
AutoShuffleNet: Learning Permutation Matrices via
an Exact Lipschitz Continuous Penalty in
Deep Convolutional Neural Networks

Jiancheng Lyu, Shuai Zhang, Yingyong Qi

Qualcomm AI Research

jianlyu,shuazhan,yingyong@qti.qualcomm.com

Jack Xin

University of California, Irvine

jack.xin@uci.edu

ABSTRACT
ShuffleNet is a state-of-the-art light weight convolutional neural

network architecture. Its basic operations include group, channel-

wise convolution and channel shuffling. However, channel shuffling

is manually designed on empirical grounds. Mathematically, shuf-

fling is a multiplication by a permutation matrix. In this paper, we

propose to automate channel shuffling by learning permutation

matrices in network training. We introduce an exact Lipschitz con-

tinuous non-convex penalty so that it can be incorporated in the

stochastic gradient descent to approximate permutation at high

precision. Exact permutations are obtained by simple rounding at

the end of training and are used in inference. The resulting network,

referred to as AutoShuffleNet, achieved improved classification ac-

curacies on data from CIFAR-10, CIFAR-100 and ImageNet while

preserving the inference costs of ShuffleNet. In addition, we found

experimentally that the standard convex relaxation of permutation

matrices into stochastic matrices leads to poor performance. We

prove theoretically the exactness (error bounds) in recovering per-

mutation matrices when our penalty function is zero (very small).

We present examples of permutation optimization through graph

matching and two-layer neural network models where the loss

functions are calculated in closed analytical form. In the exam-

ples, convex relaxation failed to capture permutations whereas our

penalty succeeded.

KEYWORDS
ShuffleNet; Permutation; Lipschitz Continuous Penalty; Convolu-

tional Neural Network

ACM Reference Format:
Jiancheng Lyu, Shuai Zhang, Yingyong Qi and Jack Xin. 2020. AutoShuf-

fleNet: Learning Permutation Matrices via an Exact Lipschitz Continuous

Penalty in Deep Convolutional Neural Networks. In Proceedings of the 26th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
’20), August 23–27, 2020, Virtual Event, CA, USA. ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/3394486.3403103

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00

https://doi.org/10.1145/3394486.3403103

1 INTRODUCTION
Light convolutional deep neural networks (LCNN) are attractive

in resource limited conditions for delivering high performance at

low costs. Some of the state-of-the-art LCNNs in computer vision

are ShuffleNet [14, 23], IGC (Interleaved Group Convolutions, [22])

and IGCV3 (Interleaved Low-Rank Group Convolutions,[17]). A

noticeable feature in the design is the presence of permutations for

channel shuffling in between separable convolutions. The permu-

tations are hand-crafted by designers outside of network training

however. A natural question is whether the permutations can be

learned like network weights so that they are optimized based on

training data. An immediate difficulty is that unlike weights, per-

mutations are highly discrete and incompatible with the stochastic

gradient descent (SGD) methodology that is continuous in nature.

To overcome this challenge, we introduce an exact Lipschitz con-

tinuous non-convex penalty so that it can be incorporated in SGD

to approximate permutation at high precision and low overhead.

Consequently, exact permutations are obtained by simple rounding

at the end of network training with negligible drop of classification

accuracy. To be specific, we shall work with ShuffleNet architecture

[14, 23]. Our approach extends readily to other LCNNs.

Related Work. Permutation optimization is a long standing

problem arising in operations research, graph matching among

other applications [3, 8]. Well-known examples are linear and qua-

dratic assignment problems [18]. Graph matching is a special case

of quadratic assignment problem, and can be formulated over𝑁 ×𝑁
permutation matrices P𝑁

as:

min

𝜋 ∈P𝑁
∥𝐴 − 𝜋𝐵𝜋𝑇 ∥2𝐹 ,

where𝐴 and 𝐵 are the adjacency matrices of graphs with 𝑁 vertices,

and ∥ · ∥𝐹 is the Frobenius norm. A popular way to handle P𝑁
is

to relax it to the Birkhoff polytope D𝑁
, the convex hull of P𝑁

,

leading to a convex relaxation. The explicit realization of D𝑁
is

the set of doubly stochastic matrices

D𝑁 = {𝑀 ∈ R𝑁×𝑁 : 𝑀1 = 1, 𝑀𝑇 1 = 1, 𝑀 ≥ 0},

where 1 = (1, 1, , · · · , 1)𝑇 ∈ R𝑁 . An approximate yet simpler way

to treat D𝑁
is through the classical first order matrix scaling algo-

rithm, e.g. the Sinkhorn method, see [16] and its recent applications

[7, 15]. Though in principle such algorithm converges, the cost

can be quite high when iterating many times, which causes a bot-

tleneck effect [12]. A non-convex and more compact relaxation

of P𝑁
is by a sorting network [12] which maps the box [0, 1]𝑁

into a manifold that sits inside D𝑁
and contains P𝑁

. Yet another

method is path following algorithm [21] which seeks solutions un-

der concave relaxations of P𝑁
by solving a linear interpolation

https://doi.org/10.1145/3394486.3403103
https://doi.org/10.1145/3394486.3403103

of convex-concave problems (starting from the convex relaxation).

Permutation learning via continuous approximation has been stud-

ied in visual data recovery [4]. None of the existing relaxations are

exact. In the context of improving ShuffleNet, HadaNet [24] uses

Hadamard matrices (𝐻) to define a class of structured convolution

as the product 𝐻𝑇× group convolution ×𝐻 and generalize shuffled

group convolution of ShuffleNet. However, the inference cost of

HadaNet is much higher than that of ShuffleNet, and relies on spe-

cial hardware for speedup. Hadamard matrices are constructed to

date for certain special orders such as powers of 2, and conjectured

to exist for multiples of 4. In particular, they are not applicable to

odd channel/group numbers.

Contribution. Our non-convex relaxation is a combination of

matrix ℓ1−2 penalty function andD𝑁
. The ℓ1−2 (the difference of ℓ1

and ℓ2 norms) has been proposed and found effective in selecting

sparse vectors under nearly degenerate linear constraints [6, 20].

The matrix version is simply a sum of ℓ1−2 over all row and column

vectors. We prove that the penalty is zero when applied to a matrix
in D𝑁 if and only if the matrix is a permutation matrix. Thanks to
the D𝑁

constraint, the penalty function is Lipschitz continuous

(almost everywhere differentiable). This allows the penalty to be

integrated directly into SGD for learning permutation in LCNNs.

As shown in our experiments on CIFAR-10, CIFAR-100 and Ima-

geNet data sets, the closeness to P𝑁
turns out to be remarkably

small at the end of network training so that a simple rounding has

negligible effect on the validation accuracy. We also found that

convex relaxation by D𝑁
fails to capture good permutations for

LCNNs. We observed experimentally that a random shuffle could

perform better than manual shuffle, but the learned shuffle con-

sistently achieved the best results. To our best knowledge, this is

the first time permutations have been successfully learned for the
architecture selection of deep CNNs to improve hand-crafted permu-
tations. Moreover, our AutoShuffleNet preserves the inference cost of
ShuffleNet for any channel/group numbers.

Outline. In section 2, we introduce exact permutation penalty,

and prove its closeness to permutation matrices when the penalty

values are small, as observed in the experiments. We also present

the training algorithm combining thresholding and matrix scaling

to approximate projection onto P𝑁
for SGD. In section 3, we an-

alyze two permutation optimization problems to show the utility

of our penalty. In a 2-layer neural network regression model with

short cut (identity map), convex relaxation does not give the opti-

mal permutation even with additional rounding while our penalty

can. In section 4, we show experimental results on consistent im-

provement of auto-shuffle over hand-crafted shuffle on data from

CIFAR-10, CIFAR-100 and ImageNet. Conclusion is in section 5.

2 PERMUTATION, MATRIX ℓ1−2 PENALTY
AND EXACT RELAXATION

The channel shuffle operation in ShuffleNet [14, 23] can be repre-

sented as multiplying the feature map in the channel dimension

by a permutation matrix𝑀 . The permutation matrix𝑀 is a square

binary matrix with exactly one entry of one in each row and each

column and zeros elsewhere. In the ShuffleNet architecture [14, 23],

𝑀 is preset by the designers and will be called “manual”. In this

work, we propose to learn an automated permutation matrix 𝑀

through network training, hence removing the human factor in

its selection towards a more optimized shuffle. Since permutation

is discrete in nature and too costly to enumerate, we propose to

approach it by adding a matrix generalization of the ℓ1−2 penalty
[6, 20] to the network loss function in the stochastic gradient de-

scent based training.

Specifically for 𝑀 =
(
𝑚𝑖 𝑗

)
∈ R𝑁×𝑁 , the proposed continuous

matrix penalty function is

𝑃 (𝑀) :=
𝑁∑
𝑖=1

𝑁∑
𝑗=1

��𝑚𝑖 𝑗

�� − ©«
𝑁∑
𝑗=1

𝑚2

𝑖 𝑗

ª®¬
1/2

+
𝑁∑
𝑗=1

𝑁∑
𝑖=1

��𝑚𝑖 𝑗

�� − (
𝑁∑
𝑖=1

𝑚2

𝑖 𝑗

)1/2 , (1)

in conjunction with the doubly stochastic constraint:

𝑚𝑖 𝑗 ≥ 0, ∀(𝑖, 𝑗);
𝑁∑
𝑖=1

𝑚𝑖 𝑗 = 1, ∀ 𝑗 ;
𝑁∑
𝑗=1

𝑚𝑖 𝑗 = 1, ∀ 𝑖 . (2)

Remark 1. When the constraints in (2) hold,
𝑁∑
𝑗=1

��𝑚𝑖 𝑗

�� and 𝑁∑
𝑖=1

��𝑚𝑖 𝑗

��
in 𝑃 (𝑀) can be removed. However, in actual computation, the two
equality constraints of (2) only hold approximately, so the full ex-
pression in (1) is necessary.

Remark 2. Thanks to (2), we see that the penalty function 𝑃 (𝑀) is

actually Lipschitz continuous in𝑀 as
𝑁∑
𝑗=1

𝑚2

𝑖 𝑗 ≠ 0, ∀𝑖 , and
𝑁∑
𝑖=1

𝑚2

𝑖 𝑗 ≠

0, ∀𝑗 . Although there are alternative penalties, we choose 𝑃 (𝑀) be-
cause it is simple, effective, and integrated well with SGD.

Theorem 1. A square matrix 𝑀 is a permutation matrix if and
only if 𝑃 (𝑀) = 0, and the doubly stochastic constraint (2) holds.

Proof. (⇒) Since a permutation matrix consists of columns

(rows) with exactly one entry of 1 and the rest being zeros, each

term inside the outer sum of 𝑃 (𝑀) equals zero, and clearly (2) holds.
(⇐) By the elementary inequality,

©«
𝑁∑
𝑗=1

��𝑚𝑖 𝑗

��ª®¬ − ©«
𝑁∑
𝑗=1

𝑚2

𝑖 𝑗

ª®¬
1/2

≥ 0, ∀𝑖,

with equality if and only if the row-wise cardinalty is 1:

| { 𝑗 :𝑚𝑖 𝑗 ≠ 0} | = 1, ∀𝑖 . (3)

This is because the mixed product terms like 2 |𝑚𝑖 𝑗 𝑚𝑖 𝑗 ′ | (𝑗 ≠ 𝑗 ′)

in (
𝑁∑
𝑗=1

��𝑚𝑖 𝑗

��)2 must be all zero to match

𝑁∑
𝑗=1

𝑚2

𝑖 𝑗 . It only happens

when equation (3) is true. Likewise,

𝑁∑
𝑖=1

��𝑚𝑖 𝑗

�� − (
𝑁∑
𝑖=1

𝑚2

𝑖 𝑗

)1/2
≥ 0, ∀𝑗,

with equality if and only if

| {𝑖 :𝑚𝑖 𝑗 ≠ 0} | = 1, ∀𝑗 .
In view of (2),𝑀 is a permutation matrix. □

The non-negative constraint in (2) is maintained throughout

SGD by thresholding𝑚𝑖 𝑗 → max(𝑚𝑖 𝑗 , 0). The normalization condi-

tions in (2) are implemented sequentially once in one SGD iteration.

Hence they are not strictly enforced. In theory, if the column/row

normalization (divide each column/row by its sum) repeats suffi-

ciently many times, the resulting matrices converge to (2), known

as the Sinkhorn process [16]. We did not find much benefit to iterate

more than once in terms of enhancing validation accuracy since

the error in matrix scaling can be compensated in network weight

adjustment during SGD.

The multiplication by𝑀 can be embedded in the network as a

1 × 1 convolution layer with 𝑀 initialized as absolute value of a

random Gaussian matrix. After each weight update, we threshold

the weights to [0,∞), normalize rows to unit lengths, then repeat on

columns. Let 𝐿 be the network loss function. The trainingminimizes

the objective function:

𝑓 = 𝑓 (𝑤,𝑀) := 𝐿(𝑤) + _
𝐽∑
𝑗=1

𝑃 (𝑀𝑗), (4)

where 𝐽 is the total number of “channel shuffle”,𝑀𝑗 ’s abbreviated

as𝑀 ,𝑤 is the network weight, _ a positive parameter. The training

algorithm is summarized in Alg. 1. Introducing those 1 × 1 convo-
lutions and the penalty term results in little extra computation, so

the training time is similar to training ShuffleNet. The ℓ1 term in

the penalty function 𝑃 has standard sub-gradient, and the ℓ2 term

is differentiable away from zero, which is maintained in the Alg. 1

by SGD and normalization in columns and rows. _ is chosen to be

10
−3

or 2× 10−3 so as to balance the contributions of the two terms

in (4) and drive

𝐽∑
𝑗=1

𝑃 (𝑀𝑗) close to 0.

We shall see that the penalty 𝑃 indeed gradually gets smaller

during training (Fig. 8). Here we show a theoretical bound on the

distance to P𝑁
when 𝑃 is small and (2) holds approximately.

Theorem 2. Let the dimension 𝑁 of a non-negative square matrix
𝑀 be fixed. If 𝑃 (𝑀) = 𝑂 (𝜖), 𝜖 ≪ 1, and the doubly stochastic con-
straints are satisfied to 𝑂 (𝜖), then there exists a permutation matrix
𝑃∗ such that ∥𝑀 − 𝑃∗ ∥𝐹 = 𝑂 (𝜖).

Proof. It follows from 𝑃 (𝑀) = 𝑂 (𝜖) that

©«
𝑁∑
𝑗=1

��𝑚𝑖 𝑗

��ª®¬ − ©«
𝑁∑
𝑗=1

𝑚2

𝑖 𝑗

ª®¬
1/2

= 𝑂 (𝜖), ∀𝑖,

implying that:

|𝑚𝑖 𝑗 𝑚𝑖 𝑗 ′ | = 𝑂 (𝜖), ∀𝑗 ≠ 𝑗 ′, ∀𝑖 . (5)

On the other hand for ∀𝑖:
𝑁∑
𝑗=1

𝑚𝑖 𝑗 = 1 +𝑂 (𝜖) . (6)

Let 𝑗∗ = argmax𝑗 |𝑚𝑖 𝑗 |, at any 𝑖 . It follows from (6) that

|𝑚𝑖 𝑗∗ | ≥ 1/𝑁 +𝑂 (𝜖),
and from (5) that

𝑚𝑖 𝑗 ′ = 𝑂 (𝜖), ∀𝑗 ′ ≠ 𝑗∗ .

Algorithm 1 AutoShuffle Learning.

Input:
mini-batch loss function 𝑓𝑡 (𝑤,𝑀), 𝑡 being the iteration index;

learning rate [𝑡 for (𝑤,𝑀);
penalty parameter _ for 𝑃 ;

total iteration number 𝑇𝑛.

Start:
𝑤 : sample from unit Gaussian distribution;

𝑀 : sample from unit Gaussian distribution then take absolute

value.

WHILE 𝑡 < 𝑇𝑛, DO:
(1) Evaluate the mini-batch gradient (∇𝑤 𝑓𝑡 ,∇𝑀 𝑓𝑡) at (𝑤𝑡 , 𝑀𝑡);
(2) 𝑤𝑡+1 = 𝑤𝑡 − [𝑡 ∇𝑤 𝑓𝑡 (𝑤𝑡 , 𝑀𝑡); // gradient update for

weights

(3)𝑀𝑡+1 = 𝑀𝑡 − [𝑡 ∇𝑀 𝑓𝑡 (𝑤𝑡 , 𝑀𝑡); // gradient update for𝑀
(4) 𝑀𝑡+1 ← max(𝑀𝑡+1, 0); // thresholding to enforce non-

negativity constraint

(5) normalize each column of𝑀𝑡+1
by dividing the sum of entries

in the column;

(6) normalize each row of𝑀𝑡+1
by dividing the sum of entries in

the row.

ENDWHILE
Output:𝑤𝑇𝑛

,𝑀𝑇𝑛
; project each matrix𝑀𝑇𝑛

𝑗
inside𝑀𝑇𝑛

to the

nearest permutation matrix.

Hence each row of𝑀 is𝑂 (𝜖) close to a unit coordinate vector, with
one entry near 1 and the rest near 0. Similarly from

𝑁∑
𝑖=1

��𝑚𝑖 𝑗

�� − (
𝑁∑
𝑖=1

𝑚2

𝑖 𝑗

)1/2
= 𝑂 (𝜖), ∀𝑗,

and

𝑁∑
𝑖=1

𝑚𝑖 𝑗 = 1 +𝑂 (𝜖), we deduce that each column of𝑀 is 𝑂 (𝜖)

close to a unit coordinate vector, with one entry near 1 and the

rest near 0. Combining the two pieces of information above, we

conclude that𝑀 is 𝑂 (𝜖) close to a permutation matrix. □

The learned non-negativematrix𝑀 will be called a relaxed shuffle
and rounded to the nearest permutation matrix to produce a final

auto shuffle. Relaxed shuffle usually has better performance before

rounding but the auto shuffle is desirable since it preserves the

shuffle structure of the original ShuffleNet without incurring extra

computation. Strictly speaking, this “rounding” involves finding the

orthogonal projection to the set of permutation matrices, a problem

called the linear assignment problem (LAP), see [1] and references

therein. The LAP can be formulated as a linear program over the

doubly stochastic matrices or constraints (2), and is solvable in

polynomial time [1]. As we shall see later in Table 5, the relaxed

shuffle comes amazingly close to an exact permutation in network

learning. It is unnecessary to solve LAP exactly, indeed a simple

rounding will do. AutoShuffleNet units adapted from ShuffleNet v1

[23] and ShuffleNet v2 [14] are illustrated in Figs. 1-2.

1 × 1 GConv

BN ReLU

Auto Shuffle

3 × 3 DWConv

BN

1 × 1 GConv

BN

Add
ReLU

3× 3 AVG Pool
(stride = 2)

1 × 1 GConv

BN ReLU

Auto Shuffle

3× 3 DWConv
(stride = 2)

BN

1 × 1 GConv

BN

Concat
ReLU

Figure 1: AutoShuffleNet units based on ShuffleNet v1.

Channel Split

1 × 1 Conv

BN ReLU

3× 3 DWConv

BN

1 × 1 Conv

BN ReLU

Concat

Auto Shuffle

3 × 3 DWConv
(stride = 2)

BN

1 × 1 Conv

BN ReLU

1 × 1 Conv

BN ReLU

3 × 3 DWConv
(stride = 2)

BN

1 × 1 Conv

BN ReLU

Concat

Auto Shuffle

Figure 2: AutoShuffleNet units based on ShuffleNet v2.

3 PERMUTATION PROBLEMS UNSOLVABLE
BY CONVEX RELAXATION

The doubly stochastic matrix condition (2) is a popular convex

relaxation of permutation. However, it is not powerful enough to

enable auto-shuffle learning as we shall see later. In this section,

we present examples from permutation optimization to show the

limitation of convex relaxation (2), and how our proposed penalty

(1) can strengthen (2) to retrieve permutation matrices.

Let us recall the graph matching (GM) problem, see [1, 12, 13,

18, 21] and references therein. The goal is to align the vertices of

two graphs to minimize the number of edge disagreements. Given a

pair of 𝑛-vertex graphs𝐺𝐴 and𝐺𝐵 , with respective adjacency 𝑛 ×𝑛
matrices 𝐴 and 𝐵, the GM problem is to find a permutation matrix

𝑄 to minimize ∥𝐴𝑄 − 𝑄𝐵∥2
𝐹
. Let Π be the set of all permutation

matrices, solve

𝑄∗ := argmin𝑄 ∈Π ∥𝐴𝑄 −𝑄 𝐵∥2𝐹 . (7)

By algebraic identity

∥𝐴𝑄 −𝑄 𝐵∥2𝐹
= trace{(𝐴𝑄 −𝑄 𝐵)𝑇 (𝐴𝑄 −𝑄 𝐵)}

= trace(𝐴𝑇 𝐴) + trace(𝐵𝑇 𝐵) − 2trace(𝐴𝑄 𝐵𝑇 𝑄𝑇),
the GM problem (7) is same as

𝑄∗ = argmin𝑄 ∈Πtrace((−𝐴)𝑄 𝐵𝑇 𝑄𝑇),
a quadratic assignment problem (QAP). The general QAP for two

real square matrices 𝐴 and 𝐵 is [12, 18]:

𝑄∗ = argmin𝑄 ∈Π trace(𝐴𝑄 𝐵𝑇 𝑄𝑇) .
The convex relaxed GM is:

𝑄∗ := argmin𝑄 ∈𝐷𝑁 ∥𝐴𝑄 −𝑄 𝐵∥2𝐹 .
As an instance of general QAP, let us consider problem (7) in case

𝑛 = 2 for two real matrices:

𝐴 =

[
𝑎 𝑏

𝑐 𝑑

]
, 𝐵 =

[
𝑎′ 𝑏 ′

𝑐 ′ 𝑑 ′

]
.

If 𝑄 ∈ D2
, then:

𝑄 =

[
𝑞 1 − 𝑞

1 − 𝑞 𝑞

]
, 𝑞 ∈ [0, 1];

and

𝐴𝑄 −𝑄𝐵 =

[
(𝑎 − 𝑎′) 𝑞 + (𝑏 − 𝑐 ′) 𝑞′ (𝑏 − 𝑏 ′) 𝑞 + (𝑎 − 𝑑 ′) 𝑞′
(𝑐 − 𝑐 ′) 𝑞 + (𝑑 − 𝑎′) 𝑞′ (𝑑 − 𝑑 ′) 𝑞 + (𝑐 − 𝑏 ′) 𝑞′

]
.

where 𝑞′ = 1 − 𝑞.
Example 1: Let

𝐴 =

[
1 2

3 1

]
, 𝐵 =

[
0 2

3 1

]
.

𝐴𝑄 −𝑄𝐵 =

[
2𝑞 − 1 0

1 − 𝑞 1 − 𝑞

]
,

∥𝐴𝑄 −𝑄𝐵∥2𝐹 = (2𝑞 − 1)2 + 2(1 − 𝑞)2 = 6𝑞2 − 8𝑞 + 3,
which is convex on [0, 1] and has minimum at 𝑞∗ = 2/3. The convex
relaxed matrix solution is:

𝑄∗ =
[
2/3 1/3
1/3 2/3

]
,

however, the permutation matrix solution 𝑄∗ is the 2 × 2 identity
matrix at 𝑞 = 1.

In the spirit of objective function (4), let us minimize

∥𝐴𝑄 −𝑄𝐵∥2𝐹 + _ 𝑃 (𝑄),
or equivalently minimize (after skipping additive constants in 𝑃)

𝐹 = 𝐹 (𝑞) := 6𝑞2 − 8𝑞 + 2 − 4_(𝑞2 + (1 − 𝑞)2)1/2 .
An illustration of 𝐹 is shown in Fig. 3. The minimal point moves

from the interior of the interval [0, 1] when _ = 0.25 (dashed line,

top curve) to the end point 1 as _ increases to 1 (line-star, middle

curve) and remains there as _ further increases to 2 (line-circle,

bottom curve). So for _ ∈ [1, 2], 𝑄∗ is recovered with our proposed

penalty. □

Figure 3: The function 𝐹 (𝑞) as penalty parameter _ varies
from0.25 (interiorminimal point, dashed line, top) to 1 (line-
star, middle) and 2 (line-circle, bottom). Minimal point oc-
curs at 𝑞 = 1 in the latter two curves.

Example 2:Consider the adjacent matrix 𝐵 (𝐴) of an un-directed

graph of 2 nodes and 1 edge (with a loop at node 1). An edge adds

1 and a loop adds 2 to an adjacent matrix.

𝐴 =

[
2 1

1 0

]
, 𝐵 =

[
0 1

1 0

]
.

Then:

𝐴𝑄 −𝑄𝐵 =

[
2𝑞 2(1 − 𝑞)
0 0

]
,

∥𝐴𝑄 −𝑄 𝐵∥2𝐹 = 4[𝑞2 + (1 − 𝑞)2] .
So

𝑄∗ = 𝑄 (1/2) ≠ 𝑄∗ = 𝑄 (0) = 𝑄 (1) .
The 𝑃 regularized objective function (modulo additive constants)

is:

𝐹 = 4[𝑞2 + (1 − 𝑞)2] − 4_(𝑞2 + (1 − 𝑞)2)1/2,
with 𝐹 (0) = 𝐹 (1) = 4 − 4_. In view of

𝐹 ′/4 = (2𝑞 − 1) [2 − _/(𝑞2 + (1 − 𝑞)2)1/2],
two possible interior critical points are:

𝑞 = 1/2 or 𝑞2 + (1 − 𝑞)2 = _2/4. (8)

Since

max

𝑞∈[0,1]
{𝑞2 + (1 − 𝑞)2} = 1,

the second equality in (8) is ruled out if _ > 2. Comparing

𝐹 (1/2) = 2 − 4_2−1/2 = 2(1 −
√
2_)

with 𝐹 (0), we see that the global minimal point does not occur at

𝑞 = 1/2 if
1 −
√
2_ > 2 − 2_ or _ > 1/(2 −

√
2) ≈ 1.7071

Hence if _ > 2, minimizing 𝐹 recovers 𝑄∗. □

Figure 4: The function 𝐹 (𝑞) as penalty parameter _ varies
from 1.8 (solid line, top) to 1.9 (dot, middle) and 2 (line-circle,
bottom) whereminimal points occur at 𝑞 = 0, 1. Interiormin-
imal points occur on [0, 1] when _ = 1.8, 1.9.

In Fig. 4, we show that two minimal points of 𝐹 occur in the

interior of (0, 1) when _ = 1.8, 1.9, and transition to 𝑞 = 0, 1, at

_ = 2. When

_2/4 < min

𝑞∈[0,1]
{𝑞2 + (1 − 𝑞)2} = 1/2

or _ <
√
2, the second equality in (8) cannot hold, 𝐹 becomes convex

with a unique minimal point at 𝑞 = 1/2.

Remark 3. We refer to [13] on certain correlated random Bernoulli
graphs where 𝑄∗ ≠ 𝑄∗. On the other hand, there is a class of friendly
graphs [1] where 𝑄∗ = 𝑄∗. Existing techniques to improve convex
relaxation on GM and QAP include approximate quadratic program-
ming, sorting networks and path following based homotopy methods
[12, 18, 21]. Our proposed penalty (1)-(2) appears more direct and
generic. A detailed comparison will be left for a future study.

Remark 4. In Example 1, if the convex relaxed 𝑞∗ = 2/3 is rounded
up to 1, then𝑄∗ = 𝑄∗. In Example 2 (Fig. 4), the two interior minimal
points at _ = 1.8, 1.9, after rounding down (up), become zero or one.
So convex relaxation with the help of rounding happens to recover
the exact permutation. We show in Example 3 below that convex
relaxation still fails after rounding (to 1 if the number is above 1/2, to
0 if the number is below 1/2).

Example 3:We consider the two-layer neural network model with

one hidden layer [11]. Given 𝑚 ≥ 0, the forward model is the

following function:

𝑓𝑚 (𝑥,𝑊) = ∥ 𝜙 ((𝑚𝐼 +𝑊) 𝑥) ∥
1
,

where 𝜙 (𝑣) = max (𝑣, 0) is the ReLU activation function, 𝑥 =

(𝑥1, 𝑥2) ∈ R2 is the input random vector drawn from a probability

distribution,𝑊 ∈ R2×2 is the weight matrix, 𝐼 is the identity matrix.

Consider a two-layer teacher network with 2 × 2 weight matrix

𝑊 ∗ =
[
𝑎 𝑏

𝑐 𝑑

]
, 𝑎, 𝑏, 𝑐, 𝑑 ≥ 0.

We train the student network with doubly stochastic constraint on

𝑊 using the ℓ2 loss:

𝐿 (𝑊) = E𝑥
[
𝑓𝑚 (𝑥,𝑊) − 𝑓𝑚

(
𝑥,𝑊 ∗

)]
2

.

Let 𝑝 ∈ [0, 1],

𝑊 =

[
𝑝 1 − 𝑝

1 − 𝑝 𝑝

]
.

We write the loss function as

𝑙𝑚 (𝑝) := 𝐿 (𝑊)
= E𝑥 [𝜙 ((𝑚 + 𝑝) 𝑥1 + (1 − 𝑝) 𝑥2)
+ 𝜙 ((1 − 𝑝) 𝑥1 + (𝑚 + 𝑝) 𝑝𝑥2)
−𝜙 (𝑎𝑥1 + 𝑏𝑥2) − 𝜙 (𝑐𝑥1 + 𝑑𝑥2)]2

= E𝑥𝜙 ((𝑚 + 𝑝) 𝑥1 + (1 − 𝑝) 𝑥2)2

+ E𝑥𝜙 ((1 − 𝑝) 𝑥1 + (𝑚 + 𝑝) 𝑥2)2

+ 2E𝑥 [𝜙 ((𝑚 + 𝑝) 𝑥1 + (1 − 𝑝) 𝑥2)
· 𝜙 ((1 − 𝑝) 𝑥1 + (𝑚 + 𝑝) 𝑥2)]
− 2𝐺𝑚 (𝑝, 𝑎, 𝑏) − 2𝐺𝑚 (𝑝, 𝑐, 𝑑)
+ E𝑥 [𝜙 (𝑎𝑥1 + 𝑏𝑥2) + 𝜙 (𝑐𝑥1 + 𝑑𝑥2)]2 , (9)

where for 𝑠, 𝑡 ≥ 0, 𝐺𝑚 (𝑝, 𝑠, 𝑡) is defined as

E𝑥 [𝜙 ((𝑚 + 𝑝) 𝑥1 + (1 − 𝑝) 𝑥2) 𝜙 (𝑠𝑥1 + 𝑡𝑥2)
+𝜙 ((1 − 𝑝) 𝑥1 + (𝑚 + 𝑝) 𝑥2) 𝜙 (𝑠𝑥1 + 𝑡𝑥2)] .

Define

I (𝑞, 𝑟, 𝑠, 𝑡) := E𝑥 [𝜙 (𝑞𝑥1 + 𝑟𝑥2) 𝜙 (𝑠𝑥1 + 𝑡𝑥2)] ,
then

I (𝑞, 𝑟, 𝑠, 𝑡) = I (𝑠, 𝑡, 𝑞, 𝑟) ,
and

𝐺𝑚 (𝑝, 𝑠, 𝑡) = I (𝑚+𝑝, 1−𝑝, 𝑠, 𝑡) + I (1−𝑝,𝑚+𝑝, 𝑠, 𝑡) .

For simplicity, let 𝑥 obey uniform distribution on [−1, 1]2. For
𝑞𝑡 ≥ 𝑟, 𝑞 + 𝑟 > 0, 𝑠 + 𝑡 > 0,

I (𝑞, 𝑟, 𝑠, 𝑡) equals

2

3

(𝑞𝑠 + 𝑟𝑡) + 𝑞
2 (𝑞𝑡 − 3𝑟𝑠)

24𝑟2
+ 𝑠

2 (3𝑞𝑡 − 𝑟𝑠)
24𝑡2

, 𝑞 < 𝑟

1

3

(𝑞𝑠 + 𝑟𝑡) + 1

4

(𝑞𝑡 + 𝑟𝑠)

+ 1

24

(𝑟
2

𝑞2
+ 𝑠

2

𝑡2
) (3𝑞𝑡 − 𝑟𝑠) , 𝑞 ≥ 𝑟 and 𝑡 ≥ 𝑠

2

3

(𝑞𝑠 + 𝑟𝑡) + 𝑟
2 (3𝑞𝑡 − 𝑟𝑠)

24𝑞2
+ 𝑡2 (𝑞𝑡 − 3𝑟𝑠)

24𝑠2
, 𝑡 < 𝑠 .

(10)

We have

E𝑥𝜙 ((𝑚 + 𝑝) 𝑥1 + (1 − 𝑝) 𝑥2)2

= E𝑥𝜙 ((1 − 𝑝) 𝑥1 + (𝑚 + 𝑝) 𝑥2)2

=
2

3

[
(𝑚 + 𝑝)2 + (1 − 𝑝)2

]
, (11)

E𝑥 [𝜙 ((𝑚+𝑝)𝑥1+(1−𝑝)𝑥2) 𝜙 ((1−𝑝)𝑥1+(𝑚+𝑝)𝑥2)]

=
(𝑚 + 1)3
3\𝑚 (𝑝)

+ (𝑚 + 𝑝)
4

12\𝑚 (𝑝)2
, (12)

where \𝑚 (𝑝) := max (𝑚 + 𝑝, 1 − 𝑝). The last term in (9) is a con-

stant:

E𝑥 [𝜙 (𝑎𝑥1 + 𝑏𝑥2) + 𝜙 (𝑐𝑥1 + 𝑑𝑥2)]2

=
2

3

(
𝑎2 + 𝑏2 + 𝑐2 + 𝑑2

)
+ 2I (𝑎, 𝑏, 𝑐, 𝑑) . (13)

Consider a special case when 𝑎 = 1/3, 𝑏 = 2/3, 𝑐 = 1/4 and 𝑑 = 3/4.
By (11)-(13), the loss function 𝑙𝑚 (𝑝) equals

2

3

[
(𝑚 + 𝑝)2 + (1 − 𝑝)2

]
+ 2 (𝑚 + 1)3

3\𝑚 (𝑝)
+ (𝑚 + 1)

4

6\𝑚 (𝑝)2

− 2𝐺𝑚 (𝑝,
1

3

,
2

3

) − 2𝐺𝑚 (𝑝,
1

4

,
3

4

) + 8113

5184

.

Let

𝐹𝑚 (𝑝) := 𝑙𝑚 (𝑝) − 4_
√
𝑝2 + ((1 − 𝑝)2 .

When𝑚 = 0, _ = 0, Fig. 5 (top) shows 𝑙0 (𝑝) has minimal points

in the interior of (0, 1). A permutation matrix𝑊 that minimizes

𝐿 (𝑊) can be achieved by rounding the minimal points. However,

when𝑚 = 1, _ = 0, (Fig. 5, bottom), rounding the interior minimal

point of 𝑙1 (𝑝) gives the wrong permutation matrix at 𝑝 = 1. At

_ = 0.4, the 𝑃 regularization selects the correct permutation matrix.

Figure 5: 𝐹𝑚 (𝑝) (𝑚 = 0 top, 𝑚 = 1 bottom) as penalty pa-
rameter _ varies for the uniformly distributed input data on
[−1, 1]2.

Remark 5. If 𝑥 obeys the unit Gaussian distribution as in [11],
the 𝐹𝑚 (𝑝) functions are more complicated analytically, however their
plots resemble those for uniformly distributed 𝑥 , see Fig. 6.

Figure 6: 𝐹𝑚 (𝑝) (𝑚 = 0 top,𝑚 = 1 bottom) as penalty parame-
ter _ varies for unit Gaussian input data on R2.

4 EXPERIMENTS
We relax the shuffle units in ShuffleNet v1 [23] and ShuffleNet v2

[14] and perform experiments on CIFAR-10, CIFAR-100 [9] and a

subset of 20 classes (Tab. 3) from ImageNet [5, 10] classification

datasets. The 20-class data set consists of most common objects

from ImageNet, and forms a typical setting for LCNN application.

The accuracy results of auto shuffles are evaluated after the relaxed

shuffles are rounded. There is no finetuning of weights after the

rounding.

On CIFAR-10 and CIFAR-100 datasets, we set the ℓ1−2 penalty
parameter _ = 10

−3
. All experiments are randomly initialized with

learning rate linearly decaying from 0.2. We train each network

for 200 epochs on CIFAR-10 and 300 epochs on CIFAR-100. We

set weight-decay 10
−4
, momentum 0.95 and batch size 128. With

𝑤 and𝑀 initialized from unit Gaussian distribution in Alg. 1, we

never run into zero rows and columns in𝑀 . An explanation is that

those degenerate cases are not generic to cause problems for SGD

based training. In Tab. 1-2, we see that auto shuffle consistently

improves on manual shuffle in v1 and v2 models of ShuffleNet, by

as much as 1.73 % on v1 (g=3). Here g is the number of groups in

group convolution. The number of channels is scaled to generate

networks of different complexities, marked as 1x, 1.5x, etc.

Next we evaluate auto shuffle in light versions of ShuffleNets (v1

0.25x, v2 0.5x) on a 20-class subset of ImageNet. The subset can be

divided into 5 categories, each of which consists of 4 similar classes,

see Tab. 3. For each experiment, we set the ℓ1−2 penalty parameter

_ = 2× 10−3. The training process includes two training cycles: the

Table 1: CIFAR-10 validation accuracies.

Network v1 (g=8) v1 (g=3) v2 1x v2 1.5x

Manual 90.06 90.55 91.90 92.56

Auto 91.26 91.76 92.81 93.22

Table 2: CIFAR-100 validation accuracies.

Network v1 (g=8) v1 (g=3) v2 1x v2 1.5x

Manual 69.65 70.16 72.75 73.51

Auto 70.89 71.89 73.40 74.26

first cycle is randomly initialized with learning rate starting at 0.2

and the second one is resumed from the first one with learning rate

starting at 0.1. Each cycle consists of 200 epochs and the learning

rate decays linearly. We set weight-decay 4 × 10
−5
, momentum

0.9 and batch size 128. In Tab. 4, auto shuffle again consistently

improves on manual shuffle for both v1 and v2 models, by as much

as 2% on v1(g=3). In ShuffleNet v2, 𝑟 is the fraction of channels that

are fed into the right branch of the shuffle unit at Channel Split

(Fig. 2). The smaller the 𝑟 , the lighter the model, the more the auto
shuffle improvement.

Table 3: 20-class subset (A=Architectures, L=Landscapes).

Cats Dogs Vehicles A L

Egyptian Sheepdog Bike Bridge Valley

Persian Bulldog Sports car Dam Sandbar

Tiger Mountain Scooter Castle Cliff

Siamese Maltese Cab Fence Volcano

Table 4: Validation accuracies on 20-class in Table 3.

Network v1 (g=8) v1 (g=3) v2 (r=0.3) v2 (r=0.5)

Manual 82.84 82.00 84.63 86.11

Auto 83.68 84.00 85.58 86.84

The permutation matrix of the first shuffle unit in ShuffleNet v1

(g=3) is a matrix of size 60 × 60, which can be visualized in Fig. 7

(manual, left) along with an auto shuffle (right). The dots (blanks)

denote locations of 1’s (0’s). The auto shuffle looks disordered while

the manual shuffle is ordered. However, the inference cost of auto

shuffle is same as manual shuffle since the shuffle is fixed and stored

after training.

The accuracy drop due to rounding to produce auto shuffle from

relaxed shuffle is indicated by relative change in Tab. 5. OnCIFAR-10

dataset, negligible drop is observed for ShuffleNet v1. Interestingly,

rounding even gained accuracy for on the 20-class dataset.

The ℓ1−2 penalty of ShuffleNet v1 (g=3) is plotted in Fig. 8. As

the penalty decays, the validation accuracy of auto shuffle (after

Figure 7: Permutation matrices of the first shuffle unit in
ShuffleNet v1 (g=3) of manual shuffle (top) and auto shuffle
(bottom). The auto shuffle is trained on CIFAR-10 dataset.
The dots (blanks) indicate locations of 1’s (0’s). The auto
shuffle looks disordered while the manual shuffle is or-
dered. The inference cost of auto shuffle is comparable to
manual shuffle in inference.

Table 5: Relative change (Rel. Ch) of accuracy of rounding
relaxed shuffle. The -/+ refer to accuracy drop/gain after
rounding to produce auto shuffle from relaxed shuffle.

Dataset Network Rel. Ch. (%)

CIFAR-10

v1 1x (g=8) 0

v1 1x (g=3) 0

v2 1x -0.02

v2 1.5x -0.11

20-class

v1 0.25x (g=8) +0.25

v1 0.25x (g=3) +0.76

v2 0.5x (r=0.3) +0.37

v2 0.5x (r=0.5) 0

rounding) becomes closer to relaxed shuffle (before rounding),

see Fig. 9.

Figure 8: Training loss 𝐿 and penalty 𝑃 of ShuffleNet v1 (g=3)
with relaxed shuffle on CIFAR-10.

Figure 9: Validation accuracy of ShuffleNet v1 (g=3) with
relaxed shuffle (before rounding) and auto shuffle (af-
ter rounding) on CIFAR-10. The rounding error becomes
smaller during training.

To demonstrate the significance of the ℓ1−2 regularization, we
also tested auto shuffle with various _ on ShuffleNet v1 (g=3). Tab.

6 shows that the accuracy drops much after the relaxed shuffle is

rounded. We plot the stochastic matrix of the first shuffle unit of the

network at _ = 0 and _ = 10
−5

respectively in Fig. 10. The penalty

is large when _ is relatively small, indicating that the stochastic

matrices learned are not close to optimal permutation matrices.

5 CONCLUSION
We introduced a novel, exact and Lipschitz continuous relaxation

for permutation and learning channel shuffling in ShuffleNet. The

learned shuffle consistently out-performs manual shuffle on CIFAR-

10, CIFAR-100, and 20 sub-class of ImageNet data sets across various

Table 6: CIFAR-10 validation accuracies of ShuffleNet v1
(g=3) with relaxed (R) shuffle (before rounding) and auto (A)
shuffle (after rounding), and penalty (P) values of relaxed
shuffle at various _’s. The penalty and rounding error tends
to zero as _ increases.

_ 0 1E-5 1E-4 5E-4 1E-3

R 90.00 90.18 90.48 91.45 91.76

A 10.00 38.18 11.37 71.50 91.76

P 3.37E3 1.59E3 4.95E2 3.13E-1 5.07E-2

Figure 10: Stochastic matrices of the first shuffle unit in
ShuffleNet v1 (g=3) with relaxed shuffle before rounding at
_ = 0 (top) and _ = 10

−5 (bottom). The relaxed shuffle is
trained on CIFAR-10 dataset. The matrices are quite diffu-
sive, and not close to optimal permutation matrices when _

is relatively small.

light channel designs while preserving the inference costs of Shuf-

fleNet. We give solvable graph matching examples to show the

effectiveness of our permutation penalty. We show analytically

through a regression problem of a 2-layer neural network with

short cut that convex relaxation of permutation fails even with

additional rounding while our relaxation is successful.

The idea of auto-shuffle applies broadly to permutation learning

problems in science and engineering such as neuron identification

from the worm C. elegans [2], image reconstruction from scrambled

pieces [4], object tracking [19], to name a few. We plan to extend

our work to auto-shuffling in other LCNNs and a wide range of

permutation optimization problems of data science in the future.

ACKNOWLEDGMENTS
The work was partially supported by NSF grants IIS-1632935, DMS-

1854434, a Qualcomm Faculty Award, and Qualcomm AI Research.

REFERENCES
[1] Y. Aalo, A. Bronstein, and R. Kimmel. 2015. On convex relaxation of graph

isomorphism. Proc. National Academy Sci 112(10) (2015), 2942–2947.
[2] R Badhwar and G Bagler. 2015. Control of Neuronal Network in Caenorhabditis

elegans. PLOS One 10(9) (2015).
[3] R. Burkard. 2013. The quadratic assignment problem. in: Handbook of Combina-

torial Optimization (2013), 2741–2814.

[4] Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, and Stephen Gould. 2018.

Visual Permutation Learning. IEEE Pattern Analysis and Machine Intelligence
(2018).

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. 2009. Ima-

geNet: A Large-Scale Hierarchical Image Database. CVPR (2009), 248–255.

[6] Ernie Esser, Yifei Lou, and Jack Xin. 2013. A Method for Finding Structured

Sparse Solutions to Non-negative Least Squares Problems with Applications.

SIAM J. Imaging Sciences 6 (2013), 2010–2046.
[7] Aude Genevay, Gabriel Peyré, and Marco Cuturi. 2018. Learning Generative

Models with Sinkhorn Divergences. AISTATS (2018).
[8] T. Koopmans and M. Beckman. 1957. Assignment problems and the location of

economic activities. The Econometric Society 25 (1957), 53–76.

[9] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images.

Tech Report (2009).
[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classifi-

cation with deep convolutional neural networks. NeurIPS (2012), 1097–1105.
[11] Y. Li and Y. Yuan. 2017. Convergence analysis of two-layer neural networks with

ReLU activation. NeurIPS (2017).
[12] C. Lim and S. Wright. 2016. A Box-Constrained Approach for Hard Permutation

Problems. ICML (2016), 10 pages.

[13] V. Lyzinski, D. Fishkind, M. Fiori, J. Vogelstein, C. Priebe, and G. Sapiro. 2014.

Graph matching: Relax at your own risk. arXiv preprint 1405.3133 (2014).
[14] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. 2018. ShuffleNet

V2: Practical Guidelines for Efficient CNN Architecture Design. ECCV (2018).

[15] G. Mena, D. Belanger, Linderman S, and J. Snoek. 2018. Learning Latent Permu-

tations with Gumbel-Sinkhorn Networks. ICLR (2018).

[16] Richard Sinkhorn. 1964. A relationship between arbitrary positive matrices and

doubly stochastic matrices. The annals of mathematical statistics 35(2) (1964),
876–879.

[17] K. Sun, M. Li, D. Liu, and J. Wang. 2018. IGCV3: Interleaved Low-Rank Group

Convolutions for Efficient Deep Neural Networks. BMVC (2018).

[18] J. Vogelstein, J. Conroy, V. Lyzinski, L. Podrazik, S. Kratzer, E. Harley, D. Fishkind,

R. Vogelstein, and C. Priebe. 2015. Fast approximate quadratic programming for

graph matching. PloS one 10(4) (2015).
[19] Y. Yang, S. Hallman, D. Ramanan, and C. Fowlkes. 2011. Layered Object Models

for Image Segmentation. IEEE Pattern Analysis and Machine Intelligence (2011).
[20] Penghang Yin, Yifei Lou, Qi He, and Jack Xin. 2015. Minimization of ℓ1−2 for

compressed sensing. SIAM J. Sci. Computing 37(1) (2015), A536–A563.

[21] M. Zaslavskiy, F. Bach, and J. Vert. 2009. A path following algorithm for the

graph matching problem. IEEE Transactions on Pattern Analysis and Machine
Intelligence 31 (2009), 2227–2242.

[22] T. Zhang, G-J Qi, B. Xiao, and J. Wang. 2017. Interleaved group convolutions.

CVPR (2017), 4373–4382.

[23] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2017. Shufflenet:

An extremely efficient convolutional neural network for mobile devices. CVPR
(2017).

[24] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, and Zhiru Zhang.

2019. Building Efficient Deep Neural Networks with Unitary Group Convolutions.

CVPR (2019).

	Abstract
	1 Introduction
	2 Permutation, Matrix 1-2 Penalty and Exact Relaxation
	3 Permutation Problems Unsolvable by Convex Relaxation
	4 Experiments
	5 Conclusion
	Acknowledgments
	References

