, . . . , Xr)

+
∑
i<j

(−1)i+jα([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xr).
(2.19)

This is easily seen to vanish if more than p+ 2 of the Xj are of type (1, 0) or if more
than q + 2 are of type (0, 1).

If J is integrable, then in a local complex coordinate system, (2.18) is easily seen
to hold. For the converse we have the inclusions,

d(Λ1,0) ⊂ Λ2,0 + Λ1,1 and d(Λ0,1) ⊂ Λ1,1 + Λ0,2. (2.20)

The formula

dα(X, Y ) = X(α(Y ))− Y (α(X))− α([X, Y ]) (2.21)

then implies that if both X and Y are in T 1,0 then so is their bracket [X, Y ]. So
write X = X ′ − iJX ′ and Y = Y ′ − iJY ′ for real vector fields X ′ and Y ′. Define
Z = [X, Y ], then Z is also of type (1, 0), so

Z + iJZ = 0. (2.22)

Writing this in terms of X ′ and Y ′ we see that

0 = 2(Z + iJZ) = −N(X ′, Y ′)− iJN(X ′, Y ′), (2.23)

which implies that N ≡ 0.

Corollary 2.1. On a complex manifold, d = ∂ + ∂ where ∂ : Λp,q → Λp+1,q and
∂ : Λp,q → Λp,q+1, and these operators satisfy

∂2 = 0, ∂
2

= 0, ∂∂ + ∂∂ = 0. (2.24)

Proof. These relations follow simply from d2 = 0.
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Note that on a complex manifold, if α is a (p, q)-form written locally as

α =
∑
I,J

αI,Jdz
I ∧ dzJ , (2.25)

then

∂α =
∑
I,J,k

∂αI,J
∂zk

dzk ∧ dzI ∧ dzJ . (2.26)

∂α =
∑
I,J,k

∂αI,J
∂zk

dzk ∧ dzI ∧ dzJ . (2.27)

Definition 4. A form α ∈ Λp,0 is holomorphic if ∂α = 0.

It is easy to see that a (p, 0)-form is holomorphic if and only if it can locally be
written as

α =
∑
|I|=p

αIdz
I , (2.28)

where the αI are holomorphic functions.

Definition 5. The (p, q) Dolbeault cohomology group is

Hp,q

∂
(M) =

{α ∈ Λp,q(M)|∂α = 0}
∂(Λp,q−1(M))

. (2.29)

We will discuss these in more detail later, and just point out the following for now.

Definition 6. A map between almost complex manifolds f : (M,JM) → (M,JN) is
called pseudo-holomorphic if

f∗ ◦ JM = JN ◦ f∗. (2.30)

If both JM and JN are integrable, then f is called holomorphic if it is holomorphic in
coordinate charts.

Clearly, a holomorphic map is pseudo-holomorphic. If f : M → N is a holomor-
phic map between complex manifolds, then

f ∗(Λp,q(N)) ⊂ Λp,q(M), (2.31)

and

∂ ◦ f ∗ = f ∗ ◦ ∂. (2.32)

Consequently, there is an induced mapping

f ∗ : Hp,q

∂
(N)→ Hp,q

∂
(M) (2.33)

In particular, if f is a biholomorphism (one-to-one, onto, with holomorphic inverse),
then the Dolbeault cohomologies of M and N are isomorphic.

14



3 Lecture 3

3.1 Hermitian metrics

We next consider (M,J, g) where g is a Riemannian metric, and we assume that g
and J are compatible. That is,

g(X, Y ) = g(JX, JY ). (3.1)

The metric g is called an almost-Hermitian metric. If J is also integrable, then g is
called Hermitian. We extend g by complex linearity to a symmetric inner product on
T ⊗ C. The following will be useful later.

Proposition 3.1. There exist elements {X1, . . . Xn} in R2n so that

{X1, JX1, . . . , Xn, JXn} (3.2)

is an ONB for R2n with respect to g.

Proof. We use induction on the dimension. First we note that if X is any unit vector,
then JX is also unit, and

g(X, JX) = g(JX, J2X) = −g(X, JX), (3.3)

so X and JX are orthonormal. This handles n = 1. In general, start with any X1, and
let W be the orthogonal complement of span{X1, JX1}. We claim that J : W → W .
To see this, let X ∈ W so that g(X,X1) = 0, and g(X, JX1) = 0. Using J-invariance
of g, we see that g(JX, JX1) = 0 and g(JX,X1) = 0, which says that JX ∈ W .
Then use induction since W is of dimension 2n− 2.

To a Hermitian metric (R2n, J, g) we associate a 2-form

ω(X, Y ) = g(JX, Y ). (3.4)

This is indeed a 2-form since

ω(Y,X) = g(JY,X) = g(J2Y, JX) = −g(JX, Y ) = −ω(X, Y ). (3.5)

Since

ω(JX, JY ) = ω(X, Y ), (3.6)

this form is a real form of type (1, 1), and is called the Kähler form or fundamental
2-form.
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3.2 Complex tensor notation

Choosing any real basis of the form {X1, JX1, . . . , Xn, JXn}, let us abbreviate

Zα =
1

2

(
Xα − iJXα

)
(3.7)

Zα =
1

2

(
Xα + iJXα

)
, (3.8)

and define

gαβ = g(Zα, Zβ) (3.9)

gαβ = g(Zα, Zβ) (3.10)

gαβ = g(Zα, Zβ) (3.11)

gαβ = g(Zα, Zβ). (3.12)

Notice that

gαβ = g(Zα, Zβ) =
1

4
g(Xα − iJXα, Xβ − iJXβ)

=
1

4

(
g(Xα, Xβ)− g(JXα, JXβ)− i(g(Xα, JXβ) + g(JXα, Xβ))

)
= 0,

since g is J-invariant, and J2 = −Id. Similarly,

gαβ = 0, (3.13)

Also, from symmetry of g, we have

gαβ = g(Zα, Zβ) = g(Zβ, Zα) = gβα. (3.14)

However, applying conjugation, since g is real we have

gαβ = g(Zα, Zβ) = g(Zα, Zβ) = g(Zβ, Zα) = gβα, (3.15)

which says that gαβ is a Hermitian matrix.
We repeat the above for the fundamental 2-form ω, and define

ωαβ = ω(Zα, Zβ) = igαβ = 0 (3.16)

ωαβ = ω(Zα, Zβ) = −igαβ = 0 (3.17)

ωαβ = ω(Zα, Zβ) = igαβ (3.18)

ωαβ = ω(Zα, Zβ) = −igαβ. (3.19)

The first 2 equations are just a restatement that ω is of type (1, 1). Also, note that

ωαβ = igαβ, (3.20)
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defines a skew-Hermitian matrix.
On a complex manifold, the fundamental 2-form in holomorphic coordinates takes

the form

ω =
n∑

α,β=1

ωαβdz
α ∧ dzβ (3.21)

= i

n∑
α,β=1

gαβdz
α ∧ dzβ. (3.22)

3.3 Endomorphisms

Let EndR(TM) denotes the real endomorphisms of the tangent bundle.

Proposition 3.2. On an almost complex manifold (M,J), the bundle EndR(TM)
admit the decomposition

EndR(TM) = EndC(TM)⊕ EndC(TM) (3.23)

where the first factor on the left consists of endomorphisms I commuting with J ,

IJ = JI (3.24)

and the second factor consists of endomorphisms I anti-commuting with J ,

IJ = −JI (3.25)

Furthermore,

EndC(TM) ∼=
(

(Λ1,0 ⊗ T 1,0)⊕ (Λ0,1 ⊗ T 0,1)
)
R
, (3.26)

and

EndC(TM) ∼=
(

(Λ1,0 ⊗ T 0,1)⊕ (Λ0,1 ⊗ T 1,0)
)
R
. (3.27)

Proof. Given J , we define

IC =
1

2
(I − JIJ) (3.28)

IA =
1

2
(I + JIJ). (3.29)

Then

ICJ =
1

2
(IJ − JIJ2) =

1

2
(IJ + JI),

and

JIC =
1

2
(JI − J2IJ) =

1

2
(JI + IJ).
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Next,

IAJ =
1

2
(IJ + JIJ2) =

1

2
(IJ − JI),

and

JIA =
1

2
(JI + J2IJ) =

1

2
(JI − IJ).

To prove uniqueness, if

I = IC1 + IA1 = IC2 + IA2 , (3.30)

then

IC1 − IC2 = IA2 − IA1 . (3.31)

Denote by Ĩ = IC1 − IC2 = IA2 − IA1 . Then Ĩ both commutes and anti commutes with
I, so is then easily seen to vanish identically.

An element I ∈ Λ0,1 ⊗ T 1,0 is a complex linear mapping from T 0,1 to T 1,0, that is
I ∈ HomC(T 0,1, T 1,0). Writing X ∈ T 0,1 as X = X ′+ iJX ′ for real X ′ ∈ T and since
I maps to T 1,0, I can be written as

I : X ′ + iJX ′ 7→ I(X ′)− iJI(X ′), (3.32)

for some real endomorphism of the tangent space I : T → T , by defined by

I(X ′) = Re(I(X ′ + iJX ′)). (3.33)

To show that IJ = −JI, we first compute

IJ(X ′) = Re{I(JX ′ + iJJX ′)} = Re{I(J(X ′ + iJX ′)},

but since X ′ + iJX ′ ∈ T 0,1, we have J(X ′ + iJX ′) = −i(X ′ + iJX ′), so

IJ(X ′) = Re{I(−i(X ′ + iJX ′)},

using complex linearity of I,

IJ(X ′) = Re{−iI(X ′ + iJX ′)} = Im(I(X ′ + iJX ′)).

Next, we have

JI(X ′) = JRe(I(X ′ + iJX ′)) = −Im(I(X ′ + iJX ′)), (3.34)

since I(X ′ + iJX ′) is a (1, 0) vector field, and we have shown that IJ = −JI.
For the converse, given a real mapping satisfying IJ + JI = 0, writing X ∈ T 0,1

as X = X ′ + iJX ′ define I : T 0,1 → T 1,0 by

I : X ′ + iJX ′ 7→ I(X ′)− iJI(X ′). (3.35)

18



This map is clearly real linear, and we claim that this map is moreover complex linear.
To see this,

I(i(X ′ + iJX ′)) = I(−J(X ′ + iJX ′))

= −I(JX ′ + iJ(JX ′)) = −I(JX ′) + iJI(JX ′).

Using IJ = −JI, this is

I(i(X ′ + iJX ′)) = JI(X ′)− iIJ(JX ′) = JI(X ′) + iI(X ′).

Next,

iI(X ′ + iJX ′) = i(I(X ′)− iJI(X ′)) = JI(X ′) + iI(X ′),

so I is indeed complex linear.
A similar argument proves the second case, and we are done.

In matrix terms, this proposition is equivalent to the following(
A B
C D

)
=

1

2

(
A+D B − C
C −B A+D

)
+

1

2

(
A−D B + C
B + C D − A

)
. (3.36)

Embedding this into HomC(C2n,C2n), this is(
A B
C D

)
7→ 1

2

(
A+D + i(C −B) 0

0 A+D − i(C −B)

)
+

1

2

(
0 A−D + i(B + C)

A−D − i(B + C) 0

)
.

(3.37)

Notice that we can refine this a bit.

Proposition 3.3. On an almost complex manifold (M,J), the bundle EndR(TM)
admit the decomposition

EndR(TM) = EndC,0(TM)⊕ R⊕ EndC(TM), (3.38)

where the first factor consists of traceless endomorphisms, and the middle factor con-
sists of multiples of the identity transformation.

Remark 3.1. Note that the complex anti-linear endomorphisms are necessarily trace-
less.

Remark 3.2. Note if we take a path of complex structures J(t) with J(0) = J and
J ′(0) = I, then differentiating J2 = −In an evaluating at t = 0 yields IJ+JI = 0. So
elements of Λ0,1⊗T 1,0 are infinitesimal deformations of the almost complex structure.
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3.4 Tensors in T ∗M ⊗ T ∗M
Next, we decompose T ∗M ⊗ T ∗M .

Definition 7. A tensor B ∈ T ∗M ⊗ T ∗M is called symmetric if

B(X, Y ) = B(Y,X), (3.39)

for all X, Y ∈ TM . A (0, 2) tensor B ∈ T ∗M ⊗ T ∗M is called anti-symmetric if

B(X, Y ) = −B(Y,X), (3.40)

for all X, Y ∈ TM .

The space of symmetric (0, 2) tensors will be denoted S2(T ∗M), and the space of
skew-symmetric tensors is Λ2(T ∗M). Note that J acts on T ∗M ⊗ T ∗M by

JB(X, Y ) = B(JX, JY ) (3.41)

and satisfies J2 = Id, and therefore T ∗M⊗T ∗M splits into the +1 and −1 eigenspaces
for J .

Definition 8. A (0, 2) tensor will be called Hermitian if it is in the +1 eigenspace
for J , and skew-Hermitian if it is in the −1 eigenspace for J .

Proposition 3.4. On an almost complex manifold (M,J) the space of tensors in
T ∗M ⊗ T ∗M decomposes as

T ∗M ⊗ T ∗M = Λ2 ⊕ S2

= Λ2
+1 ⊕ Λ2

−1 ⊕ S2
+1 ⊕ S2

−1

= Λ1,1 ⊕ (Λ2,0 ⊕ Λ0,2)⊕ S2
+1 ⊕ S2

−1

= Λ1,1 ⊕ (Λ2,0 ⊕ Λ0,2)⊕ Λ1,1 ⊕ S2
−1

(3.42)

Proof. The decomposition of Λ2 has already been discussed. We need to show that

S2(T ∗M) ∼= Λ1,1(T ∗M). (3.43)

This is easily proved: if T ∈ S2(T ∗M), then

ωT (X, Y ) = T (JX, Y ) (3.44)

is a 2-form of type (1, 1). To check this, we need to show that

ωT (X, Y ) = 0 (3.45)

if either both X and Y are in T (1,0) or both are in T (0,1). For the first case,

ωT (X, Y ) = ωT (X ′ − iJX ′, Y ′ − iJY ′) = T (J(X ′ − iJX ′), Y ′ − iJY ′)
= T (JX ′ + iX ′, Y ′ − iJY ′)
= T (JX ′, Y ′) + T (X ′, JY ′) + i(T (X ′, Y ′)− T (JX ′, JY ′)) = 0,

since T is J-invariant.
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3.5 The musical isomorphisms

We recall the following from Riemannian geometry. The metric gives an isomorphism
between TM and T ∗M ,

[ : TM → T ∗M (3.46)

defined by

[(X)(Y ) = g(X, Y ). (3.47)

The inverse map is denoted by ] : T ∗M → TM . The cotangent bundle is endowed
with the metric

〈ω1, ω2〉 = g(]ω1, ]ω2). (3.48)

Note that if g has components gij, then 〈·, ·〉 has components gij, the inverse matrix
of gij.

If X ∈ Γ(TM), then

[(X) = Xidx
i, (3.49)

where

Xi = gijX
j, (3.50)

so the flat operator “lowers” an index. If ω ∈ Γ(T ∗M), then

](ω) = ωi∂i, (3.51)

where

ωi = gijωj, (3.52)

thus the sharp operator “raises” an index.
The [ operator extends to a complex linear mapping

[ : TM ⊗ C→ T ∗M ⊗ C. (3.53)

We have the following

Proposition 3.5. The operator [ is a complex anti-linear isomorphism

[ : T (1,0) → Λ0,1 (3.54)

[ : T (0,1) → Λ1,0. (3.55)

Proof. These mapping properties follow from the Hermitian property of g. Next, for
any two vectors X and Y

[(JX)Y = g(JX, Y ), (3.56)

while

J([X)(Y ) = ([X)(JY ) = g(X, JY ) = −g(JX, Y ). (3.57)
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In components, we have the following. The metric on the T ∗Z⊗C as components
gαβ where these of the component of the inverse matrix of gαβ. We have the identities

gαβgβγ = δαγ , (3.58)

gαβgβγ = δαγ , (3.59)

If X = XαZα is in T (1,0), then [X has components

([X)α = gαβX
β, (3.60)

and if X = XαZα is in T (0,1), then [X has components

([X)α = gαβX
β, (3.61)

Similarly, if ω = ωαZ
α is in Λ1,0, then ]ω has components

(]ω)α = gαβωβ, (3.62)

and if ω = ωαZ
α is in Λ0,1, then ]X has components

(]ω)α = gαβωβ. (3.63)

If (M,J, g) is almost Hermitian, then the [ operator gives an identification

EndR(TM) ∼= T ∗M ⊗ TM ∼= T ∗M ⊗ T ∗M, (3.64)

This yields a trace map defined on T ∗M ⊗ T ∗M defined as follows. If

h = hαβdz
αdzβ + hαβdz

αdzβ + hαβdz
αdzβ + hαβdz

αdzβ, (3.65)

then

tr(h) = gαβhαβ + gαβhαβ. (3.66)

Note that the components hαβ and hαβ do not contribute to the trace.

Remark 3.3. In Kähler geometry one sometimes sees the trace of some 2-tensor
defined as just the first term in (3.66). If h is the complexification of a real tensor,
then this is (1/2) of the Riemannian trace.

Using the trace map, we can put together the two decompositions from above

Proposition 3.6. On an almost Hermitian manifold (M,J, g) we have the following
decomposition

T ∗M ⊗ T ∗M = Λ2 ⊕ S2

= Λ2
+1 ⊕ Λ2

−1 ⊕ S2
+1 ⊕ S2

−1

= Λ1,1 ⊕ (Λ2,0 ⊕ Λ0,2)⊕ S2
+1 ⊕ S2

−1

= Λ1,1
0 ⊕ (R · ω)⊕ (Λ2,0 ⊕ Λ0,2)⊕ Λ1,1

0 ⊕ (R · g)⊕ S2
−1,

(3.67)

where Λ1,1
0 is the space of (1, 1)-forms which are orthogonal to the fundamental 2-form.

22



4 Lecture 4

4.1 Automorphisms

Definition 9. An infinitesimal automorphism of a complex manifold is a real vector
field X such that LXJ = 0, where L denotes the Lie derivative operator.

It is straightforward to see that X is an infinitesimal automorphism if and only
if its 1-parameter group of diffeomorphisms are holomorphic automorphisms, that is,
(φs)∗ ◦ J = J ◦ (φs)∗.

Proposition 4.1. A vector field X is an infinitesimal automorphism if and only if

J([X, Y ]) = [X, JY ], (4.1)

for all vector fields Y .

Proof. We compute

[X, JY ] = LX(JY ) = LX(J)Y + J(LXY ) = LX(J)Y + J([X, Y ]), (4.2)

and the result follows.

Definition 10. A holomorphic vector field on a complex manifold (M,J) is vector
field Z ∈ Γ(T 1,0) which satisfies Zf is holomorphic for every locally defined holomor-
phic function f .

In complex coordinates, a holomorphic vector field can locally be written as

Z =
∑

fi
∂

∂zi
, (4.3)

where the fi are locally defined holomorphic functions.

Proposition 4.2. For X ∈ Γ(TM), associate a vector field of type (1, 0) by mapping
X 7→ Z = X − iJX. Then X is an infinitesimal automorphism if and only if Z is a
holomorphic vector field.

Proof. Choose a local holomorphic coordinate system {zi}, and for real vector fields
X ′ and Y ′, write

X = X ′ − iJX ′ =
∑

Xj ∂

∂zj
, (4.4)

Y = Y ′ − iJY ′ =
∑

Y j ∂

∂zj
. (4.5)

We know that X ′ is an infinitesimal automorphism if and only if

J([X ′, Y ′]) = [X ′, JY ′], (4.6)
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for all real vector fields Y ′. This condition is equivalent to∑
j

Y
j ∂Xk

∂zj
= 0, (4.7)

for each k = 1 . . . n, which is equivalent to X being a holomorphic vector field.
To see this, we rewrite (4.6) in terms of complex vector fields. We have

X ′ =
1

2
(X +X) JX ′ =

i

2
(X −X)

Y ′ =
1

2
(Y + Y ) JY ′ =

i

2
(Y − Y )

The left hand side of (4.6) is

J([X ′, Y ′]) = J([
1

2
(X +X),

1

2
(Y + Y )])

=
1

4
J([X, Y ] + [X, Y ] + [X,Y ] + [X,Y ]).

But from integrability, [X, Y ] is also of type (1, 0), and [X,Y ] is of type (0, 1). So we
can write this as

J([X ′, Y ′]) =
1

4
(i[X, Y ]− i[X,Y ] + J [X, Y ] + J [X,Y ]). (4.8)

Next, the right hand side of (4.6) is

[
1

2
(X +X),

i

2
(Y − Y )] =

i

4
([X, Y ]− [X, Y ] + [X,Y ]− [X,Y ]). (4.9)

Then (4.8) equals (4.9) if and only if

J [X, Y ] + J [X,Y ] = −i[X, Y ] + i[X,Y ]. (4.10)

This is equivalent to

J(Re([X, Y ])) = Im([X, Y ]). (4.11)

This says that [X, Y ] is a vector field of type (0, 1). We can write the Lie bracket as

[X, Y ] =
[∑

j

Xj ∂

∂zj
,
∑
k

Y
k ∂

∂zk

]
= −

∑
j

Y
k
(
∂

∂zk
Xj)

∂

∂zj
+
∑
k

Xj(
∂

∂zj
Y
k
)
∂

∂zk
,

and the vanishing of the (1, 0) component is exactly (4.7).
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4.2 The ∂ operator on holomorphic vector bundles

We first illustrate this operator for the holomorphic tangent bundle T 1,0.

Proposition 4.3. There is an first order differential operator

∂ : Γ(T 1,0)→ Γ(Λ0,1 ⊗ T 1,0), (4.12)

such that a vector field Z is holomorphic if and only if ∂(Z) = 0.

Proof. Choose local holomorphic coordinates {zj}, and write any section of Z of T 1,0,
locally as

Z =
∑

Zj ∂

∂zj
. (4.13)

Then define

∂(Z) =
∑
j

(∂Zj)⊗ ∂

∂zj
. (4.14)

This is in fact a well-defined global section of Λ0,1 ⊗ T 1,0 since the transition func-
tions of the bundle T 1,0 corresponding to a change of holomorphic coordinates are
holomorphic.

To see this, if we have an overlapping coordinate system {wj} and

Z =
∑

W j ∂

∂wj
. (4.15)

Note that

∂

∂zj
=
∂wk

∂zj
∂

∂wj
, (4.16)

which implies that

W j = Zp∂w
j

∂zp
. (4.17)

We compute

∂(Z) =
∑

∂(W j)⊗ ∂

∂wj
=
∑

∂(Zp∂w
j

∂zp
)⊗ ∂zq

∂wj
∂

∂zq

=
∑ ∂wj

∂zp
∂zq

∂wj
∂(Zp)⊗ ∂

∂zq
=
∑

δqp∂(Zp)⊗ ∂

∂zq
=
∑

∂(Zj)⊗ ∂

∂zj
.

Recall that the transition functions of a complex vector bundle are locally defined
functions φαβ : Uα ∩ Uβ → GL(m,C), satisfying

φαβ = φαγφγβ. (4.18)

Notice the main property we used in the proof of Proposition 4.3 is that the transition
functions of the bundle are holomorphic. Thus we make the following definition.
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Definition 11. A vector bundle π : E → M is a holomorphic vector bundle if in
complex coordinates the transitition functions φαβ are holomorphic.

Recall that a section of a vector bundle is a mapping σ : M → E satisfying
π ◦ σ = IdM . In local coordinates, a section satisfies

σα = φαβσβ, (4.19)

and conversely any locally defined collection of functions σα : Uα → Cm satisfying
(4.19) defines a global section. A section is holomorphic if in complex coordinates,
the σα are holomorphic.

We next have the generalization of Proposition 4.3.

Proposition 4.4. If π : E → M is a holomorphic vector bundle, then there is an
first order differential operator

∂ : Γ(E)→ Γ(Λ0,1 ⊗ E), (4.20)

such that a section σ is holomorphic if and only if ∂(σ) = 0.

Proof. Let σj be a local basis of holomorphic sections in Uα, and write any section σ
as

σ =
∑

sjσj. (4.21)

Then define

∂σ =
∑

(∂sj)⊗ σj. (4.22)

We claim this is a global section of Γ(Λ0,1 ⊗ E). If we choose a local basis σ′j of
holomorphic sections in Uβ, and write σ as

σ =
∑

s′jσ
′
j. (4.23)

We can write

s′j = Ajlsl, (4.24)

where A : Uα ∩ Uβ → GL(m,C) is holomorphic. We also have

σ′j = A−1
jl σl. (4.25)

Consequently

∂σ =
∑

(∂s′j)⊗ σ′j =
∑

∂(Ajksk)⊗ A−1
jl σl

=
∑

Ajk∂(sk)⊗ A−1
jl σl =

∑
δkl(∂sk)⊗ σl =

∑
(∂sk)⊗ σk.
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5 Lecture 5

5.1 The Lie derivative as a ∂-operator

For the special case of T 1,0 we have another operator mapping from

Γ(T 1,0)→ Γ(Λ0,1 ⊗ T 1,0) (5.1)

defined as follows. If X is a section of T 1,0, writing X = X ′ − iJX ′ for a real vector
field X ′ then consider LX′J . Since J2 = −I, applying the Lie derivative, we have

(LX′J) ◦ J + J ◦ (LX′J) = 0, (5.2)

that is, LX′J anti-commutes with J , so using Proposition 3.2 we can we view LX′J
as a section of Λ0,1 ⊗ T 1,0.

Proposition 5.1. For X ∈ Γ(T 1,0),

∂X = J ◦ LX′J, (5.3)

where X ′ = Re(X).

Proof. The proof is similar to the proof of Proposition 4.2 above. For real vector
fields X ′ and Y ′, we let

X = X ′ − iJX ′ =
∑

Xj ∂

∂zj
,

Y = Y ′ − iJY ′ =
∑

Y j ∂

∂zj
,

and we have the formulas

X ′ =
1

2
(X +X) JX ′ =

i

2
(X −X)

Y ′ =
1

2
(Y + Y ) JY ′ =

i

2
(Y − Y )

Expanding the Lie derivative,

(LX′J)(Y ′) = LX′(J(Y ′))− J(LX′Y ′) = [X ′, JY ′]− J [X ′, Y ′]. (5.4)

In the proof of Proposition 4.2, it was shown that

J([X ′, Y ′]) =
1

4
(i[X, Y ]− i[X,Y ] + J [X, Y ] + J [X,Y ]), (5.5)

and

[X ′, JY ′] =
i

4
([X, Y ]− [X, Y ] + [X,Y ]− [X,Y ]). (5.6)
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So we have

[X ′, JY ′]− J [X ′, Y ′] =
1

4
(−i[X, Y ] + i[X,Y ]− J [X, Y ]− J [X,Y ])

= −1

4

(
i(Z − Z) + J(Z + Z)

)
,

where Z = [X, Y ]. We have that

Z = [X, Y ] = −
∑
j

Y
k
(
∂

∂zk
Xj)

∂

∂zj
+
∑
k

Xj(
∂

∂zj
Y
k
)
∂

∂zk
,

which we write as

Z =
∑

Zj ∂

∂zj
+W j ∂

∂zj
. (5.7)

We next compute

i(Z − Z) + J(Z + Z) = i
(
Zj ∂

∂zj
+W j ∂

∂zj
− Zj ∂

∂zj
−W j ∂

∂zj

)
+ J

(∑
Zj ∂

∂zj
+W j ∂

∂zj
+ Z

j ∂

∂zj
+W

j ∂

∂zj
)

= i
(
Zj ∂

∂zj
+W j ∂

∂zj
− Zj ∂

∂zj
−W j ∂

∂zj

)
+ i
(∑

Zj ∂

∂zj
−W j ∂

∂zj
− Zj ∂

∂zj
+W

j ∂

∂zj
)

= 2i
(∑

Zj ∂

∂zj
− Zj ∂

∂zj

)
.

We have obtained the formula

(LX′J)(Y ′) =
−i
2

(∑
Zj ∂

∂zj
− Zj ∂

∂zj

)
= Im(Z1,0), (5.8)

where Z1,0 is the (1, 0) part of Z, which is

Z1,0 =
∑
j

Y
k
(
∂

∂zk
Xj)

∂

∂zj
. (5.9)

Next, we need to view ∂X as a real endomorphism, and from the proof of Proposi-
tion 3.2, this is

(∂X)(Y ′) = Re
(
(∂X)(Y ′ + iJY ′)

)
= Re

{(∑
j

∂Xj ⊗ ∂

∂zj

)
(Y ′ + iJY ′)

}
= Re

{(∑
j

∂Xj
)

(Y ′ + iJY ′)
∂

∂zj

}
.
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But note that

Y ′ + iJY ′ = Y ′ − iJY ′ = Y =
∑
j

Y
j ∂

∂zj
. (5.10)

So we have

(∂X)(Y ′) = Re
{(∑

j

∂Xj
)

(Y )
∂

∂zj

}
= Re

{∑
p,j

Y
p
( ∂

∂zp
Xj
) ∂

∂zj

}
= Re(Z1,0).

But since Z1,0 is of type (1, 0),

Im(Z1,0) = −J(Re(Z1,0). (5.11)

Finally, we have

(∂X)(Y ′) = Re(Z1,0) = J(Im(Z1,0)) = J((LX′J)(Y ′)), (5.12)

and we are done.

Letting Θ denote T 1,0, there is moreover an entire complex

Γ(Θ)
∂−→ Γ(Λ0,1 ⊗Θ)

∂−→ Γ(Λ0,2 ⊗Θ)
∂−→ Γ(Λ0,3 ⊗Θ)

∂−→ · · · . (5.13)

We have that the holomorphic vector fields (equivalently, the automorphisms of the
complex structure) are H0(M,Θ). The higher cohomology groups H1(M,Θ) and
H2(M,Θ) of this complex play a central role in the theory of deformations of complex
structures.

5.2 The space of almost complex structures

We define

J (R2n) ≡ {J : R2n → R2n, J ∈ GL(2n,R), J2 = −I2n} (5.14)

In this subsection, we give some alternative descriptions of this space.

Proposition 5.2. The space J (R2n) is the homogeneous space GL(2n,R)/GL(n,C).

Proof. We note that GL(2n,R) acts on J (R2n), by the following. If A ∈ GL(2n,R)
and J ∈ J (R2n),

ΦA : J 7→ AJA−1. (5.15)
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Obviously,

(AJA−1)2 = AJA−1AJA−1 = AJ2A−1 = −I, (5.16)

and

ΦAB(J) = (AB)J(AB)−1 = ABJB−1A−1 = ΦAΦB(J), (5.17)

so is indeed a group action. Given J and J ′, there exists bases

{e1, . . . , en, Je1, . . . , Jen} and {e′1, . . . , e′n, J ′e′1, . . . , J ′e′n}. (5.18)

Define S ∈ GL(2n,R) by Sek = e′k and S(Jek) = J ′e′k. Then J ′ = SJS−1, and the
action is therefore transitive. The stabilizer subgroup of J0 is

Stab(J0) = {A ∈ GL(2n,R) : AJ0A
−1 = J0}, (5.19)

that is, A commutes with J0. We have seen above in (??) that this can be identified
with GL(n,C).

We next give yet another description of this space. Define

C(R2n) = {P ⊂ R2n ⊗ C = C2n | dimC(P ) = n,

P is a complex subspace satisfying P ∩ P = {0}}.

If we consider R2n ⊗ C, we note that complex conjugation is a well defined complex
anti-linear map R2n ⊗ C→ R2n ⊗ C.

Proposition 5.3. The space C(R2n) can be explicitly identified with J (R2n) by the
following. If J ∈ J (R2n) then let

R2n ⊗ C = T 1,0(J)⊕ T 0,1(J), (5.20)

where

T 0,1(J) = {X + iJX,X ∈ R2n} = {−i}-eigenspace of J. (5.21)

This an n-dimensional complex subspace of C2n, and letting T 1,0(J) = T 0,1(J), we
have T 1,0 ∩ T 0,1 = {0}.

For the converse, given P ∈ C(R2n), then P may be written as a graph over R2n⊗1,
that is

P = {X ′ + iJX ′ | X ′ ∈ R2n ⊂ C2n}, (5.22)

with J ∈ J (R2n), and

R2n ⊗ C = P ⊕ P = T 1,0(J)⊕ T 0,1(J). (5.23)
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Proof. For the forward direction, we already know this. To see the other direction,
consider the projection map Re restricted to P

π = Re : P → R2n. (5.24)

We claim this is a real linear isomorphism. Obviously, it is linear over the reals. Let
X ∈ P satisfy π(X) = 0. Then Re(X) = 0, so X = iX ′ for some real X ′ ∈ R2n.
But X = −iX ′ ∈ P ∩ P , so by assumption X = 0. Since these spaces are of the
same real dimension, π has an inverse, which we denote by J . Clearly then, (5.22) is
satisfied. Since P is a complex subspace, given any X = X ′ + iJX ′ ∈ P , the vector
iX ′ = (−JX ′) + iX ′ must also lie in P , so

(−JX ′) + iX ′ = X ′′ + iJX ′′, (5.25)

for some real X ′′, which yields the two equations

JX ′ = −X ′′ (5.26)

X ′ = JX ′′. (5.27)

applying J to the first equation yields

J2X ′ = −JX ′′ = −X ′. (5.28)

Since this is true for any X ′, we have J2 = −I2n.

Remark 5.1. We note that J 7→ −J corresponds to interchanging T 0,1 and T 1,0.

Remark 5.2. The above propositions embed J (R2n) as a subset of the complex
Grassmannian G(n, 2n,C). These spaces have the same dimension, so it is an open
subset. Furthermore, the condition that the projection to the real part is an isomor-
phism is generic, so it is also dense.

6 Lecture 6

6.1 Deformations of complex structure

We next let J(t) be a path of complex structures through J = J(0). Such a J(t) is
equivalent to a decomposition

TM ⊗ C = T 1,0(Jt)⊕ T 0,1(Jt). (6.1)

Note that, for t sufficiently small, this determines an element φ(t) ∈ Λ0,1(J)⊗T 1,0(J)
which we view as a mapping

φ(t) : T 0,1(J)→ T 1,0(J), (6.2)

by writing

T 0,1(Jt) = {v + φ(t)v | v ∈ T 0,1(J0)}. (6.3)

That is, we write T 0,1(Jt) as a graph over T 0,1(J0). Conversely, a path φ(t) in (6.2),
corresponds to a path J(t) of almost complex structures.
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Corollary 6.1. Let M be compact, and J an almost complex structure. The there is
a canonical correspondence between paths of almost complex structures J(t) through
J and paths φ(t) of sections of Λ0,1(J)⊗ T 1,0(J) for t small.

Proof. Call the base complex structure J0. Given

φ ∈ Λ0,1(J0)⊗ T 1,0(J0) = HomC(T 0,1(J0), T 1,0(J0)), (6.4)

then

T 0,1(J) = {v + φv, v ∈ T 0,1(J0)}. (6.5)

This is always an n-dimensional complex subspace. If X ∈ T 0,1(J) ∩ T 0,1(J), then

v + φv = w + φw, (6.6)

where v ∈ T 0,1(J0) and w ∈ T 1,0(J0). This yields the equations

φw = v (6.7)

φv = w. (6.8)

This says that φφ has 1 as an eigenvalue. But if φ is sufficiently small, this cannot
happen.

Conversely, given a path J(t), we obtain a path φ(t) by choosing P (t) = T 0,1(J(t))
and writing P (t) as a graph over T 0,1(J0). But projection from P (t) to P (0) is an
isomorphism if P (t) is sufficiently close to P (0) in the Grassmanian.

6.2 The Nijenhuis tensor

We next return to the Nijenhuis tensor, which we recall is defined by

N(X, Y ) = 2{[JX, JY ]− [X, Y ]− J [X, JY ]− J [JX, Y ]}. (6.9)

Proposition 6.1. For any almost complex structure, the Nijenhuis tensor is a section
of Λ0,2 ⊗ T 1,0 as follows. Let X and Y be in T 0,1, and write X = X ′ + iJX ′ and
Y = Y ′ + iJY ′ for real vectors X ′ and Y ′. Then

ΠT 1,0 [X, Y ] = −1

4
(N(X ′, Y ′)− iJN(X ′, Y ′)). (6.10)

Proof. To see this, we compute

[X, Y ] = [X ′ + iJX ′, Y ′ + iJY ′] = [X ′, Y ′]− [JX ′, JY ′] + i([X ′, JY ′] + [JX ′, Y ′]).
(6.11)
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Notice that ΠT 1,0(Z) = 1
2
(Z − iJZ), so

ΠT 1,0([X, Y ]) =
1

2
([X ′, Y ′]− [JX ′, JY ′] + i([X ′, JY ′] + [JX ′, Y ′])

− 1

2
(i(J [X ′, Y ′]− J [JX ′, JY ′])− J [X ′, JY ′]− J [JX ′, Y ′])

=
1

2
([X ′, Y ′]− [JX ′, JY ′] + J [X ′, JY ′] + J [JX ′, Y ′])

+
1

2
iJ([X ′, Y ′]− [JX ′, JY ′] + J [X ′, JY ′] + J [JX ′, Y ′])

= −1

4
(N(X ′, Y ′)− iJN(X ′, Y ′)).

Next, we write the integrability condition for a path of almost complex structures
J(t) = JC(t) + I(t) with corresponding φ(t) ∈ Λ0,1 ⊗ T 1,0.

Proposition 6.2. The complex structure J(t) = JC(t)+ I(t) is integrable if and only
if

∂φ(t) + [φ(t), φ(t)] = 0, (6.12)

where [φ(t), φ(t)] ∈ Λ0,2 ⊗ T 1,0 is a term which is quadratic in the φ(t) and its first
derivatives, that is,

‖[φ(t), φ(t)]‖ ≤ ‖φ‖ · ‖∇φ‖, (6.13)

in any local coordinate system.

Proof. By Proposition 6.1, the integrability equation is equivalent to [T 0,1
t , T 0,1

t ] ⊂
T 0,1
t . Writing

φ =
∑

φijdzi ⊗
∂

∂zj
, (6.14)

if J(t) is integrable, then we must have[ ∂
∂zi

+ φ
( ∂

∂zi

)
,
∂

∂zk
+ φ
( ∂

∂zk

)]
∈ T 0,1

t . (6.15)

This yields [ ∂
∂zi

, φkl
∂

∂zl

]
+
[
φij

∂

∂zj
,
∂

∂zk

]
+
[
φij

∂

∂zj
, φkl

∂

∂zl

]
∈ T 0,1

t (6.16)

The first two terms are[ ∂
∂zi

, φkl
∂

∂zl

]
+
[
φij

∂

∂zj
,
∂

∂zk

]
=
∑
j

(∂φkj
∂zi
− ∂φij
∂zk

) ∂

∂zj

= (∂φ)
( ∂

∂zi
,
∂

∂zj

)
.
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The third term is[
φij

∂

∂zj
, φkl

∂

∂zl

]
= φij

( ∂

∂zj
φkl

) ∂

∂zl
− φkl

( ∂

∂zl
φij

) ∂

∂zj

= [φ, φ]
( ∂

∂zi
,
∂

∂zk

)
,

where [φ, φ] is defined by

[φ, φ] =
∑

(dzi ∧ dzk)
[
φij

∂

∂zj
, φkl

∂

∂zl

]
, (6.17)

and is easily seen to be a well-defined global section of Λ0,2 ⊗ T 1,0. We have shown
that

(∂φ(t) + [φ(t), φ(t)])
( ∂

∂zi
,
∂

∂zk

)
∈ T 0,1

t . (6.18)

But the left hand side is also in T 1,0. For sufficiently small t however, T 0,1
t ∩T 1,0 = {0},

and therefore (6.12) holds.
For the converse, if (6.12) is satisfied, then the above argument in reverse shows

that the integrability of T 0,1
t holds as a distribution, which by Proposition 6.1 is

equivalent to integrability of the complex structure J(t).

Using the above we can identify the ∂ in the second term of the complex

Γ(Θ)
∂−→ Γ(Λ0,1 ⊗Θ)

∂−→ Γ(Λ0,2 ⊗Θ)
∂−→ Γ(Λ0,3 ⊗Θ)

∂−→ · · · (6.19)

with the linearized Nijenhuis tensor at t = 0:

Proposition 6.3. Let J(t) be a path of almost complex structures with J ′(0) = I,
corresponding to φ ∈ Λ0,1 ⊗ T 1,0. Then

∂φ = −1

4
(N ′J(I)− iJN ′J(I)). (6.20)

Note we are using the following identification: since the Nijenhuis tensor is J anti-
invariant, and skew-symmetric, it is a skew-hermitian 2-form, so by Proposition ??,
N + iJN is a section of Λ0,2 ⊗ T 1,0.

Proof. This follows from the above, using the fact that the quadratic term [φ, φ] does
not contribute to the linearization.

7 Lecture 7

7.1 A fixed point theorem

The following is a cruial tool in the analytic study of moduli spaces and gluing theo-
rems, see for example [Biq13, Lemma 7.3].
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Lemma 7.1. Let H : E → F be a differentiable mapping between Banach spaces.
Define Q = H −H(0)−H ′(0). Assume that there are positive constants C1, s0, C2 so
that the following are satisfied:

• (1) The nonlinear term Q satisfies

‖Q(x)−Q(y)‖F ≤ C1(‖x‖E + ‖y‖E)‖x− y‖E
for every x, y ∈ BE(0, s0).

• (2) The linearized operator at 0, H ′(0) : E → F is an isomorphism with inverse
bounded by C2.

If s and ‖H(0)‖F are sufficiently small (depending upon C1, s0, C2), then there is a
unique solution x ∈ BE(0, s) of the equation H(x) = 0.

Outline of Proof. The equation H(x) = 0 expands to

H(0) +H ′(0)(x) +Q(x) = 0. (7.1)

If we let x = Gy, where G is the inverse of H ′(0), then we have

H(0) + y +Q(Gy) = 0, (7.2)

or

y = −H(0)−Q(Gy). (7.3)

In other words, y is a fixed point of the mapping

T : y 7→ −H(0)−Q(Gy). (7.4)

With the assumptions in the lemma, it follows that T is a contraction mapping, so
a fixed point exists by the standard fixed point theorem (T ny0 converges to a unique
fixed point for any y0 sufficiently small).

Next, we have

Proposition 7.1. If H ′(0) is Fredholm, (finite-dimensional kernel and cokernel and
closed range), and there exists a complement of the cokernel on which H ′(0) has a
bounded right inverse, then there exists a map

Ψ : Ker(H ′(0))→ Coker(H ′(0)), (7.5)

whose zero set is locally isomorphic to the zero set of H.

Proof. Consider P = Π◦H, where Π is projection to a complement of Coker(H ′(0)).
The differential of the map P , P ′(0) is now surjective. Choose any complement K to
the space Ker(H ′(0)), and restrict the mapping to this complement. Equivalently,
let G be any right inverse, i.e., H ′(0)G = Id, and let K be the image of G. Given a
kernel element x0 ∈ H1

E, the equation H(x0 +Gy) = 0 expands to

H(0) +H ′(0)(x0 +Gy) +Q(x0 +Gy) = 0. (7.6)

We therefore need to find a fixed point of the map

Tx0 : y 7→ −H(0)−Q(x0 +Gy), (7.7)

and the proof is the same as before.
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7.2 Infinitesimal slice theorem for the moduli space of almost
complex structures

We want a local model for the space of almost complex structures near a complex
structure J modulo diffeomorphism. The main tool for this is the following infinites-
imal version of a “slice” theorem due to Ebin-Palais, adapted to the complex case by
Koiso [Koi83]. The notation Ck,α will denote the space of Hölder continuous mappings
(or tensors) with 0 < α < 1. Fix a hermitian metric g compatible with J .

Theorem 7.1. For each ACS J1 in a sufficiently small C`+1,α-neighborhood of J
(` ≥ 1), there is a C`+2,α-diffeomorphism ϕ : M →M such that

θ̃ ≡ ϕ∗J1 − J (7.8)

satisfies

δg(θ̃) = 0. (7.9)

Proof. Let {ω1, . . . , ωκ} denote a basis of the space of real holomorphic vector fields.
Consider the map

N : C`+2,α(TM)× Rκ × C`+1,α(Λ0,1 ⊗ T 1,0)→ C`,α(T ∗M) (7.10)

given by

N (X, v, θ) = Nθ(X, v) =
(
δg
[
ϕ∗X,1(J + θ)

]
+
∑
i

viωi
)
, (7.11)

where ϕX,1 denotes the diffeomorphism obtained by following the flow generated by
the vector field X for unit time. Linearizing in (X, v) at (X, v, θ) = (0, 0, 0), we find

N ′0(Y, a) =
d

dε

(
δg
[
ϕ∗εY,1(J)

]
+
∑
i

(εai)ωi
)∣∣∣
ε=0

=
(
δg[LY J ] +

∑
i

aiωi
)

=
(
�Y +

∑
i

aiωi
)
,

where � = δgLY (J). Notice that from above, we can identify

� = ∂
#
∂, (7.12)

so � is a self-adjoint operator.
The adjoint map (N ′0)∗ : Cm+2,α(T ∗M)→ Cm,α(TM)× Rκ is given by

(N ′0)∗(η) =
(

(�η)],

∫
M

〈η, ωi〉 dVg
)
, (7.13)
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where (�η)] is the vector field dual to �η.
If η is in the kernel of the adjoint, the first equation implies that η is a holomorphic

vector field, while the second implies that η is orthogonal (in L2) to the space of
holomorphic vector fields. It follows that η = 0, so the map N ′0 is surjective.

Omitting a few technical details for simplicity, applying the fixed point theorem
from above, , given θ1 ∈ C`+1,α(Λ0,1 ⊗ T 1,0) small enough, we can solve the equation
Nθ1 = 0; i.e., there is a vector field X ∈ C`+2,α(TM), and a v ∈ Rκ, such that

δg[ϕ
∗J1] +

∑
i

viωi = 0, (7.14)

where ϕ = ϕX,1. Letting θ̃ = ϕ∗J1 − J , then θ̃ satisfies

δg[θ̃] +
∑
i

viωi = 0, (7.15)

Pairing with ωj, for j = 1 . . . κ, and integrating by parts, we see that vj = 0, and we
are done.

Remark 7.1. The above is ust an “infinitesimal” version of the Slice Theorem. The
full Ebin-Palais Slice Theorem for Riemannian metrics constructs a local slice for
the action of the diffeomorphism group, see [Ebi68]. The main difficulty is that the
natural action of the diffeomorphism group on the space of Riemannian metrics is not
differentiable as a mapping of Banach spaces (with say Sobolev or Hölder norms). It is
however differentiable as a mapping of ILH spaces, see [Omo70, Koi78]. Koiso proved
an adaption of the slice theorem for Riemannian metric to the space of complex
structures in [Koi83]. For the purposes of these lectures, we will content ourselves
with the infinitesimal version, and will not go into details about the full slice theorem

8 Lecture 8

8.1 The Kuranishi map

We now have the following theorem.

Theorem 8.1. Let (M,J) be a complex surface. The space H1(M,Θ) is identified
with

H1(M,Θ) ' Ker(NJ)′

Im(X → LXJ)
, (8.1)

and therefore consists of essential infinitesimal deformations of the complex structure.
Furthermore, there is a map

Ψ : H1(M,Θ)→ H2(M,Θ) (8.2)

called the Kuranishi map such that the moduli space of complex structures near J is
given by the orbit space

Ψ−1(0)/H0(M,Θ). (8.3)
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Proof. The identification (8.1) follows from the computations in the previous lecture.
The remaining part takes a lot of machinery, so we will only give an outline here.

We consider the three term complex

Γ(Θ)
∂−→ Γ(Λ0,1 ⊗Θ)

∂−→ Γ(Λ0,2 ⊗Θ), (8.4)

and we will abbreviate this as

Γ(A)
∂A−→ Γ(B)

∂B−→ Γ(C)
∂C−→ · · · (8.5)

It is not hard to show that this complex is elliptic. We define a map

F : Γ(B)→ Γ(C)⊕ Γ(A) (8.6)

by

F (φ) = (ΠΓ(C)NJφ , ∂
∗
Aφ). (8.7)

where we have fixed a hermitian metric g compatible with J , and the adjoint is taken
with respect to g.

Claim 8.1. For φ sufficiently small, zeroes of F correspond to integrable complex
structures near φ, modulo diffeomorphism.

For the forward direction, if ΠΓ(C)(J)NJφ = 0, thenNJφ = 0 if φ is sufficiently small.
For the converse, we have that given any Jφ near J , there exists a diffeomorphism

f : M → M such that f ∗Jφ = Jφ′ with ∂
∗
Aφ
′ = 0. This follows since ∂

∗
A is the

divergence operator with respect to g, and then this follows from a version of the
Ebin slice theorem. This finishes the claim.

Next, the linearization of F at φ = 0, defined by

P (h) =
d

dt
F (φ(t))

∣∣∣
t=0
, (8.8)

where φ(t) is any path satisfying φ(0) = 0, and φ′(0) = h, is given by

P (h) = (∂B(h), ∂
∗
A(h)). (8.9)

This is an elliptic operator, since the above complex is elliptic. We also know that

NJφ = ∂φ+ [φ, φ], (8.10)

and the nonlinear term satisfies

‖[φ1, φ1]− [φ2, φ2]‖ ≤ C(‖φ1‖+ ‖φ2‖) · ‖φ1 − φ2‖. (8.11)

Consequently, one can use elliptic theory and this estimate on the nonlinear term
together with an infinite-dimensional fixed point theorem to show that the zero set
of F is equivalent to the zero set of a map

Ψ : Ker(P )→ Coker(P ) = Ker(P ∗), (8.12)
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defined between finite-dimensional spaces. Since M is compact, basic Hodge theory
shows that

Ker(P ) ' Ker(∂B) ∩Ker(∂∗A) ' Ker(∂B)

Im(∂A)
' H1(M,Θ), (8.13)

and

Coker(P ) ' Ker(∂
∗
B)⊕Ker((∂A) ' Ker(∂C)

Im(∂B)
⊕H0(M,Θ) (8.14)

' H2(M,Θ)⊕H0(M,Θ). (8.15)

So we have

Ψ : H1(M,Θ)→ H2(M,Θ)⊕H0(M,Θ) (8.16)

Finally, the map Ψ is equivariant with respect to the holomorphic automorphsim
group H0(M,Θ), so we only need to consider Ψ as a mapping from

Ψ : H1(M,Θ)→ H2(M,Θ), (8.17)

and we then obtain the actual moduli space as the orbit space of the action of
H0(M,Θ) on Ψ−1(0).

Corollary 8.1. If H2(M,Θ) = 0, then any such infinitesimal deformation I is in-
tegrable, that is, I = J ′(0) for an actual path of complex structures J(t). If both
H2(M,Θ) = 0 and H0(M,Θ) = 0 then the moduli space of complex structures near J
is smooth of dimension H1(M,Θ).

8.2 The higher dimensional case

The argument in the previous section does not work as given in higher dimensions
because the complex

Γ(Θ)
∂−→ Γ(Λ0,1 ⊗Θ)

∂−→ Γ(Λ0,2 ⊗Θ), (8.18)

is not elliptic. One case attempt to modify the above argument by projection the
Nijenhuis tensor to the image of ∂, but this introduces some technical difficulties which
we do not want to get into. Instead, we will outline Kuranishi’s method following
Kodaira-Morrow [MK71]. Let � denote the Laplacian

� = ∂∂
#

+ ∂
#
∂, (8.19)

where ∂
#

is the L2-adjoint of ∂ (we have fixed a Hermitian metric compatible with J).
Let Hk denote the space of harmonic forms in Λ0,k ⊗Θ, that is

Hk = {φ ∈ Γ(Λ0,k ⊗Θ)|�φ = 0}. (8.20)
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Hodge theory tells us that H0,k(M,Θ) ∼= Hk and that

Γ(Λ0,k ⊗Θ) = Hk ⊕ Im(�) (8.21)

= Hk ⊕ Im(∂)⊕ Im(∂
#

), (8.22)

where these are orthogonal direct sums in L2. Given any φ ∈ Γ(Λ0,k ⊗Θ), we have

φ = h+ �ψ (8.23)

where h is harmonic. Applying the same decomposition to ψ

ψ = h1 + ψ1 (8.24)

where h1 is harmonic and ψ1 ∈ Im(�), enables us to write

φ = h+ �ψ1, (8.25)

where ψ1 is orthogonal to Hk. It is straightforward to show that ψ1 is unique.

Definition 12. The Green’s operator is defined as

Gφ = ψ1, (8.26)

so that any φ can be written as

φ = Hφ+ �Gφ, (8.27)

where H is harmonic projection onto Hk.

Define a mapping

Ψ : H1 → Γ((Λ0,1 ⊗Θ)) (8.28)

as follows. Given φ1 ∈ H1, solve the following equation for φ:

φ = φ1 + ∂
#
G[φ, φ] (8.29)

This admits a unique solution using an iteration procedure similar to the above process
using Hölder norms (details omitted). Next,

Proposition 8.1. If φ1 is in a sufficiently small ball around the origin in H1, then
the solution φ of (8.29) solves

∂φ+ [φ, φ] = 0 (8.30)

if and only if

H[φ, φ] = 0. (8.31)

40



We will omit the proof, and just point out that the Kuranishi map is the corre-
sponding mapping

Φ : H1 → H2, (8.32)

and the zeroes of Φ parametrize the integrable complex structures near J . Note

that elements φ ∈ H1 necessarily satisfy ∂
#
φ = 0, which reflects the fact that this

parametrizes complex structues near J modulo diffeomorphism if there are no au-
tomorphisms. Kuranishi also shows that that Φ is holomorphic, so that the moduli
space is an analytic subset.

In the case of non-trivial automorphisms, note that Φ is equivariant under auto-
morphisms of J , so if (M,J) admits non-trivial holomorphic vector fields, then the
moduli space of complex structure modulo diffeomorphic is isomorphic to

Ψ−1(0)/H0, (8.33)

but the full proof of this identification requires a more elaborate slice theorem.
A special case where this mapping has been computed is the case of Calabi-Yau

metrics. In this case, the following is known (we will not discuss the proof, and refer
the reader to [Huy05]):

Theorem 8.2 (Tian-Todorov). For a Calabi-Yau metric (X, g), the Kuranishi map
Ψ ≡ 0. That is, every infintesimal Einstein deformation integrates to an actual
deformation.

9 Lecture 9

9.1 Serre duality

For a real oriented Riemannian manifold of dimension n, the Hodge star operator is
a mapping

∗ : Λp → Λn−p (9.1)

defined by

α ∧ ∗β = 〈α, β〉dVg, (9.2)

for α, β ∈ Λp, where dVg is the oriented Riemannian volume element.
If M is a complex manifold of complex dimension m = n/2, and g is a Hermitian

metric, then the Hodge star extends to the complexification

∗ : Λp ⊗ C→ Λ2m−p ⊗ C, (9.3)

and it is not hard to see that

∗ : Λp,q → Λn−q,n−p. (9.4)
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Therefore the operator

∗ : Λp,q → Λn−p,n−q, (9.5)

is a C-antilinear mapping and satisfies

α ∧ ∗β = 〈α, β〉dVg. (9.6)

for α, β ∈ Λp ⊗ C.
The L2-adjoint of ∂ is given by

∂
∗

= − ∗ ∂∗, (9.7)

and the ∂-Laplacian is defined by

∆∂ = ∂
∗
∂ + ∂∂

∗
. (9.8)

Letting

Hp,q(M, g) = {α ∈ Λp,q|∆∂α = 0}, (9.9)

Hodge theory tells us that

Hp,q

∂
(M) ∼= Hp,q(M, g), (9.10)

is finite-dimensional, and that

Λp,q = Hp,q(M, g)⊕ Im(∆∂) (9.11)

= Hp,q(M, g)⊕ Im(∂)⊕ Im(∂
∗
), (9.12)

with this being an orthogonal direct sum in L2.

Corollary 9.1. Let (M,J) be a compact complex manifold of real dimension n = 2m.
Then

Hp,q

∂
(M) ∼= (Hn−p,n−q

∂
(M))∗, (9.13)

and therefore

bp,q(M) = bn−p,n−q(M) (9.14)

Proof. One verifies that

∗∆∂ = ∆∂∗, (9.15)

so the mapping ∗ preserves the space of harmonic forms, and is invertible. The result
then follows from Hodge theory.
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This same argument works with form taking values in a holomorphic bundle, and
the conclusion of Serre duality is that

Hp(M,E) ∼= (Hn−p(M,K ⊗ E∗), (9.16)

where K = Λn,0 is the canonical bundle. Note that

Hp(M,Ωq(E)) ∼= Hq,p(M,E). (9.17)

Proposition 9.1. If (M,J) is a compact complex manifold then

bk(M) ≤
∑
p+q=k

bp,q(M), (9.18)

and

χ(M) =
n∑
k=0

(−1)kbk(M) =
m∑

p,q=0

(−1)p+qbp,q(M). (9.19)

Proof. This requires some machinery; it follows from the Frölicher spectral sequence
[?].

9.2 Hodge numbers of a Kähler manifold

Now let us assume that (M,J, g) is Kähler. That is, the fundamental 2-form ω is
closed. Consider the 3 Laplacians

∆H = d∗d+ dd∗, (9.20)

∆∂ = ∂∗∂ + ∂∂∗ (9.21)

∆∂ = ∂
∗
∂ + ∂∂

∗
, (9.22)

where ·∗ denotes the L2-adjoint. The key is the following

Proposition 9.2. If (M,J, g) is Kähler, then

∆H = 2∆∂ = 2∆∂. (9.23)

Proof. Let L denote the mapping

L : Λp → Λp+2 (9.24)

given by L(α) = ω ∧ α, where ω is the Kähler form. Then we have the identities

[∂
∗
, L] = i∂ (9.25)

[∂∗, L] = −i∂. (9.26)

These are proved proved first in Cn and then on a Kähler manifold using Kähler
normal coordinates. The proposition then follows from these identities (proof omit-
ted).
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Proposition 9.3. If (M,J, g) is a compact Kähler manifold, then

Hk(M,C) ∼=
⊕
p+q=k

Hp,q

∂
(M), (9.27)

and

Hp,q

∂
(M) ∼= Hq,p

∂
(M)∗. (9.28)

Consequently,

bk(M) =
∑
p+q=k

bp,q(M) (9.29)

bp,q(M) = bq,p(M). (9.30)

Proof. This follows because if a harmonic k-form is decomposed as

φ = φp,0 + φp−1,1 + · · ·+ φ1,p−1 + φ0,p, (9.31)

then

0 = ∆Hφ = 2∆∂φ
p,0 + 2∆∂φ

p−1,1 + · · ·+ 2∆∂φ
1,p−1 + 2∆∂φ

0,p, (9.32)

therefore

∆∂φ
p−k,k = 0, (9.33)

for k = 0 . . . p.
Next,

∆∂φ = ∆∂φ, (9.34)

so conjugation sends harmonic forms to harmonic forms.

This yields a topologicial obstruction for a complex manifold to admit a Kähler
metric:

Corollary 9.2. If (M,J, g) is a compact Kähler manifold, then the odd Betti numbers
of M are even.

Consider the action of Z on C2 \ {0}

(z1, z2)→ 2k(z1, z2). (9.35)

This is a free and properly discontinuous action, so the quotient (C2 \ {0})/Z is a
manifold, which is called a primary Hopf surface. A primary Hopf surface is dif-
feomorphic to S1 × S3, which has b1 = 1, therefore it does not admit any Kähler
metric.
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9.3 The Hodge diamond

The following picture is called the Hodge diamond:

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

...

hn,0 · · · ... · · · h0,n

...
hn,n−2 hn−1,n−1 hn−2,n

hn,n−1 hn−1,n

hn,n

. (9.36)

Reflection about the center vertical is conjugation. Reflection about the center hor-
izontal is Hodge star. The composition of these two operations, or rotation by π, is
Serre duality.

For a surface, the Hodge diamond is

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

. (9.37)

10 Lecture 10

10.1 Complex projective space

Complex projective spaces is defined to be the space of lines through the origin in
Cn+1. This is equivalent to Cn+1/ ∼, where ∼ is the equivalence relation

(z0, . . . , zn) ∼ (w0, . . . , wn) (10.1)

if there exists λ ∈ C∗ so that zj = λwj for j = 1 . . . n. The equivalence class of
(z0, . . . , zn) will be denoted by [z0 : · · · : zn]. Letting Uj = {[z0 : · · · : zn]|zj 6= 0},
CPn is covered by (n+ 1) coordinate charts φj : Uj → Cn defined by

φj : [z0 : · · · : zn] 7→
(z0

zj
, . . . ,

zj−1

zj
,
zj+1

zj
, . . . ,

zn

zj

)
, (10.2)

with inverse given by

φ−1
j : (w1, . . . , wn) 7→ [w1 : . . . wj−1 : 1 : wj : · · · : wn]. (10.3)

The overlap maps are holomorphic, which gives CPn the structure of a complex
manifold.
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Let π : Cn+1 \ {0} denote the projection map, and consider the form

Φ̃ = −4i∂∂ log
( n∑
j=0

|zj|2
)

(10.4)

It is easy to see that this form is the pull-back of a (1, 1)-form on CPn, that is Φ̃ = π∗Φ.
Furthermore, Φ is positive-definite, which implies that Φ is the fundamental 2-form
of a Hermitian metric gFS. Furthermore, since d = ∂ + ∂, it follows that dΦ = 0, so
gFS is a Kähler metric. Note that Φ̃ is invariant under the action of U(n+ 1), which
implies that the isometry group of gFS contains PU(n + 1), the projective Unitary
group. Moreover, these isometries are holomorphic. The full isometry group has 2
components; the non-identity component consists of anti-holomoprhic isometries (the
U(n+ 1)-action composed with conjugation of the coordinates).

Remark 10.1. This metric seems to just come from nowhere, but we will see in
a bit that is a very natural definition (but we need to discuss line bundles first to
understand this). Also, the normalization in (10.4) is to arrange that the holomorphic
sectional curvature of gFS is equal to 1, we will discuss this later.

The only non-trivial integral cohomology of CPn is in even degrees

H2j(CPn,Z) ∼= Z (10.5)

for j = 1 . . . n. Using Proposition 9.3, it follows that the Hodge numbers are given by

bp,q(CPn) =

{
1 p = q

0 p 6= q.
(10.6)

For example, the Hodge diamond of CP1 is given by

1
0 0

1
, (10.7)

and the Hodge diamond of CP2 is given by

1
0 0

0 1 0
0 0

1

. (10.8)

10.2 Line bundles and divisors

A line bundle over a complex manifold M is a rank 1 complex vector bundle π : E →
M . The transition functions are defined as follows. A trivialization is a mapping

Φα : Uα × C→ E (10.9)
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which maps x× C linearly onto a fiber. The transition functions are

ϕαβ : Uα ∩ Uβ → C∗, (10.10)

defined by

ϕαβ(x) =
1

v
π2(Φ−1

α ◦ Φβ(x, v)), (10.11)

for v 6= 0.
On a triple intersection Uα ∩ Uβ ∩ Uγ, we have the identity

ϕαγ = ϕαβ ◦ ϕβγ. (10.12)

Conversely, given a covering Uα of M and transition functions ϕαβ satifsying (10.12),
there is a vector bundle π : E →M with transition functions given by ϕαβ, and this
bundle is uniquely defined up to bundle equivalence, which we will define below. If
the transitions function ϕαβ are C∞, then we say that E is a smooth vector bundle,
while if they are holomorphic, we say that E is a holomorphic vector bundle. Note
that total space of a holomorphic vector bundle over a complex manifold is a complex
manifold.

A vector bundle mapping is a mapping f : E1 → E2 which is linear on fibers,
and covers the identity map. Assume we have a covering Uα of M such that E1 has
trivializations Φα and E2 has trivializations Ψα. Then any vector bundle mapping
gives locally defined functions fα : Uα → C defined by

fα(x) =
1

v
π2(Ψ−1

α ◦ F ◦ Φα(x, v)) (10.13)

for v 6= 0. It is easy to see that on overlaps Uα ∩ Uβ,

fα = ϕE2
αβfβϕ

E1
βα, (10.14)

equivalently,

ϕE2
βαfα = fβϕ

E1
βα. (10.15)

We say that two bundles are E1 and E2 are equivalent if there exists an invertible
bundle mapping f : E1 → E2. This is equivalent to non-vanishing of the local
representatives, that is, fα : Uα → C∗. A vector bundle is trivial if it is equivalent to
the trivial product bundle. That is, E is trivial if there exist functions fα : Uα → C∗
such that

φβα = fβf
−1
α . (10.16)

The tensor product E1⊗E2 of two line bundles E1 and E2 is again a line bundle, and
has transition functions

ϕE1⊗E2
αβ = ϕE1

αβϕ
E2
αβ. (10.17)
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The dual E∗ of a line bundle E, is again a line bundle, and has transition functions

ϕE
∗

αβ = (ϕEβα)−1. (10.18)

Note that for any line bundle,

E ⊗ E∗ ∼= C, (10.19)

is the trivial line bundle.
For our purpose, a divisor is defined to be the zero set of a holomorphic section of

a nontrivial line bundle. Conversely, an irreducible holomorphic subvariety of codi-
mension 1 defines a line bundle by taking local defining functions to be the transition
functions, that is,

ϕαβ =
fα
fβ

(10.20)

10.3 Line bundles on complex projective space

If M is any smooth manifold, consider the short exact sequence of sheaves

0→ Z→ E → E∗ → 1. (10.21)

where E is the sheaf of germs of C∞ functions, and E∗ is the sheaf of germs of non-
vanishing C∞ functions. The associated long exact sequence in cohomology is

. . .→ H1(M,Z)→ H1(M, E)→ H1(M, E∗)
→ H2(M,Z)→ H2(M, E)→ H2(M, E∗)→ . . . .

(10.22)

But E is a flabby sheaf due to existence of partitions of unity in the smooth category,
so Hk(M, E) = {0} for k ≥ 1. This implies that

H1(M, E∗) ∼= H2(M,Z). (10.23)

Using Čech cohomology, the left hand side is easily seen to be the set of smooth line
bundles on M up to equivalence.

Next, if M is a complex manifold, consider the short exact sequence of sheaves

0→ Z→ O → O∗ → 1. (10.24)

where O is the sheaf of germs of holomorphic functions, and O∗ is the sheaf of
germs of non-vanishing holomorphic functions. The associated long exact sequence
in cohomology is

. . .→ H1(M,Z)→ H1(M,O)→ H1(M,O∗)
c1→ H2(M,Z)→ H2(M,O)→ H2(M,O∗)→ . . . .

(10.25)

48



Now O is not flabby (there are no nontrivial holomorphic partitions of unity!). How-
ever

dim(Hk(M,O)) = b0,k. (10.26)

Since b0,1 = b0,2 = 0 for CPn, we have

H1(CPn,O∗) ∼= H2(M,Z) ∼= Z. (10.27)

Again, using Čech cohomology, the left hand side is easily seen to be the set of
holomorphic line bundles on M up to equivalence. Consequently, on CPn the smooth
line bundles are the same as holomorphic line bundles up to equivalence:

Corollary 10.1. The set of holomorphic line bundles on CPn up to equivalence is
isomorphic to Z, with the tensor product corresponding to addition.

The line bundles on CPn are denoted by O(k), where k is the integer obtained
under the above isomorphism, which is the first Chern class. Of course, every line
bundle must be a tensor power of a generator. If H ⊂ CPn is a hyperplane, then the
line bundle corresponding to H, denoted by [H] is O(1). The dual of this bundle,
O(−1) has a nice description, it is called the tautological bundle. This is

O(−1) = {([x], v) ∈ CPn × Cn+1|v ∈ [x]}. (10.28)

To see that [H] corresponds to O(1), use the following:

Proposition 10.1 ([GH78, page 141]). The first Chern class of a complex line bundle
L is equal to the Euler class of the underlying oriented real rank 2 bundle, and is
the Poincaré dual to the zero locus of a transverse section. Furthermore, if g is a
Hermitian metric on L, then the curvature form of the Chern connection on L is
given by

Θ = 2πi∂∂|σ|2, (10.29)

where σ is is any locally defined holomorphic section. Finally,

c1(L) =
[ i

2π
Θ
]
. (10.30)

Returning to the Fubini-Study metric: note the O(−1) admits a Hermitian metric
h by restricting the inner product in Cn+1 to a fiber. Thus we see that

Proposition 10.2. The Kähler form of the Fubini-Study metric is (−i/2π) times the
curvature form of h.
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10.4 Adjunction formula

Let V ⊂Mn be a smooth complex hypersurface. The exact sequence

0→ T (1,0)(V )→ T (1,0)M
∣∣
V
→ NV → 0, (10.31)

defines the holomorphic normal bundle. The adjunction formula says that

NV = [V ]|V . (10.32)

To see this, let fα be local defining functions for V , so that the transition functions
of [V ] are gαβ = fαf

−1
β . Apply d to the equation

fα = gαβfβ (10.33)

to get

dfα = d(gαβ)fβ + gαβdfβ. (10.34)

Restricting to V , since fβ = 0 defines V , we have

dfα = gαβdfβ. (10.35)

Note that dfα is a section of N∗V . For a smooth hypersurface, the differential of a local
defining function is nonzero on normal vectors. Consequently, N∗V ⊗ [V ] is the trivial
bundle when restricted to V since it has a non-vanishing section.

For any short exact sequence

0→ A→ B → C → 0, (10.36)

it holds that

Λdim(B)(B) ∼= Λdim(A)(A)⊗ Λdim(C)(C), (10.37)

so the adjunction formula can be rephrased as

KV = (KM ⊗ [V ])|V . (10.38)

11 Lecture 11

11.1 Characteristic numbers of hypersurfaces

Let V ⊂ Pn be a smooth complex hypersurface. We know that the line bundle
[V ] = O(d) for some d ≥ 1. We have the exact sequence

0→ T (1,0)(V )→ T (1,0)Pn
∣∣
V
→ NV → 0. (11.1)

The adjunction formula says that

NV = O(d)
∣∣
V
. (11.2)
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We have the smooth splitting of (11.1),

T (1,0)Pn
∣∣
V

= T (1,0)(V )⊕O(d)
∣∣
V
. (11.3)

Taking Chern classes,

c(T (1,0)Pn
∣∣
V

) = c(T (1,0)(V )) · c(O(d)
∣∣
V

). (11.4)

From the Euler sequence [GH78, page 409],

0→ C→ O(1)⊕(n+1) → T (1,0)Pn → 0, (11.5)

it follows that

c(T (1,0)Pn) = (1 + c1(O(1)))n+1. (11.6)

Note that for any divisor D,

c1([D]) = ηD, (11.7)

where ηD is the Poincaré dual to D. That is∫
D

ξ =

∫
Pn
ξ ∧ ηD, (11.8)

for all ξ ∈ H2n−2(P), see [GH78, page 141]. So in particular c1(O(1)) = ω, where ω is
the Poincaré dual of a hyperplane in Pn (note that ω is integral, and is some multiple
of the Fubini-Study metric). Therefore

c(T (1,0)Pn) = (1 + ω)n+1. (11.9)

Also c1(O(d)) = d · ω, since O(d) = O(1)⊗d. The formula (11.4) is then

(1 + ω)n+1
∣∣
V

= (1 + c1 + c2 + . . . )(1 + d · ω
∣∣
V

). (11.10)

A crucial tool in the following is the Lefschetz hyperplane theorem:

Theorem 11.1 ([GH78, page 156]). Let M ⊂ Pn be a hypersurface of dimension
n − 1, and H be a hyperplane, and let V = M ∩H. Then the inclusion ι : V → M
induces a mapping

ι∗ : Hq(M,Q)→ Hq(V,Q) (11.11)

which is an isomorphism for q ≤ n− 3 and injective for q = n− 2.
Furthermore, the mapping

ι∗ : πq(V )→ πq(M) (11.12)

is an isomorphism for q ≤ n− 3 and surjective for q = n− 2.
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11.2 Dimension n = 2

Consider a curve in P2. The formula (11.10) is

(1 + 3ω)
∣∣
V

= (1 + c1)(1 + d · ω
∣∣
V

), (11.13)

which yields

c1 = (3− d)ω
∣∣
V
. (11.14)

The top Chern class is the Euler class, so we have

χ(V ) =

∫
V

(3− d)ω (11.15)

= (3− d)

∫
P2

ω ∧ (d · ω) (11.16)

= d(3− d)

∫
P2

ω2 = d(3− d). (11.17)

Here we used the fact that d · ω is Poincaré dual to V , and ω2 is a positive generator
of H4(P2,Z). Equivalently, we can write∫

V

ω =

∫
P2

ω ∧ ηV =

∫
P2

ηH ∧ ηV . (11.18)

Since cup product is dual to intersection under Poincaré duality, the integral simply
counts the number of intersection points of V with a generic hyperplane.

In term of the genus g,

g =
(d− 1)(d− 2)

2
. (11.19)

11.3 Dimension n = 3

We consider a hypersurface in P3, which is topologically a 4-manifold. The formula
(11.10) is

(1 + 4ω + 6ω2)
∣∣
V

= (1 + c1 + c2) · (1 + d · ω
∣∣
V

), (11.20)

so that

c1 = (4− d)ω
∣∣
V
, (11.21)

and then

c2 = (6− d(4− d))ω2
∣∣
V
. (11.22)
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Since the top Chern class is the Euler class,

χ(V ) =

∫
V

(6− d(4− d))ω2 (11.23)

= (6− d(4− d))

∫
P3

ω2 ∧ (d · ω) (11.24)

= d(6− d(4− d)), (11.25)

again using the fact that d·ω is Poincaré dual to V , and that ω3 is a positive generator
of H6(P3,Z).

It follows from the Lefschetz hyperplane theorem that M has b1 = 0, therefore
b1,0 = b0,1 = 0.

11.4 Hirzebruch Signature Theorem

We think of V as a real 4-manifold, with complex structure given by J . Then the kth
Pontrjagin Class is defined to be

pk(V ) = (−1)kc2k(TV ⊗ C) (11.26)

Since (V, J) is complex, we have that

TV ⊗ C = TV ⊕ TV , (11.27)

so

c(TV ⊗ C) = c(TV ) · c(TV ) (11.28)

= (1 + c1 + c2) · (1− c1 + c2) (11.29)

= 1 + 2c2 − c2
1, (11.30)

which yields

p1(V ) = c2
1 − 2c2. (11.31)

Consider next the intersection pairing H2(V )×H2(V )→ R, given by

(α, β)→
∫
α ∧ β ∈ R. (11.32)

Let b+
2 denote the number of positive eigenvalues, and b−2 denote the number of

negative eigenvalues. By Poincaré duality the intersection pairing is non-degenerate,
so

b2 = b+
2 + b−2 . (11.33)

The signature of V is defined to be

τ = b+
2 − b−2 . (11.34)

53



The Hirzebruch Signature Theorem [MS74, page 224] states that

τ =
1

3

∫
V

p1(V ) (11.35)

=
1

3

∫
V

(c2
1 − 2c2). (11.36)

Rewriting this,

2χ+ 3τ =

∫
V

c2
1. (11.37)

Remark 11.1. This implies that S4 does not admit any almost complex structure,
since the left hand side is 4, but the right hand side trivially vanishes.

11.5 Representations of U(2)

As discussed above, some representations which are irreducible for SO(4) become
reducible when restricted to U(2). Under SO(4), we have

Λ2T ∗ = Λ2
+ ⊕ Λ2

−, (11.38)

where

Λ+
2 = {α ∈ Λ2(M,R) : ∗α = α} (11.39)

Λ−2 = {α ∈ Λ2(M,R) : ∗α = −α}. (11.40)

But under U(2), we have the decomposition

Λ2T ∗ ⊗ C = (Λ2,0 ⊕ Λ0,2)⊕ Λ1,1. (11.41)

Notice that these are the complexifications of real vector spaces. The first is of
dimension 2, the second is of dimension 4. Let ω denote the 2-form ω(X, Y ) =
g(JX, Y ). This yields the orthogonal decomposition

Λ2T ∗ ⊗ C = (Λ2,0 ⊕ Λ0,2)⊕ R · ω ⊕ Λ1,1
0 , (11.42)

where Λ1,1
0 ⊂ Λ1,1 is the orthogonal complement of the span of ω, and is therefore

2-dimensional (the complexification of which is the space of primitive (1, 1)-forms).

Proposition 11.1. Under U(2), we have the decomposition

Λ2
+ = R · ω ⊕ (Λ2,0 ⊕ Λ0,2) (11.43)

Λ2
− = Λ1,1

0 . (11.44)

Proof. We can choose an oriented orthonormal basis of the form

{e1, e2 = Je1, e3, e4 = Je3}. (11.45)
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Let {e1, e2, e3, e4} denote the dual basis. The space of (1, 0) forms, Λ1,0 has generators

θ1 = e1 + ie2, θ2 = e3 + ie4. (11.46)

We have

ω =
i

2
(θ1 ∧ θ1

+ θ2 ∧ θ2
)

=
i

2

(
(e1 + ie2) ∧ (e1 − ie2) + (e3 + ie4) ∧ (e3 − ie4)

)
= e1 ∧ e2 + e3 ∧ e4 = ω1

+.

(11.47)

Similarly, we have

i

2
(θ1 ∧ θ1 − θ2 ∧ θ2

) = e1 ∧ e2 − e3 ∧ e4 = ω1
−, (11.48)

so ω1
− is of type (1, 1), so lies in Λ1,1

0 . Next,

θ1 ∧ θ2 = (e1 + ie2) ∧ (e3 + ie4)

= (e1 ∧ e3 − e2 ∧ e4) + i(e1 ∧ e4 + e2 ∧ e3)

= ω2
+ + iω3

+.

(11.49)

Solving, we obtain

ω2
+ =

1

2
(θ1 ∧ θ2 + θ

1 ∧ θ2
), (11.50)

ω3
+ =

1

2i
(θ1 ∧ θ2 − θ1 ∧ θ2

), (11.51)

which shows that ω2
+ and ω3

+ are in the space Λ2,0 ⊕ Λ0,2. Finally,

θ1 ∧ θ2
= (e1 + ie2) ∧ (e3 − ie4)

= (e1 ∧ e3 + e2 ∧ e4) + i(−e1 ∧ e4 + e2 ∧ e3)

= ω2
− − iω3

−,

(11.52)

which shows that ω2
− and ω3

− are in the space Λ1,1
0 .

This decomposition also follows from the proof of the Hodge-Riemann bilinear
relations [GH78, page 123].

Corollary 11.1. If (M4, g) is Kähler, then

b+
2 = 1 + 2b2,0, (11.53)

b−2 = b1,1 − 1, (11.54)

τ = b+
2 − b−2 = 2 + 2b2,0 − b1,1. (11.55)

Proof. This follows from Proposition 11.1, and Hodge theory on Kähler manifolds,
see [GH78].
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So we have that

χ = 2 + b2 = 2 + b1,1 + 2b2,0 (11.56)

τ = 2 + 2b2,0 − b1,1. (11.57)

Remark 11.2. Notice that

χ+ τ = 4(1 + b2,0), (11.58)

so in particular, the integer χ+ τ is divisible by 4 on a Kähler manifold with b1 = 0.
This is in fact true for any almost complex manifold of real dimension 4, this follows
from a version of Riemann-Roch Theorem which holds for almost complex manifolds,
see [Gil95, Lemma 3.5.3]. This implies that there is no almost complex structure on

P2
, that is, there is no almost complex structure on P2 which induces the reversed

orientation to that induced by the usual complex structure on P2.

Applying these formulas to our example, we find that

2χ+ 3τ = (4− d)2

∫
V

ω2 = d(4− d)2. (11.59)

Using the formula for the Euler characteristic from above,

χ = d(6− d(4− d)), (11.60)

we find that

τ = −1

3
d(d+ 2)(d− 2). (11.61)

Some arithmetic shows that

b2 = d3 − 4d2 + 6d− 2 (11.62)

b+
2 =

1

3
(d3 − 6d2 + 11d− 3) (11.63)

b−2 =
1

3
(d− 1)(2d2 − 4d+ 3) (11.64)

b2,0 = b0,2 =
1

6
(d− 3)(d− 2)(d− 1) (11.65)

b1,1 =
1

3
d(2d2 − 6d+ 7) (11.66)

b1,0 = b0,1 = 0. (11.67)

For d = 2, we find that b+
2 = 1, b−2 = 1. This is not surprising, as any non-

degenerate quadric is biholomorphic to P1×P1 [GH78, page 478]. The Hodge numbers
are b1,1 = 2, b0,2 = b2,0 = 0, so the Hodge diamond is given by

1
0 0

0 2 0
0 0

1

. (11.68)
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For d = 3, we find b+
2 = 1, b−2 = 6. This is expected, since any non-degenerate

cubic is biholomorphic to P2 blown up at 6 points, and is therefore diffeomorphic to
P2#6P2 [GH78, page 489]. The Hodge numbers in this case are b1,1 = 7, b0,2 = b2,0 =
0, so the Hodge diamond of CP2 is given by

1
0 0

0 7 0
0 0

1

. (11.69)

For d = 4, this is a K3 surface [GH78, page 590]. We find b+
2 = 3, b−2 = 19, so

χ = 24, and τ = −16. The intersection form is given by

2E8 ⊕ 3

(
0 1
1 0

)
. (11.70)

Since c1 = 0, the canonical bundle is trivial. The Hodge numbers in this case are
b1,1 = 20, b0,2 = b2,0 = 1, so the Hodge diamond of CP2 is given by

1
0 0

1 20 1
0 0

1

. (11.71)

For d = 5, we find b+
2 = 9, b−2 = 44, so χ = 55, and τ = −35. From Freedman’s

topological classification of simply-connected 4-manifolds, V must be homeomorphic
to 9P2#44P2, see [FQ90]. By the work of Gromov-Lawson [GL80], this latter smooth
manifold admits a metric of positive scalar curvature, and therefore all of its Seiberg-
Witten invariants vanish [Wit94]. But V is Kähler, so it has some non-zero Seiberg-
Witten invariant [Mor96, Theorem 7.4.4]. We conclude that V is homeomorphic to
9P2#44P2, but not diffeomorphic.

12 Lecture 12

12.1 Complete Intersections

Let V k ⊂ Pn be a smooth complete intersection of n − k homogeneous polynomials
of degree d1, . . . , dn−k. Consider again the exact sequence

0→ T (1,0)(V )→ T (1,0)Pn
∣∣
V
→ NV → 0, (12.1)

where NV is now a bundle of rank n− k bundle. The adjunction formula says that

NV = O(d1)
∣∣
V
⊕ · · · ⊕ O(dn−k)

∣∣
V
. (12.2)
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We have the smooth splitting of (11.1),

T (1,0)Pn
∣∣
V

= T (1,0)(V )⊕NV . (12.3)

Taking Chern classes,

c(T (1,0)Pn
∣∣
V

) = c(T (1,0)(V )) · c
(
O(d1)

∣∣
V
⊕ · · · ⊕ O(dn−k)

∣∣
V

)
, (12.4)

which is

(1 + ω)n+1
∣∣
V

= (1 + c1 + · · ·+ ck)(1 + d1 · ω
∣∣
V

) · · · (1 + dn−k · ω
∣∣
V

). (12.5)

12.2 Calabi-Yau complete intersections

Note that if

n+ 1 = d1 + · · ·+ dn−k (12.6)

then V has vanishing first Chern class, and therefore carries a Ricci-flat metric by
Yau’s theorem. If any of the degrees dj is equal to 1, then this reduces to a complete
intersection in a lower dimensional projective space. So without loss of generality,
assume that dj ≥ 2. Then (12.6) implies the inequality

n ≤ 2k + 1. (12.7)

A Calabi-Yau manifold admits a non-zero holomorphic (n, 0)-form, which is denoted
by Ω. This form yield an isomorphism of bundles

Θ ∼= Λn−1,0 (12.8)

by the mapping X 7→ ιXΩ, where ι is interior multiplication. Consequently, the
lowest cohomologies of the holomorphic tangent sheaf are given by

H0(V,Θ) = H0(V,Λn−1) (12.9)

H1(V,Θ) = H1(V,Λn−1) (12.10)

H2(V,Θ) = H2(V,Λn−1), (12.11)

so that

dim(H0(V,Θ)) = hn−1,0 (12.12)

dim(H1(V,Θ)) = hn−1,1 (12.13)

dim(H2(V,Θ)) = hn−2,2. (12.14)

Consider the case of Calabi-Yau surfaces, k = 2, so that (12.7) implies that
n ≤ 5. The possibilites are in Table 1. The computation of the Euler characteristic
is straightforward from the above formulas, using that the integral of the top Chern
class is the Euler class. Notice that all of these have the same Euler characteristic.
This is not an accident, it turns out that all of these are in fact diffeomorphic [?]. By
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Degrees ⊂ Pn χ(V ) dim(H1(V,Θ)) = h1,1

(4) P3 24 20
(2, 3) P4 24 20

(2, 2, 2) P5 24 20

Table 1: Complete intersection Calabi-Yau surfaces.

the Tian-Todorov theorem, the moduli space of complex structures is of dimension
20. A computation shows that the dimension of the space of quartics in P3 modulo
the action of the automorphism group of P3, which is PGL(4,C), is equal to 19.
Therefore “most” K3 surfaces are not algebraic.

Consider the case of Calabi-Yau threefolds, k = 3, so that (12.7) implies that
the number n ≤ 7. The possibilites are in Table 2. This shows that, in contrast to
surfaces, Calabi-Yau threefolds are not necesssarily diffeomorphic, and their Hodge
numbers are not always the same. In fact, this leads to the big subject of mirror
symmetry, which we will not discuss.

Degrees ⊂ Pn χ(V ) dim(H1(V,Θ)) = h2,1 h1,1

(5) P4 −200 101 1
(4, 2) P5 −176 89 1
(3, 3) P5 −144 73 1

(3, 2, 2) P6 −144 73 1
(2, 2, 2, 2) P7 −128 65 1

Table 2: Complete intersection Calabi-Yau threefolds.

Next, we make some remarks on how to compute the numbers appearing in Ta-
ble 2. Again, the computation of the Euler characteristic is straightforward from the
above formulas, using that the integral of the top Chern class is the Euler class.Next,
note that

H2,0(V ) ∼= H3,1(V ) ∼= H1(V,Ω3) ∼= H1(V,O) ∼= H0,1(V ). (12.15)

Consequently, the Hodge diamond of a simply-connected Calabi-Yau threefold is given
by

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

, (12.16)

and one has

χ(V ) = 2(h1,1 − h2,1). (12.17)
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Note that h1,1(V ) = 1 for the above examples by the Lefschetz hyperplane theorem.
However, there are many Calabi-Yau threefolds which have h1,1(V ) > 1 [?].

The space of quintics in P4 modulo the automorphism group PGL(5,C) has di-
mension 101, and therefore all deformations of the quintic are still quintics, in contrast
to what happens in the K3 case. It turns out that all Calabi-Yau manifolds in di-
mensions 3 and greater are algebraic [?]. To see this, we use Bochner’s vanishing
theorem:

Theorem 12.1 (Bochner). If (M, g, J) is Kähler and has non-negative Ricci ten-
sor, and not identically zero, then there are no nontrivial holomorphic (p, 0)-forms.
Furthermore, if Ric ≡ 0, then holomorphic (p, 0)-forms are parallel.

If (M, g, J) is Kähler and has non-positive Ricci tensor, and not identically zero,
then there are no non-trivial holomorphic vector fields. Furthermore, if Ric ≡ 0, then
any holomorphic vector field is parallel.

Proof. One just goes through the usual Weitzenbock argument on p-forms, and show
that for (p, 0)-forms, the curvature term is given by the Ricci tensor (but need to check
the sign of this term). Note that if a (p, 0)-form is harmonic for the Hodge Laplacian,
then it is harmonic for the ∂-Laplacian, and thus ∂-closed and ∂-co-closed, but a
(p, 0)-form is automatically ∂-co-closed, so the harmonic (p, 0)-forms are exactly the
holomorphic (p, 0)-forms.

The statment on holomorphic vector fields is the dual to the statement on holo-
morphic (1, 0)-forms, and the sign of the curvature term in the Weitzenbock formula
is opposite. If time, we will go through the details later.

So assume we have a Calabi-Yau manifold (V n, J, g) with holonomy exactly SU(n).
This implies that the canonical bundle is flat, and since the curvature form of the
canonical bundle is a multiple of the Ricci form, the metric g must be Ricci-flat. Then
Bochner’s Theorem implies that all harmonic (p, 0)-forms are parallel. We already
know that the canonical bundle admit a parallel section. For 0 < p < n, existence
of such a parallel form would imply reduction of the holonomy group to a proper
subgroup of SU(n). So if n ≥ 3, we have that h2,0 = 0. By the Kähler identities, we
also have that h0,2 = 0, and therefore

H2(V,C) = H1,1(V ). (12.18)

The Kähler cone is therefore an open cone in H2(V,C), so it must contain an integral
class in H2(V,Z). Consequently, by Kodaira’s embedding theorem, V is projective,
and by Chow’s Theorem, it is algebraic.

Note that a flat torus cross a K3 surface is not algebraic, but this does not
contradict the above because the holonomy in this case is a proper subgroup of SU(3).
For threefolds, above we proved that is V 3 is simply connected with trivial canonical
bundle, then h2,0 = 0. Finally, note that the second part of Bochner’s Theorem
implies that Calabi-Yau metrics have discrete automorphism group (in fact, it must
be finite).
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12.3 Riemann surface complete intersections

Let us now just consider the simple case of a complete intersection of n − 1 hyper-
surfaces in Pn, of degrees d1, . . . , dn−1. We have

1 + (n+ 1)ω
∣∣
V

= 1 + c1 + (d1 + · · ·+ dn−1)ω
∣∣
V
, (12.19)

which yields

c1 = (n+ 1− d1 − · · · − dn−1)ω
∣∣
V
. (12.20)

The Euler characteristic is

χ(V ) = (n+ 1− d1 − · · · − dn−1)

∫
V

ω. (12.21)

By definition of the Poincaré dual,∫
V

ω =

∫
Pn
ω ∧ ηV =

∫
Pn
ηH ∧ ηV . (12.22)

We use some intersection theory to understand the integral. Intersecting cycles is
Poincaré dual to the cup product, thus the integral counts the number of intersection
points of V with a generic hyperplane. Consequently,

χ(V ) = (n+ 1− d1 − · · · − dn−1)d1d2 · · · dn−1. (12.23)

The genus g is given by

g = 1− 1

2
(n+ 1− d1 − · · · − dn−1)d1d2 · · · dn−1. (12.24)

Proposition 12.1. For Riemann surface complete intersections, we have the follow-
ing:

• A curve of genus zero arises as a nontrivial complete intersection only if it is a
quadric in P2.

• A curve of genus 1 arises as a complete intersection only if it is a cubic in P2

or the intersection of two quadrics in P3.

• A curve of genus 2 does not arise as a complete intersection.

Proof. The first two cases are an easy computation. For the last case, assume by
contradiction that it does. If any of the di = 1, then it is a complete intersection in a
lower dimensional projective space. So without loss of generality, assume that di ≥ 2.
We would then have

2 = −(n+ 1− d1 − · · · − dn−1)d1d2 · · · dn−1. (12.25)

The right hand side is a product of integers. Since 2 is prime, the only possibility is
that n = 2, and d1 = 2, in which case the above equation reads

2 = −2, (12.26)

which is a contradiction.
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12.4 The twisted cubic

Here is an example of a surface which is not a complete intersection, called the twisted
cubic. Consider

φ : P1 → P3, (12.27)

by

φ([u, v]) = [u3, u2v, uv2, v3]. (12.28)

Using coordinates [z0, z1, z2, z3], the image of φ lies on the intersection of 3 quadrics,

z0z2 = z2
1 (12.29)

z1z3 = z2
2 (12.30)

z0z3 = z1z2. (12.31)

The intersection of any 2 of these equations vanishes on the twisted cubic, but has
another zero component, and the third equation then picks out the correct component.

13 Lecture 13

13.1 Riemann-Roch Theorem

Instead of using the Hirzebruch signature Theorem to compute these characteristic
numbers, we can use the Riemann-Roch formula for complex manifolds.

Let E be a complex vector bundle over V of rank k. Assume that E splits into a
sum of line bundles

E = L1 ⊕ · · · ⊕ Lk. (13.1)

Let ai = c1(Li). Then

c(E) = (1 + a1) · · · (1 + ak), (13.2)

which shows that cj(E) is given by the elementary symmetric functions of the ai, that
is

cj(E) =
∑

i1<···<ik

ai1 · · · aik . (13.3)

Any other symmetric polynomial can always be expressed as a polynomial in the
elementary symmetric functions. We define the Chern character as

ch(E) = eai + · · ·+ eak . (13.4)

Re-expressing in terms of the Chern classes, we have the first few terms of the Chern
character:

ch(E) = rank(E) + c1(E) +
1

2

(
c1(E)2 − 2c2(E)

)
+ . . . . (13.5)
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The Todd Class is associated to

Td(E) =
a1

1− e−a1
· · · ak

1− e−ak
(13.6)

Re-expressing in terms of the Chern classes, we have the first few terms of the Todd
class:

Td(E) = 1 +
1

2
c1(E) +

1

12

(
c1(E)2 + c2(E)

)
+

1

24
c1(E)c2(E) + . . . . (13.7)

For an almost complex manifold V , let Td(V ) = Td(T (1,0)V ).
Note the following fact: except for ch0, all of the Chern character and Todd

polynomials are independent of the rank of the bundle.
Recall the Dolbeault complex with coefficients in a holomorphic vector bundle,

Ωp(E)
∂→ Ωp+1(E). (13.8)

Let Hp(V, E) denote the pth cohomology group of this complex, and define the holo-
morphic Euler characteristic as

χ(V, E) =
k∑
p=0

(−1)p dimC(Hp(V, E)). (13.9)

Theorem 13.1. (Riemann-Roch) Let E be a holomorphic vector bundle over a com-
plex manifold V . Then

χ(V, E) =

∫
V

ch(E) ∧ Td(V ). (13.10)

We look at a few special cases. Let V be a curve, and let E be a line bundle over
V , then we have

dimH0(V, E)− dimH1(V, E) =

∫
V

c1(E) +
1

2
c1(V ). (13.11)

Recall that c1(V ) is the Euler class, and
∫
V
c1(E) is the degree d of the line bundle.

Using Serre duality, this is equivalent to

dimH0(V, E)− dimH0(V,K ⊗ E∗) = d+ 1− g, (13.12)

which is the classical Riemann-Roch Theorem for curves (g is the genus of V ).
Next, let V be of dimension 2, and E be a line bundle, then

dimH0(V, E)− dimH1(V, E) + dimH2(V, E)

=

∫
V

1

2
c1(E)c1(V ) +

1

12

(
c1(V )2 + c2(V )

)
.

(13.13)
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If E is the trivial line bundle, then this is

1− b0,1 + b0,2 =
1

12

∫
V

(
c1(V )2 + c2(V )

)
(13.14)

If V is a hypersurface of degree d in P3, then this gives

b0,2 =
1

6
(d− 3)(d− 2)(d− 1), (13.15)

which is of course in agreement with (11.65) above. All of the other characteristic
numbers follow from this.

If E is a rank 2 bundle, then

dimH0(V, E)− dimH1(V, E) + dimH2(V, E)

=

∫
V

1

2
c1(E)c1(V ) +

1

6

(
c1(V )2 + c2(V )

)
+

1

2

(
c1(E)2 − 2c2(E)

)
.

(13.16)

For fun, again we let V be a complex hypersurface in P3, and let E be Ω1 =
Λ(1,0) = (T (1,0))∗, so c1(Ω1) = −c1(V ), and c2(Ω1) = c2(V ). We have b0,1 = b1,0 = 0,
and by Serre duality b1,2 = b1,0 = 0. So Riemann-Roch gives

−b1,1 =

∫
V

1

2
c1(Ω1)c1(V ) +

1

6

(
c1(V )2 + c2(V )

)
+

1

2

(
c1(Ω1)2 − 2c2(Ω1)

)
=

∫
V

−1

2
c1(V )2 +

1

6

(
c1(V )2 + c2(V )

)
+

1

2

(
c1(V )2 − 2c2(V )

)
=

∫
V

(
1

6
c1(V )2 − 5

6
c2(V )

)
= −1

3
d(2d2 − 6d+ 7),

which is of course in agreement with (11.66) from above.

13.2 Hodge numbers of Hopf surface

The Hodge diamond of a Hopf surface is

1
0 1

0 0 0
1 0

1

. (13.17)

To see this, obviously h0,0 = 1 is trivial, and h2,2 = 0 follows from Serre duality.
Next, h1,0 = 0 and h2,0 = 0 since there are no holomorphic p-forms on C2 which
are invariant under the group action. By Serre duality, it follows that h1,2 = 0 and
h0,2 = 0. The Riemann-Roch formula (13.14) yields that

h0,0 − h0,1 + h0,2 = 0, (13.18)

which implies that h0,1 = 1. By Serre duality, it follows that h2,1 = 1. Finally, the
Euler characteristic formula (9.19) yields that h1,1 = 0.
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14 Lecture 14

14.1 Moduli of Riemann surfaces

The Riemann-Roch Theorem for a Riemann surface (M,J) and holomorphic line
bundle E says that

dim(H0(M, E))− dim(H1(M, E)) = d+ 1− k, (14.1)

where d is the the degree of the line bundle, and k is the genus of M . Note the degree
is given by counting the zeroes and poles of any meromorphic section.

We apply this to E = Θ, the holomorphic tangent bundle. The degree of Θ is
2− 2g which is the Euler characteristic. Note by Serre duality, we have

H1(M,Θ) = H0(M,Θ∗ ⊗Θ∗), (14.2)

so the Riemann-Roch formula becomes

dim(H0(M,Θ))−H0(M,Θ∗ ⊗Θ∗) = d+ 1− k. (14.3)

14.2 Genus 0

First consider the case of genus 0. In this case, Θ∗ ⊗ Θ∗ degree −4, so has no
holomorphic section. Riemann-Roch gives

dim(H0(M,Θ)) = 3. (14.4)

This is correct because the complex Lie algebra of holomorphic vector fields is iso-
morphic to the real Lie algebra of conformal vector fields, and the identity component
is

SO(3, 1) = PSL(2,C), (14.5)

which is a 6-dimensional real Lie group.
In fact, we have

Corollary 14.1. If (M,J) is a Riemann surface homeomorphic to S2 then it is
biholomorphic to the Riemann sphere (S2, JS).

Proof. TBC.

14.3 Genus 1

Next, the case of genus 1. Then the bundles have degree 0, so the space of sections is
1 dimensional, and Riemann-Roch gives 0 = 0. The moduli space is 1-dimensional.
In fact, we have

Corollary 14.2. Any Riemann surface of genus 1 is biholomorphic to a complex
torus.

Proof. TBC.
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14.4 Genus > 1

We get something new for genus k > 1. In this case Θ has negative degree, so has no
holomorphic sections. The Riemann-Roch formula yields

H1(M,Θ) = H0(M,Θ∗ ⊗Θ∗) = −(2− 2k)− 1 + k = 3k − 3, (14.6)

thus the moduli space has complex dimension 3k − 3. Since H2(M,Θ) = 0 and
H0(M,Θ) = 0, it is a smooth manifold of real dimension 6k − 6.

The Riemann-Roch formula implies that all Riemann surfaces are in fact projec-
tive, but we will leave this to the interested student to provide a proof.

14.5 Kodaira-Nakano vanishing theorem
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