Critical metrics on connected sums of Einstein four-manifolds

Jeff Viaclovsky

University of Wisconsin, Madison

March 22, 2013

Kyoto
Einstein manifolds

Einstein-Hilbert functional in dimension 4:

\[\tilde{R}(g) = Vol(g)^{-1/2} \int_M R_g dV_g, \]

where \(R_g \) is the scalar curvature.
Einstein manifolds

Einstein-Hilbert functional in dimension 4:

\[\tilde{R}(g) = Vol(g)^{-1/2} \int_M R_g dV_g, \]

where \(R_g \) is the scalar curvature.

Euler-Lagrange equations:

\[Ric(g) = \lambda \cdot g, \]

where \(\lambda \) is a constant.

\((M, g)\) is called an \textit{Einstein manifold}.\]
Theorem (Anderson, Bando-Kasue-Nakajima, Tian)

\((M_i, g_i)\) sequence of 4-dimensional Einstein manifolds satisfying

\[\int |Rm|^2 < \Lambda, \ \text{diam}(g_i) < D, \ \text{Vol}(g_i) > V > 0.\]

Then for a subsequence \(\{j\} \subset \{i\},\)

\((M_j, g_j) \xrightarrow{\text{Cheeger–Gromov}} (M_\infty, g_\infty),\)

where \((M_\infty, g_\infty)\) is an orbifold with finitely many singular points.
Kummer example

Rescaling such a sequence to have bounded curvature near a singular point yields Ricci-flat non-compact limits called \textit{asymptotically locally Euclidean} spaces (ALE spaces), also called “bubbles”.

Example

There exists a sequence of Ricci-flat metrics g_i on $K3$ satisfying:

$$ (K3, g_i) \longrightarrow (T^4/\{\pm 1\}, g_{\text{flat}}). $$

At each of the 16 singular points, an Eguchi-Hanson metric on T^*S^2 “bubbles off”.
Can you reverse this process?
Can you reverse this process?
I.e., start with an Einstein orbifold, “glue on” bubbles at the singular points, and resolve to a smooth Einstein metric?
Can you reverse this process?

I.e., start with an Einstein orbifold, “glue on” bubbles at the singular points, and resolve to a smooth Einstein metric?

In general, answer is “no”.
Question

Can you reverse this process?

I.e., start with an Einstein orbifold, “glue on” bubbles at the singular points, and resolve to a smooth Einstein metric?

In general, answer is “no”.

Reason: this is a self-adjoint gluing problem so possibility of moduli is an obstruction.
Self-dual or anti-self-dual metrics

\((M^4, g)\) oriented.

\[
\mathcal{R} = \begin{pmatrix}
W^+ + \frac{R}{12} I & E \\
E & W^- + \frac{R}{12} I
\end{pmatrix}.
\]

\(E = Ric - (R/4)g.\)
Self-dual or anti-self-dual metrics

\((M^4, g)\) oriented.

\[
\mathcal{R} = \begin{pmatrix}
W^+ + \frac{R}{12} I & E \\
E & W^- + \frac{R}{12} I \\
\end{pmatrix}.
\]

\(E = Ric - (R/4)g.\)

\(W^+ = 0\) is called anti-self-dual (ASD).
\(W^- = 0\) is called self-dual (SD).
Self-dual or anti-self-dual metrics

\((M^4, g)\) oriented.

\[
\begin{pmatrix}
W^+ + \frac{R}{12} I & E \\
E & W^- + \frac{R}{12} I
\end{pmatrix}
\]

\[E = Ric - (R/4)g.\]

\(W^+ = 0\) is called anti-self-dual (ASD).
\(W^- = 0\) is called self-dual (SD).

Either condition is conformally invariant.
ASD gluing

Theorem (Donaldson-Friedman, Floer, Kovalev-Singer, etc.)

If (M_1, g_1) and (M_2, g_2) are ASD and $H^2(M_i, g_i) = \{0\}$ then there exists ASD metrics on the connected sum $M_1 \# M_2$.
Theorem (Donaldson-Friedman, Floer, Kovalev-Singer, etc.)

If (M_1, g_1) and (M_2, g_2) are ASD and $H^2(M_i, g_i) = \{0\}$ then there exists ASD metrics on the connected sum $M_1 \# M_2$.

Contrast with Einstein gluing problem:

- ASD situation can be unobstructed ($H^2 = 0$), yet still have moduli ($H^1 \neq 0$).
- Cannot happen for a self-adjoint gluing problem.
Recently, Biquard showed the following:

Theorem (Biquard, 2011)

Let \((M, g)\) be a (non-compact) Poincaré-Einstein (P-E) metric with a \(\mathbb{Z}/2\mathbb{Z}\) orbifold singularity at \(p \in M\). If \((M, g)\) is rigid, then the singularity can be resolved to a P-E Einstein metric by gluing on an Eguchi-Hanson metric if and only if

\[
\det(\mathcal{R}^+)(p) = 0.
\]
Recently, Biquard showed the following:

Theorem (Biquard, 2011)

Let \((M, g)\) be a (non-compact) Poincaré-Einstein (P-E) metric with a \(\mathbb{Z}/2\mathbb{Z}\) orbifold singularity at \(p \in M\). If \((M, g)\) is rigid, then the singularity can be resolved to a P-E Einstein metric by gluing on an Eguchi-Hanson metric if and only if

\[
\det(\mathcal{R}^+)(p) = 0.
\]

Self-adjointness of this gluing problem is overcome by freedom of choosing the boundary conformal class of the P-E metric.
Quadratic curvature functionals

A basis for the space of quadratic curvature functionals is

\[\mathcal{W} = \int |W|^2 \, dV, \quad \rho = \int |Ric|^2 \, dV, \quad S = \int R^2 \, dV. \]
A basis for the space of quadratic curvature functionals is

\[\mathcal{W} = \int |W|^2 \, dV, \quad \rho = \int |Ric|^2 \, dV, \quad S = \int R^2 \, dV. \]

In dimension four, the Chern-Gauss-Bonnet formula

\[32\pi^2 \chi(M) = \int |W|^2 \, dV - 2 \int |Ric|^2 \, dV + \frac{2}{3} \int R^2 \, dV \]

implies that \(\rho \) can be written as a linear combination of the other two (plus a topological term).
A basis for the space of quadratic curvature functionals is

\[W = \int |W|^2 \, dV, \quad \rho = \int |Ric|^2 \, dV, \quad S = \int R^2 \, dV. \]

In dimension four, the Chern-Gauss-Bonnet formula

\[32\pi^2 \chi(M) = \int |W|^2 \, dV - 2 \int |Ric|^2 \, dV + \frac{2}{3} \int R^2 \, dV \]

implies that \(\rho \) can be written as a linear combination of the other two (plus a topological term).

Consequently, we will be interested in the functional

\[\mathcal{B}_t[g] = \int |W|^2 \, dV + t \int R^2 \, dV. \]
Generalization of the Einstein condition

The Euler-Lagrange equations of B_t are given by

$$B^t \equiv B + tC = 0,$$

where B is the Bach tensor defined by

$$B_{ij} \equiv -4 \left(\nabla^k \nabla^l W_{ikjl} + \frac{1}{2} R^{kl} W_{ikjl} \right) = 0,$$

and C is the tensor defined by

$$C_{ij} = 2 \nabla_i \nabla_j R - 2 (\Delta R) g_{ij} - 2 R R_{ij} + \frac{1}{2} R^2 g_{ij}.$$
The Euler-Lagrange equations of B_t are given by

$$B^t \equiv B + tC = 0,$$

where B is the *Bach tensor* defined by

$$B_{ij} \equiv -4\left(\nabla^k \nabla^l W_{ikjl} + \frac{1}{2} R^{kl} W_{ikjl}\right) = 0,$$

and C is the tensor defined by

$$C_{ij} = 2\nabla_i \nabla_j R - 2(\Delta R)g_{ij} - 2RR_{ij} + \frac{1}{2} R^2 g_{ij}.$$
Generalization of the Einstein condition

The Euler-Lagrange equations of B_t are given by

$$B^t \equiv B + tC = 0,$$

where B is the Bach tensor defined by

$$B_{ij} \equiv -4\left(\nabla^k \nabla^l W_{ikjl} + \frac{1}{2} R^{kl} W_{ikjl}\right) = 0,$$

and C is the tensor defined by

$$C_{ij} = 2\nabla_i \nabla_j R - 2(\Delta R) g_{ij} - 2RR_{ij} + \frac{1}{2} R^2 g_{ij}.$$

- Any Einstein metric is critical for B_t.
- We will refer to such a critical metric as a B^t-flat metric.
Generalization of the Einstein condition

For $t \neq 0$, by taking a trace of the E-L equations:

$$\Delta R = 0.$$

If M is compact, this implies $R = \text{constant}$.
Generalization of the Einstein condition

For $t \neq 0$, by taking a trace of the E-L equations:

$$\Delta R = 0.$$

If M is compact, this implies $R = \text{constant}$.

Consequently, the B^t-flat condition is equivalent to

$$B = 2tR \cdot E,$$

where E denotes the traceless Ricci tensor.
Generalization of the Einstein condition

For \(t \neq 0 \), by taking a trace of the E-L equations:

\[
\Delta R = 0.
\]

If \(M \) is compact, this implies \(R = \text{constant} \).

Consequently, the \(B^t \)-flat condition is equivalent to

\[
B = 2tR \cdot E,
\]

where \(E \) denotes the traceless Ricci tensor.

- The Bach tensor is a constant multiple of the traceless Ricci tensor.
Orbifold Limits

The B^t-flat equation can be rewritten as

$$\Delta Ric = Rm \ast Rc. \quad (\ast)$$

Theorem (Tian-V)

(M_i, g_i) sequence of 4-dimensional manifolds satisfying (\ast) and

$$\int |Rm|^2 < \Lambda, \ Vol(B(q, s)) > Vs^4, \ b_1(M_i) < B.$$

Then for a subsequence $\{j\} \subset \{i\}$,

$$(M_j, g_j) \xrightarrow{\text{Cheeger–Gromov}} (M_\infty, g_\infty),$$

where (M_∞, g_∞) is a multi-fold satisfying (\ast), with finitely many singular points.
Can you reverse this process?
Can you reverse this process?

I.e., start with an critical orbifold, “glue on” critical bubbles at the singular points, and resolve to a smooth critical metric?
Question

Can you reverse this process?

I.e., start with an critical orbifold, “glue on” critical bubbles at the singular points, and resolve to a smooth critical metric?

Answer is still “no” in general, because this is also a self-adjoint gluing problem.
Can you reverse this process?

I.e., start with an critical orbifold, “glue on” critical bubbles at the singular points, and resolve to a smooth critical metric?

Answer is still “no” in general, because this is also a self-adjoint gluing problem.

Our main theorem: the answer is “YES” in certain cases.
Main theorem

Theorem (Gursky-V 2013)

A B^t-flat metric exists on the manifolds in the table for some t near the indicated value of t_0.

Table: Simply-connected examples with one bubble

<table>
<thead>
<tr>
<th>Topology of connected sum</th>
<th>Value(s) of t_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{CP}^2 # \overline{\mathbb{CP}^2}$</td>
<td>$-1/3$</td>
</tr>
<tr>
<td>$S^2 \times S^2 # \overline{\mathbb{CP}^2} = \mathbb{CP}^2 # 2\overline{\mathbb{CP}^2}$</td>
<td>$-1/3, -(9m_1)^{-1}$</td>
</tr>
<tr>
<td>$2# S^2 \times S^2$</td>
<td>$-2(9m_1)^{-1}$</td>
</tr>
</tbody>
</table>

The constant m_1 is a geometric invariant called the mass of an certain asymptotically flat metric: the Green’s function metric of the product metric $S^2 \times S^2$.
Remarks

- \(\mathbb{CP}^2 \# \overline{\mathbb{CP}^2} \) admits an \(U(2) \)-invariant Einstein metric called the “Page metric”. Does not admit any Kähler-Einstein metric, but the Page metric is conformal to an extremal Kähler metric.

- \(\mathbb{CP}^2 \# 2 \mathbb{S}^2 \times \mathbb{S}^2 \) does not admit any Kähler metric, it does not even admit a complex structure. Our metric is the first known example of a “canonical” metric on this manifold.
Remarks

- $\mathbb{CP}^2 \# \overline{\mathbb{CP}^2}$ admits an $U(2)$-invariant Einstein metric called the “Page metric”. Does not admit any Kähler-Einstein metric, but the Page metric is conformal to an extremal Kähler metric.

- $\mathbb{CP}^2 \# 2\overline{\mathbb{CP}^2}$ admits a toric invariant Einstein metric called “Chen-LeBrun-Weber metric”. Again, does not admit any Kähler-Einstein metric, but the Chen-LeBrun-Weber metric is conformal to an extremal Kähler metric.
Remarks

- $\mathbb{CP}^2 \# \overline{\mathbb{CP}^2}$ admits an $U(2)$-invariant Einstein metric called the “Page metric”. Does not admit any Kähler-Einstein metric, but the Page metric is conformal to an extremal Kähler metric.
- $\mathbb{CP}^2 \# 2\overline{\mathbb{CP}^2}$ admits a toric invariant Einstein metric called “Chen-LeBrun-Weber metric”. Again, does not admit any Kähler-Einstein metric, but the Chen-LeBrun-Weber metric is conformal to an extremal Kähler metric.
- $2\# S^2 \times S^2$ does not admit any Kähler metric, it does not even admit a complex structure. Our metric is the first known example of a “canonical” metric on this manifold.
Green’s function metric

The conformal Laplacian:

\[Lu = -6\Delta u + R u. \]

If \((M, g)\) is compact and \(R > 0\), then for any \(p \in M\), there is a unique positive solution to the equation

\[LG = 0 \text{ on } M \setminus \{p\} \]

\[G = \rho^{-2}(1 + o(1)) \]

as \(\rho \to 0\), where \(\rho\) is geodesic distance to the basepoint \(p\).
Green’s function metric

The conformal Laplacian:

\[Lu = -6\Delta u + Ru. \]

If \((M, g)\) is compact and \(R > 0\), then for any \(p \in M\), there is a unique positive solution to the equation

\[
LG = 0 \quad \text{on} \quad M \setminus \{p\}
\]

\[G = \rho^{-2}(1 + o(1)) \]

as \(\rho \to 0\), where \(\rho\) is geodesic distance to the basepoint \(p\).

- Denote \(N = M \setminus \{p\}\) with metric \(g_N = G^2 g_M\). The metric \(g_N\) is scalar-flat and asymptotically flat of order 2.
Green’s function metric

The conformal Laplacian:

\[Lu = -6\Delta u + Ru. \]

If \((M, g)\) is compact and \(R > 0 \), then for any \(p \in M \), there is a unique positive solution to the equation

\[LG = 0 \quad \text{on} \quad M \setminus \{p\} \]

\[G = \rho^{-2}(1 + o(1)) \]

as \(\rho \to 0 \), where \(\rho \) is geodesic distance to the basepoint \(p \).

- Denote \(N = M \setminus \{p\} \) with metric \(g_N = G^2 g_M \). The metric \(g_N \) is scalar-flat and asymptotically flat of order 2.
- If \((M, g)\) is Bach-flat, then \((N, g_N)\) is also Bach-flat (from conformal invariance) and scalar-flat (since we used the Green’s function). Consequently, \(g_N \) is \(B^t \)-flat for all \(t \in \mathbb{R} \).
The approximate metric

- Let \((Z, g_Z)\) and \((Y, g_Y)\) be Einstein manifolds, and assume that \(g_Y\) has positive scalar curvature.
The approximate metric

- Let \((Z, g_Z)\) and \((Y, g_Y)\) be Einstein manifolds, and assume that \(g_Y\) has positive scalar curvature.
- Choose basepoints \(z_0 \in Z\) and \(y_0 \in Y\).
The approximate metric

- Let \((Z, g_Z)\) and \((Y, g_Y)\) be Einstein manifolds, and assume that \(g_Y\) has positive scalar curvature.
- Choose basepoints \(z_0 \in Z\) and \(y_0 \in Y\).
- Convert \((Y, g_Y)\) into an asymptotically flat (AF) metric \((N, g_N)\) using the Green's function for the conformal Laplacian based at \(y_0\). As pointed out above, \(g_N\) is \(B^t\)-flat for any \(t\).
The approximate metric

- Let \((Z, g_Z)\) and \((Y, g_Y)\) be Einstein manifolds, and assume that \(g_Y\) has positive scalar curvature.
- Choose basepoints \(z_0 \in Z\) and \(y_0 \in Y\).
- Convert \((Y, g_Y)\) into an asymptotically flat (AF) metric \((N, g_N)\) using the Green’s function for the conformal Laplacian based at \(y_0\). As pointed out above, \(g_N\) is \(B^t\)-flat for any \(t\).
- Let \(a > 0\) be small, and consider \(Z \setminus B(z_0, a)\). Scale the compact metric to \((Z, \tilde{g} = a^{-4} g_Z)\). Attach this metric to the metric \((N \setminus B(a^{-1}), g_N)\) using cutoff functions near the boundary, to obtain a smooth metric on the connect sum \(Z \# Y\).
Since both g_Z and g_N are B^t-flat, this metric is an “approximate” B^t-flat metric, with vanishing B^t tensor away from the “damage zone”, where cutoff functions were used.
In general, there are several degrees of freedom in this approximate metric.
In general, there are several degrees of freedom in this approximate metric.

- The scaling parameter a
In general, there are several degrees of freedom in this approximate metric.

- The scaling parameter a (1-dimensional).
In general, there are several degrees of freedom in this approximate metric.

- The scaling parameter a (1-dimensional).
- Rotational freedom when attaching
In general, there are several degrees of freedom in this approximate metric.

- The scaling parameter a (1-dimensional).
- Rotational freedom when attaching (6-dimensional).
In general, there are several degrees of freedom in this approximate metric.

- The scaling parameter a (1-dimensional).
- Rotational freedom when attaching (6-dimensional).
- Freedom to move the base points of either factor.
Gluing parameters

In general, there are several degrees of freedom in this approximate metric.

- The scaling parameter a (1-dimensional).
- Rotational freedom when attaching (6-dimensional).
- Freedom to move the base points of either factor (8-dimensional).
In general, there are several degrees of freedom in this approximate metric.

- The scaling parameter a (1-dimensional).
- Rotational freedom when attaching (6-dimensional).
- Freedom to move the base points of either factor (8-dimensional).

Total of 15 gluing parameters.
Lyapunov-Schmidt reduction

These 15 gluing parameters yield a 15-dimensional space of “approximate” kernel of the linearized operator. Using a Lyapunov-Schmidt reduction argument, one can reduce the problem to that of finding a zero of the Kuranishi map

\[\Psi : U \subset \mathbb{R}^{15} \to \mathbb{R}^{15}. \]
Lyapunov-Schmidt reduction

These 15 gluing parameters yield a 15-dimensional space of “approximate” kernel of the linearized operator. Using a Lyapunov-Schmidt reduction argument, one can reduce the problem to that of finding a zero of the Kuranishi map

\[\Psi : U \subset \mathbb{R}^{15} \rightarrow \mathbb{R}^{15}. \]

- It is crucial to use certain weighted norms to find a bounded right inverse for the linearized operator.
Lyapunov-Schmidt reduction

These 15 gluing parameters yield a 15-dimensional space of “approximate” kernel of the linearized operator. Using a Lyapunov-Schmidt reduction argument, one can reduce the problem to that of finding a zero of the Kuranishi map

\[\Psi : U \subset \mathbb{R}^{15} \rightarrow \mathbb{R}^{15}. \]

- It is crucial to use certain weighted norms to find a bounded right inverse for the linearized operator.
- This 15-dimensional problem is too difficult in general: we will take advantage of various symmetries in order to reduce to only 1 free parameter: the scaling parameter \(a \).
Technical theorem

The leading term of the Kuranishi map corresponding to the scaling parameter is given by:

Theorem (Gursky-V 2013)

As \(a \to 0 \), then for any \(\epsilon > 0 \),

\[
\Psi_1 = \left(\frac{2}{3} W(z_0) \star W(y_0) + 4tR(z_0)\text{mass}(g_N) \right) \omega_3 a^4 + O(a^{6-\epsilon}),
\]

where \(\omega_3 = Vol(S^3) \), and the product of the Weyl tensors is given by

\[
W(z_0) \star W(y_0) = \sum_{ijkl} W_{ijkl}(z_0)(W_{ijkl}(y_0) + W_{ilkj}(y_0)),
\]

where \(W_{ijkl}(\cdot) \) denotes the components of the Weyl tensor in a normal coordinate system at the corresponding point.
The Fubini-Study metric

$$(\mathbb{CP}^2, g_{FS})$$, the Fubini-Study metric, $Ric = 6g$.
(\mathbb{CP}^2, g_{FS}), the Fubini-Study metric, $\text{Ric} = 6g$.

Torus action:

$$[z_0, z_1, z_2] \mapsto [z_0, e^{i\theta_1} z_1, e^{i\theta_2} z_2].$$
The Fubini-Study metric

\((\mathbb{CP}^2, g_{FS})\), the Fubini-Study metric, \(Ric = 6g\).

Torus action:

\[
[z_0, z_1, z_2] \mapsto [z_0, e^{i\theta_1} z_1, e^{i\theta_2} z_2].
\]

Flip symmetry:

\[
[z_0, z_1, z_2] \mapsto [z_0, z_2, z_1].
\]
The Fubini-Study metric

Figure: Orbit space of the torus action on $\mathbb{C}P^2$.
The product metric

\((S^2 \times S^2, g_{S^2 \times S^2})\), the product of 2-dimensional spheres of Gaussian curvature 1, \(Ric = g\).
The product metric

\((S^2 \times S^2, g_{S^2 \times S^2})\), the product of 2-dimensional spheres of Gaussian curvature 1, \(Ric = g\).

Torus action:

Product of rotations fixing north and south poles.
The product metric

\((S^2 \times S^2, g_{S^2 \times S^2})\), the product of 2-dimensional spheres of Gaussian curvature 1, \(\text{Ric} = g\).

Torus action:

Product of rotations fixing north and south poles.

Flip symmetry:

\((p_1, p_2) \mapsto (p_2, p_1)\).
The product metric

s,n

s,s

n,n

n,s

Figure: Orbit space of the torus action on $S^2 \times S^2$.

Jeff Viaclovsky

Critical metrics on connected sums of Einstein four-manifolds
Recall the mass of an AF space is defined by

$$\text{mass}(g_N) = \lim_{R \to \infty} \omega_3^{-1} \int_{S(R)} \sum_{i,j} (\partial_i g_{ij} - \partial_j g_{ii})(\partial_i \gamma \cdot dV),$$

with $\omega_3 = Vol(S^3)$.
Mass of Green’s function metric

Recall the mass of an AF space is defined by

$$\text{mass}(g_N) = \lim_{R \to \infty} \omega^{-1}_3 \int_{S(R)} \sum_{i,j} (\partial_i g_{ij} - \partial_j g_{ii}) (\partial_i \hook dV),$$

with $\omega_3 = \text{Vol}(S^3)$.

The Green’s function metric of the Fubini-Study metric \hat{g}_{FS} is also known as the Burns metric, and is completely explicit, with mass given by

$$\text{mass}(\hat{g}_{FS}) = 2.$$
However, the Green’s function metric $\hat{g}_{S^2 \times S^2}$ of the product metric does not seem to have a known explicit description. We will denote

$$m_1 = \text{mass}(\hat{g}_{S^2 \times S^2}).$$

By the positive mass theorem of Schoen-Yau, $m_1 > 0$. Note that since $S^2 \times S^2$ is spin, this also follows from Witten’s proof of the positive mass theorem.
Remarks on the proof

- We impose the toric symmetry and “flip” symmetry in order to reduce the number of free parameters to 1 (only the scaling parameter). That is, we perform an equivariant gluing.
• We impose the toric symmetry and “flip” symmetry in order to reduce the number of free parameters to 1 (only the scaling parameter). That is, we perform an equivariant gluing.
• The special value of t_0 is computed by

$$\frac{2}{3} W(z_0) \ast W(y_0) + 4t_0 R(z_0) \text{mass}(g_N) = 0.$$
• We impose the toric symmetry and “flip” symmetry in order to reduce the number of free parameters to 1 (only the scaling parameter). That is, we perform an equivariant gluing.

• The special value of t_0 is computed by

\[
\frac{2}{3} W(z_0) \star W(y_0) + 4t_0 R(z_0) \text{mass}(g_N) = 0.
\]

• This choice of t_0 makes the leading term of Kuranishi map vanish, and is furthermore a nondegenerate zero.
First case

Table: Simply-connected examples with one bubble

<table>
<thead>
<tr>
<th>Topology of connected sum</th>
<th>Value(s) of t_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{CP}^2 # \overline{\mathbb{CP}^2}$</td>
<td>$-1/3$</td>
</tr>
</tbody>
</table>

- The compact metric is the Fubini-Study metric, with a Burns AF metric glued on, a computation yields $t_0 = -1/3$.
Second case

Table: Simply-connected examples with one bubble

<table>
<thead>
<tr>
<th>Topology of connected sum</th>
<th>Value(s) of t_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S^2 \times S^2 # \overline{\mathbb{CP}^2} = \mathbb{CP}^2 # 2\overline{\mathbb{CP}^2}$</td>
<td>$-1/3, -(9m_1)^{-1}$</td>
</tr>
</tbody>
</table>

- The compact metric is the product metric on $S^2 \times S^2$, with a Burns AF metric glued on, this gives $t_0 = -1/3$.
Second case

Table: Simply-connected examples with one bubble

<table>
<thead>
<tr>
<th>Topology of connected sum</th>
<th>Value(s) of t_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S^2 \times S^2 # \overline{\mathbb{CP}^2} = \mathbb{CP}^2 # 2\overline{\mathbb{CP}^2}$</td>
<td>$-1/3, -(9m_1)^{-1}$</td>
</tr>
</tbody>
</table>

- The compact metric is the product metric on $S^2 \times S^2$, with a Burns AF metric glued on, this gives $t_0 = -1/3$.
- Alternatively, take the compact metric to be (\mathbb{CP}^2, g_{FS}), with a Green’s function $S^2 \times S^2$ metric glued on. In this case, $t_0 = -(9m_1)^{-1}$.
Third case

Table: Simply-connected examples with one bubble

<table>
<thead>
<tr>
<th>Topology of connected sum</th>
<th>Value(s) of t_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2#S^2 \times S^2$</td>
<td>$-2(9m_1)^{-1}$</td>
</tr>
</tbody>
</table>

- The compact metric is the product metric on $S^2 \times S^2$, with a Green’s function $S^2 \times S^2$ metric glued on. In this case, $t_0 = -2(9m_1)^{-1}$.
By imposing other symmetries, we can perform the gluing operation with more than one bubble:

Table: Simply-connected examples with several bubbles

<table>
<thead>
<tr>
<th>Topology of connected sum</th>
<th>Value of t_0</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3# S^2 \times S^2$</td>
<td>$-2(9m_1)^{-1}$</td>
<td>bilateral</td>
</tr>
<tr>
<td>$S^2 \times S^2 # 2\overline{CP}^2 = \overline{CP}^2 # 3\overline{CP}^2$</td>
<td>$-1/3$</td>
<td>bilateral</td>
</tr>
<tr>
<td>$\overline{CP}^2 # 3\overline{CP}^2$</td>
<td>$-1/3$</td>
<td>trilateral</td>
</tr>
<tr>
<td>$\overline{CP}^2 # 3(S^2 \times S^2) = 4\overline{CP}^2 # 3\overline{CP}^2$</td>
<td>$-(9m_1)^{-1}$</td>
<td>trilateral</td>
</tr>
<tr>
<td>$S^2 \times S^2 # 4\overline{CP}^2 = \overline{CP}^2 # 5\overline{CP}^2$</td>
<td>$-1/3$</td>
<td>quadrilateral</td>
</tr>
<tr>
<td>$5# S^2 \times S^2$</td>
<td>$-2(9m_1)^{-1}$</td>
<td>quadrilateral</td>
</tr>
</tbody>
</table>
Other symmetries

By imposing other symmetries, we can perform the gluing operation with more than one bubble:

Table: Simply-connected examples with several bubbles

<table>
<thead>
<tr>
<th>Topology of connected sum</th>
<th>Value of t_0</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3#S^2 \times S^2$</td>
<td>$-2(9m_1)^{-1}$</td>
<td>bilateral</td>
</tr>
<tr>
<td>$S^2 \times S^2 #2\overline{CP}^2 = CP^2 #3\overline{CP}^2$</td>
<td>$-1/3$</td>
<td>bilateral</td>
</tr>
<tr>
<td>$CP^2 #3\overline{CP}^2$</td>
<td>$-1/3$</td>
<td>trilateral</td>
</tr>
<tr>
<td>$CP^2 #3(S^2 \times S^2) = 4CP^2 #3\overline{CP}^2$</td>
<td>$-(9m_1)^{-1}$</td>
<td>trilateral</td>
</tr>
<tr>
<td>$S^2 \times S^2 #4\overline{CP}^2 = CP^2 #5\overline{CP}^2$</td>
<td>$-1/3$</td>
<td>quadrilateral</td>
</tr>
<tr>
<td>$5#S^2 \times S^2$</td>
<td>$-2(9m_1)^{-1}$</td>
<td>quadrilateral</td>
</tr>
</tbody>
</table>

Can also use quotients of $S^2 \times S^2$ as building blocks to get non-simply-connected examples, but we do not list here.
Technical Points

- **Ellipticity and gauging.** The B^t-flat equations are not elliptic due to diffeomorphism invariance. A gauging procedure analogous to the Coulomb gauge is used.
Technical Points

- **Ellipticity and gauging.** The B^t-flat equations are not elliptic due to diffeomorphism invariance. A gauging procedure analogous to the Coulomb gauge is used.

- **Rigidity of g_{FS} and $g_{S^2 \times S^2}$.** Proved recently by Gursky-V (to appear in Crelle’s Journal). Extends earlier work of O. Kobayashi for the Bach tensor, and N. Koiso for the Einstein equations.
Technical Points

- **Ellipticity and gauging.** The B^t-flat equations are not elliptic due to diffeomorphism invariance. A gauging procedure analogous to the Coulomb gauge is used.

- **Rigidity of g_{FS} and $g_{S^2 \times S^2}$.** Proved recently by Gursky-V (to appear in Crelle’s Journal). Extends earlier work of O. Kobayashi for the Bach tensor, and N. Koiso for the Einstein equations.

- **Refined approximate metric.** The approximate metric described above is not good enough. Can be improved by matching up leading terms of the metrics by solving certain auxiliary linear equations, so that the cutoff function disappears from the leading term.
Ellipticity and gauging

The linearized operator of the B^t-flat equation is not elliptic, due to diffeomorphism invariance. However, consider the “gauged” nonlinear map P given by

$$P_g(\theta) = (B + tC)(g + \theta) + \mathcal{K}_{g+\theta}[\delta_g \mathcal{K}_g \delta_g \theta],$$

where \mathcal{K}_g denotes the conformal Killing operator,

$$(\mathcal{K}_g \omega)_{ij} = \nabla_i \omega_j + \nabla_j \omega_i - \frac{1}{2} (\delta_g \omega) g_{ij},$$

δ denotes the divergence operator,

$$(\delta_g h)_{ij} = \nabla^i h_{ij},$$

and

$$\circ \theta = \theta - \frac{1}{4} tr_g \theta g,$$

is the traceless part of θ.

Jeff Viaclovsky

Critical metrics on connected sums of Einstein four-manifolds
Let $S^t \equiv P'(0)$ denote the linearized operator at $\theta = 0$.

Proposition

If $t \neq 0$, then S^t is elliptic. Furthermore, if $P(\theta) = 0$, and $\theta \in C^{4,\alpha}$ for some $0 < \alpha < 1$, then $B^t(g + \theta) = 0$ and $\theta \in C^\infty$.
Let $S^t \equiv P'(0)$ denote the linearized operator at $\theta = 0$.

Proposition

If $t \neq 0$, then S^t is elliptic. Furthermore, if $P(\theta) = 0$, and $\theta \in C^{4,\alpha}$ for some $0 < \alpha < 1$, then $B^t(g + \theta) = 0$ and $\theta \in C^\infty$.

- Proof is an integration-by-parts. Uses crucially that the B^t-flat equations are variational (recall B_t is the functional), so $\delta B^t = 0$. Equivalent to diffeomorphism invariance of B_t.

For h transverse-traceless (TT), the linearized operator at an Einstein metric is given by

$$S^t h = \left(\Delta_L + \frac{1}{2} R \right) \left(\Delta_L + \left(\frac{1}{3} + t \right) R \right) h,$$

where Δ_L is the Lichnerowicz Laplacian, defined by

$$\Delta_L h_{ij} = \Delta h_{ij} + 2R_{ipjq} h^{pq} - \frac{1}{2} Rh_{ij}.$$
Rigidity

For h transverse-traceless (TT), the linearized operator at an Einstein metric is given by

$$S^t h = \left(\Delta_L + \frac{1}{2} R \right) \left(\Delta_L + \left(\frac{1}{3} + t \right) R \right) h,$$

where Δ_L is the Lichnerowicz Laplacian, defined by

$$\Delta_L h_{ij} = \Delta h_{ij} + 2 R_{ipjq} h^{pq} - \frac{1}{2} R h_{ij}.$$

- This formula was previously obtained for the linearized Bach tensor ($t = 0$) by O. Kobayashi.
Rigidity

For h transverse-traceless (TT), the linearized operator at an Einstein metric is given by

$$S^t h = \left(\Delta_L + \frac{1}{2} R \right) \left(\Delta_L + \left(\frac{1}{3} + t \right) R \right) h,$$

where Δ_L is the Lichnerowicz Laplacian, defined by

$$\Delta_L h_{ij} = \Delta h_{ij} + 2 R_{ipjq} h^{pq} - \frac{1}{2} R h_{ij}.$$

- This formula was previously obtained for the linearized Bach tensor ($t = 0$) by O. Kobayashi.
- N. Koiso previously studied infinitesimal Einstein deformations given by TT kernel of the operator $\Delta_L + \frac{1}{2} R$.

Jeff Viaclovsky
Critical metrics on connected sums of Einstein four-manifolds
Rigidity

For $h = fg$, we have

$$tr_g(S^t h) = 6t(3\Delta + R)(\Delta f).$$ \hspace{1cm} (1)

The rigidity question is then reduced to a separate analysis of the
eigenvalues of Δ_L on transverse-traceless tensors, and of Δ on
functions.
For $h = fg$, we have

$$tr_g(S^t h) = 6t(3\Delta + R)(\Delta f).$$ \hspace{1cm} (1)

The rigidity question is then reduced to a separate analysis of the eigenvalues of Δ_L on transverse-traceless tensors, and of Δ on functions.

Theorem (Gursky-V)

On $(\mathbb{C}P^2, g_{FS})$, $H^1_t = \{0\}$ provided that $t < 1$.
Rigidity

For \(h = fg \), we have

\[
tr_g(S^t h) = 6t(3\Delta + R)(\Delta f).
\] \hspace{1cm} (1)

The rigidity question is then reduced to a separate analysis of the eigenvalues of \(\Delta_L \) on transverse-traceless tensors, and of \(\Delta \) on functions.

Theorem (Gursky-V)

On \((\mathbb{CP}^2, g_{FS})\), \(H_t^1 = \{0\} \) provided that \(t < 1 \).

Theorem (Gursky-V)

On \((S^2 \times S^2, g_{S^2 \times S^2})\), \(H_t^1 = \{0\} \) provided that \(t < 2/3 \) and \(t \neq -1/3 \). If \(t = -1/3 \), then \(H_t^1 \) is one-dimensional and spanned by the element \(g_1 - g_2 \).
Rigidity

• Positive mass theorem says that $t_0 < 0$, so luckily we are in the rigidity range of the factors.
• Positive mass theorem says that $t_0 < 0$, so luckily we are in the rigidity range of the factors.

• Gauge term is carefully chosen so that solutions of the linearized equation must be in the transverse-traceless gauge. That is, if $S^t h = 0$ then

$$ (B^t)'(h) + K\delta K\delta h = 0 $$

implies that separately,

$$ (B^t)'(h) = 0 \text{ and } \delta h = 0. $$
Let (Z, g_z) be the compact metric. In Riemannian normal coordinates,

$$(g_Z)_{ij}(z) = \delta_{ij} - \frac{1}{3} R_{ikjl}(z_0) z^k z^l + O^{(4)}(|z|^4)_{ij}$$

as $z \to z_0$.

Let (N, g_N) be the Green's function metric of (Y, g_Y), then we have

$$(g_N)_{ij}(x) = \delta_{ij} - \frac{1}{3} R_{ikjl}(y_0) x^k x^l |x|^4 + 2A_1 |x|^2 \delta_{ij} + O^{(4)}(|x|^{-4} + \epsilon)$$

as $|x| \to \infty$, for any $\epsilon > 0$.

• The constant A is given by

$$\text{mass}(g_N) = \frac{1}{12} \frac{R(y_0)}{12}.$$
Refined approximate metric

Let \((Z, g_z)\) be the compact metric. In Riemannian normal coordinates,

\[
(g_Z)_{ij}(z) = \delta_{ij} - \frac{1}{3} R_{ikjl}(z_0) z^k z^l + O^{(4)}(|z|^4)_{ij}
\]
as \(z \to z_0\).

Let \((N, g_N)\) be the Green’s function metric of \((Y, g_Y)\), then we have

\[
(g_N)_{ij}(x) = \delta_{ij} - \frac{1}{3} R_{ikjl}(y_0) \frac{x^k x^l}{|x|^4} + 2A \frac{1}{|x|^2} \delta_{ij} + O^{(4)}(|x|^{-4+\epsilon})
\]
as \(|x| \to \infty\), for any \(\epsilon > 0\).
Let \((Z, g_Z)\) be the compact metric. In Riemannian normal coordinates,

\[(g_Z)_{ij}(z) = \delta_{ij} - \frac{1}{3} R_{ikjl}(z_0) z^k z^l + O(4)(|z|^4)_{ij}\]

as \(z \to z_0\).

Let \((N, g_N)\) be the Green’s function metric of \((Y, g_Y)\), then we have

\[(g_N)_{ij}(x) = \delta_{ij} - \frac{1}{3} R_{ikjl}(y_0) \frac{x^k x^l}{|x|^4} + 2A \frac{1}{|x|^2} \delta_{ij} + O(4)(|x|^{-4+\epsilon})\]

as \(|x| \to \infty\), for any \(\epsilon > 0\).

- The constant \(A\) is given by \(\text{mass}(g_N) = 12A - R(y_0)/12\).
Refined approximate metric

$$(g_N)_{ij}(x) = \delta_{ij} - \frac{1}{3} R_{ikjl}(y_0) \frac{x^k x^l}{|x|^4} + 2A \frac{1}{|x|^2} \delta_{ij} + O^4(|x|^{-4+\epsilon}).$$

We consider $a^{-4} g_Z$ and let $z = a^2 x$, then we have

$$a^{-4}(g_Z)_{ij}(x) = \delta_{ij} - a^4 \frac{1}{3} R_{ikjl}(z_0) x^k x^l + \cdots.$$
Refined approximate metric

\[(g_N)_{ij}(x) = \delta_{ij} - \frac{1}{3} R_{ijkl}(y_0) \frac{x^k x^l}{|x|^4} + 2A \frac{1}{|x|^2} \delta_{ij} + O^{(4)}(|x|^{-4+\epsilon}).\]

We consider \(a^{-4} g_Z\) and let \(z = a^2 x\), then we have

\[a^{-4}(g_Z)_{ij}(x) = \delta_{ij} - a^4 \frac{1}{3} R_{ijkl}(z_0) x^k x^l + \cdots.\]

- Second order terms do not agree. Need to construct new metrics on the factors so that these terms agree. This is done by solving the linearized equation on each factor with prescribed leading term the second order term of the other metric.
Refined approximate metric

\[(g_N)_{ij}(x) = \delta_{ij} - \frac{1}{3} R_{ikjl}(y_0) \frac{x^k x^l}{|x|^4} + 2A \frac{1}{|x|^2} \delta_{ij} + O^4(|x|^{-4+\epsilon}). \]

We consider \(a^{-4}g_Z \) and let \(z = a^2 x \), then we have

\[a^{-4}(g_Z)_{ij}(x) = \delta_{ij} - a^4 \frac{1}{3} R_{ikjl}(z_0) x^k x^l + \cdots. \]

- Second order terms do not agree. Need to construct new metrics on the factors so that these terms agree. This is done by solving the linearized equation on each factor with prescribed leading term the second order term of the other metric.
- Linear equation on AF metric is obstructed, and this is how the leading term of the Kuranishi map is computed.
Final remarks

The proof shows that there is a dichotomy.
Final remarks

The proof shows that there is a dichotomy. Either

- (i) there is a critical metric at exactly the critical t_0, in which case there would necessarily be a 1-dimensional moduli space of solutions for this fixed t_0,

- (ii) for each value of the gluing parameter a sufficiently small, there will be a critical metric for a corresponding value of $t_0 = t_0(a)$. The dependence of t_0 on a will depend on the next term in the expansion of the Kuranishi map.

Which case actually happens?

Thank you for listening!
The proof shows that there is a dichotomy. Either

- (i) there is a critical metric at exactly the critical t_0, in which case there would necessarily be a 1-dimensional moduli space of solutions for this fixed t_0, or

- (ii) for each value of the gluing parameter a sufficiently small, there will be a critical metric for a corresponding value of $t_0 = t_0(a)$. The dependence of t_0 on a will depend on the next term in the expansion of the Kuranishi map.
The proof shows that there is a dichotomy. Either

- (i) there is a critical metric at exactly the critical t_0, in which case there would necessarily be a 1-dimensional moduli space of solutions for this fixed t_0, or
- (ii) for each value of the gluing parameter a sufficiently small, there will be a critical metric for a corresponding value of $t_0 = t_0(a)$. The dependence of t_0 on a will depend on the next term in the expansion of the Kuranishi map.

- Which case actually happens?
The proof shows that there is a dichotomy. Either

- (i) there is a critical metric at exactly the critical t_0, in which case there would necessarily be a 1-dimensional moduli space of solutions for this fixed t_0, or

- (ii) for each value of the gluing parameter a sufficiently small, there will be a critical metric for a corresponding value of $t_0 = t_0(a)$. The dependence of t_0 on a will depend on the next term in the expansion of the Kuranishi map.

- Which case actually happens?

- Thank you for listening!