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ABSTRACT

Poisson noise commonly occurs in images captured by
photon-limited imaging systems such as in astronomy and
medicine. As the distribution of Poisson noise depends on
the pixel intensity value, noise levels vary from pixels to
pixels. Hence, denoising a Poisson-corrupted image while
preserving important details can be challenging. In this pa-
per, we propose a Poisson denoising model by incorporating
the weighted anisotropic–isotropic total variation (AITV)
as a regularization. We then develop an alternating direc-
tion method of multipliers with a combination of a proximal
operator for an efficient implementation. Lastly, numeri-
cal experiments demonstrate that our algorithm outperforms
other Poisson denoising methods in terms of image quality
and computational efficiency.

Index Terms— Poisson noise, total variation, nonconvex
optimization, ADMM, proximal operator

1. INTRODUCTION

In various applications such as astronomy [1] and medicine
[2], photon-counting devices are utilized to capture images.
However, these images are susceptible to Poisson noise, in
which any measured intensity at each pixel is a realization of
a Poisson random variable with mean and variance equal to its
true value. Recall that a Poisson random variable with mean
and variance has a probability distribution function Pµ(n) =
e−µµn

n! , n ≥ 0. Let g be a clean image of size M × N . If
g is corrupted by Poisson noise, then its corresponding noisy
measurement f can be formulated as

fi,j ∼ Poisson(gi,j), 1 ≤ i ≤ M, 1 ≤ j ≤ N.

One general approach for Poisson denoising is by the
maximum a posteriori (MAP)

∏
i,j

P(ui,j |fi,j) =
∏
i,j

e−ui,ju
fi,j
i,j

(fi,j)!

P(ui,j)

P(fi,j)
,

The work was partially supported by NSF grants DMS-1846690, DMS-
1854434, DMS-1952644, DMS-2151235, and a Qualcomm Faculty Award.

with respect to an estimated image u from a noisy input f.
Taking the negative logarithm yields the following optimiza-
tion problem to minimize:∑

i,j

ui,j − fi,j log ui,j − logP(ui,j).

The term − logP(ui,j) can be regarded as an image prior. A
classic choice is the total variation (TV) [3]. Le et al. [4]
derived a TV-regularized model for Poisson denoising:

min
u

λ⟨u− f log u,1⟩+ ∥∇u∥2,1, (1)

where 1 denotes the all-one vector and ∥∇u∥2,1 is the
isotropic form of TV. TV has been a popular regularizer
for denoising, but it only performs well on piecewise-smooth
images. For natural images, TV tends to introduce staircasing
artifacts, lose image contrasts, and smear out fine details [5].
Several variants of TV have been proposed including nonlo-
cal TV [6] and total generalized variation [7]. Unfortunately,
these TV variants are numerically complicated to compute.
As an alternative, fractional-order total variation (FOTV) has
a convenient, compact discrete form and was demonstrated to
perform well in Poisson denoising [8].

More complex models such as nonlocal methods [9, 10,
11, 12, 13, 14] and convolutional neural networks (CNNs)
[15, 16, 17] have been developed to perform Poisson denois-
ing. However, nonlocal methods are computationally expen-
sive due to the needs to compare image patches in groups
in terms of their similarity and to enforce a low-rank struc-
ture. As highly nonconvex models, CNNs require an ade-
quately large training set, hyperparameter tuning (e.g., batch
size, learning rate, number of layers, etc.), and heavy com-
putational resources such as GPUs. Since CNNs demonstrate
the promising potential of nonconvex modeling, one direction
is to develop a nonconvex variant of (1) to avoid most of their
computational limitations.

Studies have demonstrated that nonconvex regularizers
can preserve edges better than convex models [18]. For ex-
ample, TVp(0 < p < 1) preserves edges better than the
convex TV model in Gaussian denoising [19]. Another non-
convex TV variant is called weighted anisotropic–isotropic
TV (AITV) [20] that recovers sharper images than TV and
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TVp for images corrupted by Gaussian noise [20]. Despite
its recent success, AITV has not yet been applied in Poisson
denoising and is slow in computations. In this paper, we pro-
pose a variational Poisson denoising model with the AITV
regularization and improve the efficiency by taking advantage
of a proximal operator [21] over its original implementation
that uses the difference-of-convex algorithm (DCA).

2. THE PROPOSED APPROACH

2.1. Model Formulation

Two popular numerical approximations of TV are the isotropic
TV and the anisotropic TV. Specifically, we represent an im-
age as an M × N matrix and define an Euclidean space
X := RM×N with the standard inner product ⟨·, ·⟩X and the
Euclidean norm ∥ · ∥2. We will omit the subscript X and use
⟨·, ·⟩ for the sake of brevity.

To discretize the image gradient, we define another Eu-
clidean space Y := X × X . The discrete gradient operator
∇ : X → Y is given by (∇u)i,j = ((∇xu)i,j , (∇yu)i,j),
where ∇x,∇y are the horizontal and vertical difference oper-
ators. For the space Y , we define the inner product by

⟨p, q⟩ = ⟨p1, q1⟩X + ⟨p2, q2⟩X ,

for p = (p1, p2), q = (q1, q2) ∈ Y . We also define the fol-
lowing norms on Y :

∥p∥1 =

M∑
i=1

N∑
j=1

|(p1)i,j |+ |(p2)i,j |,

∥p∥2 =

√√√√ M∑
i=1

N∑
j=1

|(p1)i,j |2 + |(p2)i,j |2,

∥p∥2,1 =

M∑
i=1

N∑
j=1

√
(p1)2i,j + (p2)2i,j .

By our definitions, the isotropic TV and anisotropic TV
can be formulated as ∥∇u∥2,1 and ∥∇u∥1, respectively. Un-
fortunately both of these fail in recovering oblique edges [22].
To mitigate this artifact, Lou et al. [20] proposed the AITV
regularizer ∥∇u∥1 − α∥∇u∥2,1, where the parameter α ∈
[0, 1] controls the sparsity of the gradient at each pixel. Re-
placing the isotropic TV in (1) with AITV for a pre-defined
α ∈ [0, 1], we arrive at the proposed model:

min
u

λ⟨u− f log u,1⟩+ ∥∇u∥1 − α∥∇u∥2,1. (2)

2.2. Numerical Algorithm

We develop an alternating direction method of multipliers
(ADMM) [23] to solve for (2). By introducing two auxil-
iary variables v ∈ X and w = (wx, wy) ∈ Y, we have the

following constrained optimization problem:

min
u,v,w

λ⟨v − f log v,1⟩+ ∥w∥1 − α∥w∥2,1

s.t. u = v and ∇u = w.
(3)

Then its augmented Lagrangian is written as

Lβ(u, v, w, y, z) = λ⟨v − f log v,1⟩+ ∥w∥1 − α∥w∥2,1

+ ⟨y, u− v⟩+ β

2
∥u− v∥22 + ⟨z,∇u− w⟩+ β

2
∥∇u− w∥22,

where y ∈ X, z = (zx, zy) ∈ Y are the Lagrange multipliers
and β > 0 is a penalty parameter. As a result, ADMM iterates
as follows:

uk+1 = argmin
u

Lβ(u, vk, wk, yk, zk) (4a)

vk+1 = argmin
v

Lβ(uk+1, v, wk, yk, zk) (4b)

wk+1 = argmin
w

Lβ(uk+1, vk+1, w, yk, zk) (4c)

yk+1 = yk + βk(uk+1 − vk+1) (4d)
zk+1 = zk + βk(∇uk+1 − wk+1) (4e)
βk+1 = σβk, (4f)

where σ > 1. The last step (4f) is inspired from [24] to accel-
erate the numerical convergence of ADMM. If σ is too large,
the algorithm might stop too early, yielding an unsatisfactory
solution. Hence, σ needs to be chosen carefully.

We derive closed-form solutions for the subproblems
(4a)-(4c). The first-order optimality condition for (4a) is

βk(I −∆)uk+1 = βkvk − yk −∇⊤(zk − βkwk), (5)

where ∆ = −∇⊤∇ is the Laplacian operator. By assum-
ing periodic boundary condition for u, (5) can be solved ef-
ficiently by the 2D discrete Fourier transform F [25], thus
leading to an update of uk+1 to be

uk+1 = F−1

(
F(βkvk − yk)−F(∇)∗ ◦ F(zk − βkwk)

βkF(I −∆)

)
,

(6)

where F−1 is the inverse Fourier transform, the superscript
∗ denotes complex conjugate, ◦ denotes the componentwise
product, and the division is componentwise as well. By taking
derivative of (4b) with respect to v and setting it to zero, we
get the closed-form solution for

vk+1 =
rk +

√
r2k + 4λβkf

2βk
, (7)

where rk = βkuk+1 + yk −λ1 and all the operations (square
root, square, and division) are componentwise. Lastly, the w-
subproblem (4c) can be decomposed independently at each
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pixel (i, j), i.e.,

(wi,j)k+1 = argmin
wi,j

∥wi,j∥1 − α∥wi,j∥2

+
βk

2

∥∥∥∥wi,j −
(
(∇uk+1)i,j +

(zk)i,j
βk

)∥∥∥∥2
2

.
(8)

The optimization problem for each component of w is a spe-
cial case of the proximal operator for ℓ1 − αℓ2, defined by

prox(x, α, β) = argmin
y

∥y∥1 − α∥y∥2 +
∥x− y∥22

2β
. (9)

With the help of the proximal operator (9), we obtain a closed-
form solution to update every wi,j by

(wi,j)k+1 = prox
(
(∇uk+1)i,j +

(zk)i,j
βk

, α,
1

βk

)
.

As derived in [21], the proximal operator for ℓ1 − αℓ2 has a
closed-form solution formulated in Lemma 1.

Lemma 1 ([21]). Given x ∈ Rn, β > 0, and α ∈ [0, 1], the
optimal solution to (9) is given by one of the following cases:

1. When ∥x∥∞ > β, we have x∗ = (∥ξ∥2 + αβ) ξ
∥ξ∥2

,
where ξ = sign(x) ◦max(|x| − β, 0).

2. When (1−α)β < ∥x∥∞ ≤ β, then x∗ is a 1-sparse vec-
tor such that one chooses i ∈ argmax

j
(|xj |) to define

x∗
i = (|xi|+ (α− 1)β) sign(xi) and set the remaining

elements to 0.

3. When ∥x∥∞ ≤ (1− α)β, then x∗ = 0.

The overall ADMM framework to solve (2) is described
in Algorithm 1. By emulating the proof of [24, Theorem 2],
we have ∥uk+1 − uk∥2 → 0, which corresponds to the stop-
ping criterion in Algorithm 1. Algorithm 1 is expected to
converge within a reasonable number of iterations. Although
global convergence was proven for nonconvex ADMM [26],
it may not be guaranteed for our algorithm since the gradient
operator does not satisfy the necessary surjectivity condition.

Algorithm 1 ADMM for (2)
Require: Noisy image f , fidelity parameter λ, penalty parameter β0, penalty multi-

plier σ > 1.
1: Initialize u0, w0, z0.
2: Set k = 0.
3: while

∥uk−uk−1∥2
∥uk∥2

> ϵ do
4: Compute uk+1 by (6).
5: Compute vk+1 by (7).
6: Compute wk+1 by (8).
7: yk+1 = yk + βk(uk+1 − vk+1).
8: zk+1 = zk + βk(∇uk+1 − wk+1).
9: βk+1 = σβk .

10: k := k + 1.
11: end while
12: return Denoised image u∗ = uk+1.

(a) River (b) Butterfly (c) Starfish

(d) Penguin (e) Boat

Fig. 1: Original natural images for testing. The image sizes
are either 321× 481 (top) or 481× 321 (bottom).

3. NUMERICAL RESULTS

We evaluate the AITV-regularized Poisson denoising model
(2) on five grayscale images selected from the Berkeley Seg-
mentation Dataset [27]. The original images are shown in
Figure 1. We compare our proposed AITV model with the
classical TV [4], non-local PCA (NL-PCA) [10], and a recent
Poisson denoising method by FOTV [8]. We use the MAT-
LAB codes provided by the authors of NL-PCA and FOTV.
Note that FOTV (including TV as its special case) is solved
by ADMM, which is different from Algorithm 1 in that its
penalty parameter β is fixed and it solves a nonlinear equation
per iteration. Quantitatively, we evaluate the performance of
image denoising by peak-signal-to-noise ratio (PSNR) and
structural similiarity index (SSIM). The experiments are
performed in MATLAB R2021b on a Dell laptop with a
1.80 GHz Intel Core i7-8565U processor and 16.0 GB of
RAM. The code is available at https://github.com/
kbui1993/Official_AITV_Poisson_Denoising.

Table 1: PSNR/SSIM of the four denoising methods under
three peak values of the original images in Figure 1. Bold
indicates the best value. The last column is the average over
the five testing images.

Peak Method
Image river butterfly starfish penguin boat Avg.

80

Noisy 22.03/0.36 22.61/0.53 22.73/0.56 24.75/0.35 22.46/0.53 22.92/0.47
NL-PCA 29.35/0.71 28.15/0.83 28.52/0.83 33.41/0.88 28.23/0.79 29.53/0.81
TV 30.39/0.84 28.40/0.83 28.31/0.81 33.40/0.87 28.40/0.80 29.78/0.83
FOTV 30.20/0.84 28.50/0.82 28.63/0.82 33.25/0.87 28.23/0.78 29.76/0.83
AITV 30.70/0.85 28.46/0.83 28.33/0.81 33.89/0.90 28.69/0.81 30.01/0.84

55

Noisy 20.38/0.30 20.54/0.46 21.08/0.48 23.08/0.28 20.81/0.47 21.18/0.40
NL-PCA 28.42/0.75 27.46/0.80 27.88/0.80 32.81/0.85 27.54/0.75 28.82/0.79
TV 29.06/0.83 27.26/0.80 27.32/0.77 32.51/0.87 27.29/0.76 28.69/0.80
FOTV 28.93/0.76 27.40/0.78 27.62/0.79 32.03/0.80 27.17/0.76 28.63/0.78
AITV 29.67/0.83 27.43/0.80 27.36/0.78 33.26/0.88 27.67/0.77 29.08/0.81

30

Noisy 17.74/0.23 17.86/0.36 18.41/0.36 20.42/0.18 18.21/0.37 18.53/0.30
NL-PCA 27.57/0.68 25.87/0.72 26.29/0.73 31.96/0.85 26.16/0.72 27.57/0.74
TV 27.14/0.61 25.46/0.70 25.71/0.70 29.68/0.71 25.62/0.68 26.72/0.68
FOTV 27.11/0.68 25.58/0.71 25.94/0.72 28.69/0.61 25.51/0.68 26.57/0.68
AITV 28.18/0.79 25.71/0.75 25.79/0.72 31.99/0.87 26.17/0.72 27.57/0.77

The parameters for each method are carefully tuned for
the best PSNR. As the TV, FOTV, and AITV models are
solved by ADMM, their parameters are nearly the same. We
fix the penalty parameter β = 10−3 and find the optimal
fidelity parameter λ from {3, 5, 8, 10, 12, 15, 20}. The frac-
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(a) clean (b) noisy (c) NL-PCA (d) TV (e) FOTV (f) AITV

Fig. 2: Poisson denoising results for Figure 1a with peak value 30.

Method Avg. Time (s)
NL-PCA 20.05
TV 16.59
FOTV 17.47
AITV 1.89

Table 2: Average computational time in seconds.

285th row
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Fig. 3: Reconstructed line profiles from Figure 2 over the
ground truth line profile for the 285th row of Figure 1a.

tional order for FOTV is optimized among {1.2, 1.4, 1.6, 1.8}.
The AITV parameter α is optimized among {0.1i}5i=1. We
fix σ = 1.75 in the proposed Algorithm 1. The stopping
conditions are up to 300 iterations with a relative error stop-
ping criterion ∥uk−uk−1∥2

∥uk∥2
< 10−5. For NL-PCA, we tune

the patch size and the number of clusters, which are selected
from {3, 5, 7, 9} and {15, 20, 25}, respectively.

Since Poisson noise depends on the pixel intensity, we
control the noise level by changing the peak value of an im-
age. In particular, before adding Poisson noise to an image,
we rescale its peak value to 80, 55, and 30 with a lower
peak corresponding to a noisier image. Table 1 records the
PSNR and SSIM metrics of the denoised images by various
competing methods, showing that the proposed AITV model
achieves the best results in most cases. The average results
are also shown in the last column, showcasing that AITV is
consistently the best under the three peak values.

We examine Figure 1a. The image has peak value 30 be-
fore adding Poisson noise. The denoised results are presented
in Figure 2. By focusing on the sky, the denoised image by
AITV looks less noisy compared to the other methods. From
the enlarged window with red boundary, the result appears
sharper for AITV than the other methods. Figure 3 compares
a line profile from a denoised image with its original, showing
that AITV is the least noisy.

Table 2 reports the average computational time over all

the testing scenarios (any combination of five images and
three peak levels), demonstrating that the proposed Algo-
rithm 1 is nearly one order of magnitude (2 seconds) faster
than the other methods (about 20 seconds). Overall, the pro-
posed AITV model solved by our designed ADMM algorithm
is the most efficient in computation time and most effective
in PSNR and SSIM.

4. CONCLUSION

In this work, we formulated a variational Poisson model with
AITV regularization. To solve the model, we designed an
efficient ADMM incorporating the ℓ1 − αℓ2 proximal op-
erator that numerically converges within seconds. Our ex-
periments demonstrated the efficiency of the proposed ap-
proach over several representative Poisson denoising meth-
ods in terms of quantitative measures, visual appearance, and
computational time. For future directions, we will extend the
proposed model to color images and design a globally conver-
gent algorithm. Extending to deep learning, we will unfold
the proposed ADMM algorithm in a similar fashion as [28].
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