Riemannian Curvature Functionals: Lecture I

Jeff Viaclovsky

Park City Mathematics Institute

July 16, 2013

Overview of lectures

The goal of these lectures is to gain an understanding of critical points of certain Riemmannian functionals in dimension 4.

The starting point will be the Einstein-Hilbert functional:

$$\tilde{\mathcal{E}}(g) = Vol(g)^{-1/2} \int_M R_g dV_g,$$

where R_g is the scalar curvature.

Euler-Lagrange equations:

$$Ric(g) = \lambda \cdot g,$$

where λ is a constant.

(M,g) is called an *Einstein manifold*.

• We will study this functional in depth, and also give a local description of the moduli space of Einstein metrics.

Overview: Quadratic curvature functionals

We will also concentrate on linear combinations of the following quadratic curvature functionals:

$$\mathcal{W} = \int |W|^2 dV$$
, $\rho = \int |Ric|^2 dV$, $\mathcal{S} = \int R^2 dV$.

- Einstein metrics are critical for these functionals, but there are many non-Einstein critical metrics.
- ullet Special critical metrics for \mathcal{W} : self-dual metrics. We will study the deformation theory of such metrics, and discuss properties of the moduli space, such as existence of the Kuranishi map.

Overview: Stability properties

Critical points of the Einstein-Hilbert functional in general have a saddle-point structure. However, critical points for certain quadratic functionals have a nicer local variational structure. For example, one result we will discuss is the following:

Theorem (Gursky-V 2011)

On S^4 , g_S is a strict local minimizer for

$$\mathcal{F}_{\tau} = \int |Ric|^2 dV + \tau \int R^2 dV$$

provided that

$$-\frac{1}{3}<\tau<\frac{1}{6}.$$

Overview: An existence theorem

Theorem (Gursky-V 2013)

A critical metric for the functional

$$\mathcal{B}_t = \int |W|^2 dV + t \int R^2 dV$$

exists on the manifolds in the table for some t near the indicated value of t_0 .

Topology of connected sum	Value(s) of t_0
$\mathbb{CP}^2\#\overline{\mathbb{CP}}^2$	-1/3
$S^2 \times S^2 \# \overline{\mathbb{CP}}^2 = \mathbb{CP}^2 \# 2 \overline{\mathbb{CP}}^2$	$-1/3$, $-(9m_1)^{-1}$
$2\#S^2 \times S^2$	$-2(9m_1)^{-1}$

The constant m_1 is a geometric invariant called the *mass* of an certain asymptotically flat metric: the Green's function metric of the product metric $S^2 \times S^2$.

Outline of today's lecture

- Notation and conventions
- Einstein-Hilbert functional.
- First variation.
- Second variation.
- · Conformal variations.
- Transverse-traceless variations.
- Constant curvature examples and $S^2 \times S^2$.

Notation and conventions

 $abla_X Y = \text{covariant derivative on Riemannian manifold } (M,g).$ Christoffel symbols:

$$\nabla_{\partial_i}\partial_j = \Gamma^k_{ij}\partial_k.$$

Formula for Christoffel symbols:

$$\Gamma_{ij}^{k} = \frac{1}{2}g^{kl} \Big(\partial_{i}g_{jl} + \partial_{j}g_{il} - \partial_{l}g_{ij} \Big)$$

Notation and conventions: Curvature

Curvature as a (1,3)-tensor:

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z,$$

In coordinates:

$$R(\partial_i, \partial_j)\partial_k = R_{ijk}^{\ \ l}\partial_l,$$

Curvature as a (0,4)-tensor

$$Rm(X, Y, Z, W) \equiv -\langle R(X, Y)Z, W \rangle.$$

In coordinates:

$$R_{ijkl} = Rm(\partial_i, \partial_j, \partial_k, \partial_l),$$

Notation and conventions: Warning

Our convention:

$$R_{ijlk} = R_{ijk}{}^{m} g_{ml},$$

We lower the upper index to the *third* position.

Remark

Some authors choose to lower this index to a different position. One has to be very careful with this, or you might end up proving that S^n has negative curvature!

Notation and conventions: Ricci tensor and scalar curvature

Ricci tensor:

$$R_{ij} = R_{lij}^{\ \ l} = g^{lm} R_{limj} = R_{ji}$$

Scalar curvature:

$$R = g^{pq} R_{pq} = g^{pq} g^{lm} R_{lpmq}.$$

Einstein-Hilbert functional

 $\mathcal{M} =$ the space of Riemannian metrics on a manifold M.

The Einstein-Hilbert functional $\mathcal{E}: \mathcal{M} \to \mathbb{R}$:

$$\mathcal{E}(g) = \int_{M} R_g dV_g.$$

This is a *Riemannian functional* in the sense that it is invariant under diffeomorphisms:

$$\mathcal{E}(\varphi^*g)=\mathcal{E}(g)$$

Einstein-Hilbert functional: First variation

Proposition

If M is closed and $n \geq 3$, then a metric $g \in \mathcal{M}$ is critical for \mathcal{E} if and only if g is Ricci-flat.

Outline of Proof: Let g(t) be a variation, with h=g'(0). Then

$$\mathcal{E}(g(t))' = \int_{M} (R(g(t))dV_{g(t)})'$$

$$= \int_{M} R(g(t))'dV_{g(t)} + R(g(t))(dV_{g(t)})'$$

We use the formulae:

$$R' = -\Delta(trh) + \delta^2 h - R_{lp} h^{lp}$$
$$(dV_g)' = \frac{1}{2} tr_g(h) dV_g.$$

Proof continued

Integrating by parts:

$$\mathcal{E}'_g(h) = \int_M \left(-\Delta(trh) + \delta^2 h - R^{lp} h_{lp} + \frac{R}{2} t r_g(h) \right) dV_g$$
$$= \int_M \left((-R^{lp} + \frac{R}{2} g^{lp}) h_{lp} \right) dV_g.$$

If this vanishes for all variations h, then

$$Ric = \frac{R}{2}g.$$

If n > 2, taking a trace, we find that R = 0, so (M, g) is Ricci-flat.

Remark

If n=2 then $\mathcal E$ has zero variation, thus is constant. This is not surprising in view of the Gauss-Bonnet Theorem.

Diffeomorphism invariance ⇒ Bianchi identity

The tensor that arises in the above calculation

$$G = -Ric + \frac{R}{2}g,$$

is known as the Einstein tensor. By the contracted second Bianchi identity, it is divergence-free. We can actually see this as a consequence of diffeomorphism invariance of the functional:

Let ϕ_t be a path of diffeomorphisms, and let $g_t = \phi_t^*g$. Then $g' = \mathcal{L}_X g$, where X is the tangent vector field of this 1-parameter group of diffeomorphisms at t=0, and \mathcal{L} is the Lie derivative operator. Integrating by parts:

$$\int_{M} \langle G, \mathcal{L}_{X} g \rangle dV_{g} = -\int_{M} \langle 2\delta G, X \rangle dV_{g},$$

for any vector field X, which implies that $\delta G = 0$.

Normalized Einstein-Hilbert functional

The functional $\mathcal E$ is not scale-invariant for $n\geq 3$. To fix this we define

$$\tilde{\mathcal{E}}(g) = Vol(g)^{\frac{2-n}{n}} \int_{M} R_g dV_g.$$

To make things simpler, let's restrict to dimension 4:

$$\tilde{\mathcal{E}}(g) = Vol(g)^{-1/2} \int_M R_g dV_g.$$

Proposition

A metric g is critical for $\tilde{\mathcal{E}}$ under all conformal variations (those of the form $h=f\cdot g$ for $f:M\to\mathbb{R}$) if and only if g has constant scalar curvature. Furthermore, a metric $g\in\mathcal{M}$ is critical for $\tilde{\mathcal{E}}$ if and only if g is Einstein.

Proof of Proposition

$$\tilde{\mathcal{E}}'(h) = Vol(g)^{-1/2} \left(-\frac{1}{2} Vol(g)^{-1} \int_{M} \frac{1}{2} (tr_g h) dV_g \cdot \int_{M} R_g dV_g \right) + Vol(g)^{-1/2} \int_{M} \left(-R^{lp} + \frac{R}{2} g^{lp} \right) h_{lp} dV_g.$$

If g(t) = f(t)g, then

$$\tilde{\mathcal{E}}'(h) = \frac{1}{4} Vol(g)^{-1/2} \Big(\int_{M} (tr_g h) (R_g - \overline{R}) dV_g \Big),$$

where \overline{R} denotes the average scalar curvature. If this is zero for an arbitrary function tr_gh , then R_g must be constant. The full variation then simplifies to

$$\tilde{\mathcal{E}}'(h) = Vol(g)^{-1/2} \int_{\mathcal{M}} \left(-R^{lp} + \frac{R}{4} g^{lp} \right) h_{lp} dV_g.$$

If this vanishes for all variations, then the traceless Ricci tensor must vanish, so (M, g) is Einstein.

Einstein-Hilbert functional: Second variation

Since the functional is scale invariant, from now on we will always restrict to variations satisfying $\int tr_g(h)dV=0$.

Proposition

Let g be Einstein with $Ric=\lambda g$. Then the second derivative of $\tilde{\mathcal{E}}$ at t=0 is given by

$$\tilde{\mathcal{E}}'' = Vol(g)^{-1/2} \Big\{ \lambda \int |h|^2 dV + \int \langle G'(h), h \rangle dV \Big\}. \tag{1}$$

The proof is left as an exercise. The main point is that the second derivative of a functional is well-defined at a critical point (it only depends on the tangent to the variation).

Second variation continued

Using the formula for the linearization of the Ricci tensor,

$$(Ric')_{ij} = \frac{1}{2} \Big(-\Delta h_{ij} + \nabla_i (\delta h)_j + \nabla_j (\delta h)_i - \nabla_i \nabla_j (trh) - 2R_{iljp} h^{lp} + R_i^p h_{jp} + R_j^p h_{ip} \Big),$$

and letting $(Rm * h)_{ij} = R_{iljp}h^{lp}$, this can be rewritten as follows:

Proposition

Let g be Einstein with $Ric=\lambda g$. Then the second derivative of $\tilde{\mathcal{E}}$ at t=0 is given by

$$\tilde{\mathcal{E}}'' = Vol(g)^{-1/2} \Big\{ \int \Big\langle h, \frac{1}{2} \Delta h - \frac{1}{2} \mathcal{L}(\delta h) + (\delta^2 h) g - \frac{1}{2} (\Delta t r_g h) g - \frac{\lambda}{2} (t r_g h) g + Rm * h \Big\rangle dV \Big\}.$$

Conformal variations

The above formula looks pretty complicated, but let's first look at conformal variations, that is, those variations of the form $h=f\cdot g$, for a function $f:M\to\mathbb{R}$.

Corollary

If h = fg, then

$$\tilde{\mathcal{E}}'' = Vol(g)^{-1/2} \left\{ \int (-3\Delta f - 4\lambda f) f dV_g \right\}$$

This implies the following

Corollary

If g is Einstein, then $\tilde{\mathcal{E}}$ is locally strictly minimizing in the conformal direction, unless g is isometric to (S^4, g_S) .

The case $\lambda \leq 0$ is obvious, the case $\lambda > 0$ will follow from a result due to Lichnerowicz on the next slide.

Lichnerowicz eigenvalue estimate

We let λ_1 denote the lowest non-trivial eigenvalue of the Laplacian on functions, that is $\Delta u = -\lambda_1 u$.

Theorem (Lichnerowicz)

If a compact manifold (M^n,g) satisfies $Ric \geq (n-1) \cdot g$, then $\lambda_1 \geq n$, with equality if and only if (M^n,g) is isometric to (S^n,g_S) .

Proof.

Exercise. Hint: Commuting covariant derivatives, write

$$\int_{M} (\Delta f)^{2} = \int |\nabla^{2} f|^{2} dV + \int Ric(\nabla f, \nabla f) dV,$$

and use the matrix inequality $|A|^2 \ge (1/n)(tr(A))^2$. Characterize equality in this inequality to analyze the case of $\lambda_1 = n$.

Conformal variations on S^4

On (S^4,g_S) , eigenfunctions corresponding to eigenvalue 4 yield directions with $\tilde{\mathcal{E}}''=0$. There is a nice geometric explanation for this fact:

Proposition

Let ϕ_t be a 1-parameter group of conformal automorphisms of g_S which are not isometries. Then

$$\frac{d}{dt}(\phi_t^*g_S)|_{t=0} = fg,$$

where f is a nontrivial lowest eigenfunction satisfying $\Delta f = -4f$.

Exercise

Prove this. Hint: use the Hodge decomposition to write any 1-form α dual to a conformal vector field as $\alpha=df+\omega$, with ω divergence free. Apply the conformal Killing operator to α and use the resulting equation to show that the trace-free Hessian of f vanishes, and that ω is Killing.

Global conformal minimization

Actually, it turns out the something much stronger is true:

Theorem (Obata)

If (M^n,g) is Einstein, then g is the unique constant scalar curvature metric in its conformal class (up to scaling), unless (M,g) is isometric to (S^n,g_S) , in which case all critical points are the pull-back of g_S under a conformal diffeomorphism. Furthermore, g is a global minimizer of $\tilde{\mathcal{E}}$ in its conformal class (modulo scalings).

To prove this, assume that \hat{g} is a constant scalar curvature metric which is conformal to g. Letting E denote the traceless Ricci tensor, we recall the transformation formula: if $g=\phi^{-2}\hat{g}$, then

$$E_g = E_{\hat{g}} + (n-2)\phi^{-1} \left(\nabla^2 \phi - (\Delta \phi/n) \hat{g} \right),$$

where n is the dimension, and the covariant derivatives are taken with respect to \hat{q} . Since q is Einstein, we have

$$E_{\hat{g}} = (2-n)\phi^{-1}\left(\nabla^2\phi - \frac{1}{n}(\Delta\phi)g\right).$$

Proof of Obata's Theorem continued

Integrating,

$$\int_{M} \phi |E_{\hat{g}}|^{2} d\hat{V} = (2 - n) \int_{M} \phi E_{\hat{g}}^{ij} \left\{ \phi^{-1} \left(\nabla^{2} \phi - \frac{1}{n} (\Delta \phi) g \right)_{ij} \right\} d\hat{V}
= (2 - n) \int_{M} E_{\hat{g}}^{ij} \nabla^{2} \phi_{ij} d\hat{V}
= (n - 2) \int_{M} (\nabla_{j} E_{\hat{g}}^{ij} \cdot \nabla_{i} \phi) d\hat{V} = 0,$$

by the Bianchi identity. Consequently, \hat{g} is also Einstein. If $\hat{g}\neq g$ then (M,g) admits a nonconstant solution of the equation

$$\nabla^2 \phi = \frac{\Delta \phi}{n} g.$$

Taking a divergence, this implies that ϕ is an eigenfunction of the Laplacian with eigenvalue n, so (M,g) is isometric to (S^n,g_S) by the same argument in Lichnerowicz' Theorem.

Proof of Obata's Theorem continued

For existence of a global minimizer, in the negative or zero scalar curvature case, one can apply a standard argument from the calculus of variations to show that a minimizing sequence converges.

In the positive case, scale so that Ric = (n-1)g. Then

$$\tilde{\mathcal{E}}(g) = n(n-1)Vol(g)^{2/n}.$$

By Bishops' theorem, $Vol(M,g) \leq Vol(S^n,g_S)$ with equality if and only if g is isometric to g_S . So if g is not isometric to g_S , we have

$$Y(M,[g]) = \inf_{\tilde{g} \in [g]} \tilde{\mathcal{E}}(g) < \tilde{\mathcal{E}}(S^n, g_S).$$

This estimate implies that a minimizing sequence converges (no bubbles are possible).

The case of (S^n, g_S) takes some extra work, we will omit.

Transverse-traceless variations

Definition

A symmetric 2-tensor h is called transverse-traceless (TT for short) if $\delta_g h = 0$ and $tr_g(h) = 0$.

The second variation formula simplifies considerably for TT variations:

Proposition

If h is transverse-traceless, then

$$\tilde{\mathcal{E}}'' = Vol(g)^{-1/2} \Big\{ \int \Big\langle h, \frac{1}{2} \Delta h + Rm * h \Big\rangle dV \Big\}.$$

The first term is manifestly negative, which shows that critical metrics for $\tilde{\mathcal{E}}$ always have a saddle point structure. In other words, modulo a finite dimensional space, $\tilde{\mathcal{E}}$ is locally strictly *maximizing* in TT directions.

The case of constant curvature

If (M,g) has constant sectional curvature, then

$$R_{ijkl} = k_0(g_{ik}g_{jl} - g_{jk}g_{il}). (2)$$

The above second variation formula for TT tensors simplifies to

$$\tilde{\mathcal{E}}'' = Vol(g)^{-1/2} \Big\{ \int \Big\langle h, \frac{1}{2} \Delta h - k_o h \Big\rangle dV \Big\}.$$

- If $k_0 > 0$, this is clearly strictly negative.
- If $k_0=0$, then strictly negative, except for parallel h. These correspond to deformations of the flat structure.
- If $k_0 < 0$, this is still strictly negative, we will see on next slide.

Hyperbolic 4-manifolds

We consider eigenvalues defined by

$$\frac{1}{2}\Delta h + Rm * h = (-\mu)h.$$

Lemma

If (M,g) is compact and hyperbolic, then the least eigenvalue of the rough Laplacian on TT tensors is at least 4.

Proof.

Exercise. Hint: start with the inequality

$$\int_{M} |\nabla_{i} h_{jk} - \nabla_{j} h_{ik}|^{2} dV \ge 0, \tag{3}$$

integrate by parts, commute covariant derivatives, etc.

So at a hyperbolic metric, $\tilde{\mathcal{E}}$ is also locally strictly maximizing in TT directions.

Proposition

On $S^2 \times S^2$ with the product metric g_1+g_2 , both metrics of constant Gaussian curvature 1, the lowest eigenvalue of the operator $\frac{1}{2}\Delta h + Rm*h$ on TT tensors is -1. The corresponding eigenspace is 1-dimensional, and is spanned by $h=g_1-g_2$. The next largest eigenvalue is 1.

We will not prove this, since the argument is lengthy.

Exercise

- (i) Show that $h=g_1-g_2$ is an eigentensor with eigenvalue -1. Find a constant scalar curvature deformation of the product metric corresponding to h, and which increases the functional $\tilde{\mathcal{E}}$.
- (ii) Show that $\alpha_1 \odot \alpha_2$ (\odot = symmetric product), where α_i are 1-forms dual to Killing fields are eigentensors with eigenvalue 1.

Next lecture

Next time we will discuss the following:

- To understand the local behavior of the functional near an Einstein metric, we only need to look at conformal and transverse-traceless directions, the other directions do not matter.
- Ebin-Palais slice theorem; consider the functional as a mapping from \mathcal{M}/\mathcal{D} , the space of Riemannian metrics modulo diffeomorphisms.
- Saddle point structure and the Yamabe invariant.
- Local description of the moduli space of Einstein metrics.