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Abstract. In the last decade, convolutional neural networks (CNNs) have
evolved to become the dominant models for various computer vision tasks, but
they cannot be deployed in low-memory devices due to its high memory require-
ment and computational cost. One popular, straightforward approach to com-
pressing CNNGs is network slimming, which imposes an ¢1 penalty on the channel-
associated scaling factors in the batch normalization layers during training. In
this way, channels with low scaling factors are identified to be insignificant and
are pruned in the models. In this paper, we propose replacing the ¢; penalty with
the ¢, and transformed ¢ (T¢;) penalties since these nonconvex penalties outper-
formed /¢; in yielding sparser satisfactory solutions in various compressed sensing
problems. In our numerical experiments, we demonstrate network slimming with
£, and T¢; penalties on VGGNet and Densenet trained on CIFAR 10/100. The
results demonstrate that the nonconvex penalties compress CNNs better than /7.
In addition, T/; preserves the model accuracy after channel pruning, and £, /2 3/4
yield compressed models with similar accuracies as ¢; after retraining.

Keywords: Convolutional neural networks - Sparse optimization * ¢
regularization -+ ¢, regularization - Batch normalization - Channel pruning -
Nonconvex optimization

1 Introduction

In the past years, convolutional neural networks (CNNs) evolved into superior models
for various computer vision tasks, such as image classification [18,26,41] and image
segmentation [10,32,38]. Unfortunately, training a highly accurate CNN is computa-
tionally demanding. State-of-the-art CNNs such as Resnet [18] can have up to at least a
hundred layers and thus require millions of parameters to train and billions of floating-
point-operations to execute. Consequently, deploying CNNs in low-memory devices,
such as mobile smartphones, is difficult, making their real-world applications limited.
To make CNNs more practical, many works proposed several different directions
to compress large CNNs or to learn smaller, more efficient models from scratch.
These directions include low-rank approximation [13,23,45-47], weight quantiza-
tion [11,12,27,53,59], and weight pruning [1, 16, 19,28]. One popular direction is to
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sparsify the CNN while training it [2,6,39,44]. Sparsity can be imposed on various
types of structures existing in CNNSs, such as filters and channels [44].

One interesting yet straightforward approach in sparsifying CNNs was network
slimming [31]. This method imposes ¢; regularization on the scaling factors in the
batch normalization layers. Due to ¢; regularization, scaling factors corresponding to
insignificant channels are pushed towards zeroes, narrowing down the important chan-
nels to retain, while the CNN model is being trained. Once the insignificant channels
are pruned, the compressed model may need to be retrained since pruning can degrade
its original accuracy. Overall, network slimming yields a compressed model with low
run-time memory and number of computing operations.

In this paper, we propose replacing ¢; regularization in network slimming with an
alternative nonconvex regularization that promotes better sparsity. Because the ¢; norm
is a convex relaxation of the £; norm, a better penalty would be nonconvex and it would
interpolate ¢y and ¢;. Considering these properties, we examine ¢, [7,9,48] and trans-
formed ¢y (T¢1) [56,57] because of their superior performances in recovering satis-
factory sparse solutions in various compressed sensing problems. Furthermore, both
regularizers have explicit formulas for their subgradients, which allow us to directly
perform subgradient descent [40].

2 Related Works

2.1 Compression Techniques for CNNs

Low-rank Decomposition. Denton et al. [13] compressed the weight tensors of con-
volutional layers using singular value decomposition to approximate them. Jaderberg
et al. [23] exploited the redundancy between different feature channels and filters to
approximate a full-rank filter bank in CNNs by combinations of a rank-one filter basis.
These methods focus on decomposing pre-trained weight tensors. Wen et al. [45] pro-
posed force regularization to train a CNN towards having a low-rank representation.
Xu et al. [46,47] proposed trained rank pruning, an optimization scheme that incorpo-
rates low-rank decomposition into the training process. Trained rank pruning is further
strengthened by nuclear norm regularization.

Weight Quantization. Quantization aims to represent weights with low-precision (<8
bits arithmetic). The simplest form of quantization is binarization, constraining weights
to only two values. Courbariaux et al. [12] proposed BinaryConnect, a method that
trains deep neural networks (DNN5s) with strictly binary weights. Neural networks with
ternary weights have also been developed and investigated. Li er al. [27] proposed
ternary weight networks, where the weights are only —1,0, or +1. Zhu et al. [59]
proposed Trained Ternary Quantization that constrains the weights to more general val-
ues —W",0, and WP, where W™ and WP are parameters learned through the training
process. For more general quantization, Yin et al. [53] proposed BinaryRelax, which
relaxes the quantization constraint into a continuous regularizer for the optimization
problem needed to be solved in CNNss.

Pruning. Han et al. [16] proposed a three-step framework to first train a CNN, prune
weights if below a fixed threshold, and retrain the compressed CNN. Aghasi et al. [1]
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Fig. 1. Contour plots of sparse regularizers.

proposed using convex optimization to determine which weights to prune while preserv-
ing model accuracy. For CNNs, channel or filter pruning are preferred over individual
weight pruning since the former significantly eliminates more unnecessary weights. Li
et al. [28] calculated the sum of absolute weights for each filter of the CNN and pruned
the filters with the lowest sums. On the other hand, Hu er al. [19] proposed a metric
that measures the redundancies in channels to determine which to prune. Network slim-
ming [31] is also another method of channel pruning since it prunes channels with the
lowest associated scaling factors.

Sparse Optimization. Sparse optimization methods aim to train DNNs towards a com-
pressed structure from scratch by introducing a sparse regularization term to the objec-
tive function being minimized. BinaryRelax [53] and network slimming [31] are exam-
ples of sparse optimization methods for CNNs. Alvarez and Salzmann [2] and Scarda-
pane et al. [39] applied group lasso [55] and sparse group lasso [39] to CNNs to obtain
group-sparse networks. Non-convex regularizers have also been examined recently. Xue
and Xin [51] applied ¢; and transformed ¢; to three-layer CNNs that classify shaky vs.
normal handwriting. Ma et al. [36] proposed integrated T/;, which combines group
sparsity and T/;, and applied it to CNNs for image classification.

2.2 Regularization Penalty

Letx = (1,...,%,) € R™. The ¢; penalty is described by

n
[ERE (1)
=1

while the ¢ penalty is described by

H'THO = Z l{xﬁéo}7 where l{z;éo} = (2)

i=1

1 ifz#0
0 ifz=0.

Although ¢; regularization is popular in sparse optimization in various applications such
as compressed sensing [3,4,54] and compressive imaging [24,35], it may not actually
yield the sparsest solution [7,33,34,48,57]. Moreover, it is sensitive to outliers and it
may yield biased solutions [15].
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A nonconvex alternative to the /; penalty is the £, penalty

n 1/p
Izl = <Z x#’) 3)
=1

for p € (0,1). The ¢, penalty interpolates £y and ¢; because as p — 07, we have
¢, — fy,and as p — 17, we have £, — ¢;. It was shown to recover sparser solution
than did ¢; for certain compressed sensing problems [8,9]. Empirical studies [9,49]
demonstrated that for p € [1/2,1), as p decreases, the solution becomes sparser by
¢, minimization, but for p € (0,1/2), the performance becomes no longer significant.
In [50], 4, /2 was verified to be an unbiased estimator. Moreover, it demonstrated suc-
cess in image deconvolution [5,25], hyperspectral unmixing [37], and image segmen-
tation [29]. Numerically, in compressed sensing, a small value € is added to x; to avoid
blowup in the subgradient when x; = 0. In this work, we will examine across different
values of p since £, regularization may work differently in deep learning than in other
areas.
Lastly, the T/¢; penalty is formulated as

n

|z
-2 @
=1 v
for a > 0. T/; interpolates £y and ¢; because as a — 0, we have T¢; — /g, and as
a — 400, we have T¢; — ¢;. This penalty enjoys three properties — unbiasedness,
sparsity, and continuity — that a sparse regularizer should have [15]. The T¢; penalty
was demonstrated to be robust by outperforming ¢; and £, in compressed sensing prob-
lems with both coherent and incoherent sensing matrices [56,57]. Additionally, the T/,
penalty yields satisfactory, sparse solutions in matrix completion [58] and deep learn-
ing [36].

Figure 1 displays the contour plots of the aforementioned regularizers. With ¢; reg-
ularization, the solution tends to coincide with one of the corners of the rotated squares,
making it sparse. For ;5 and T/y, the level lines are more curved compared to /1,
which encourages the solutions to coincide with one of the corners. Hence, solutions
tend to be sparser with ¢, /5 and T/; regularization than with ¢; regularization.

3 Proposed Method

3.1 Batch Normalization Layer

Batch normalization [22] has been instrumental in speeding the convergence and
improving generalization of many deep learning models, especially CNNs [18,43].
In most state-of-the-arts CNNs, a convolutional layer is always followed by a batch
normalization layer. Within a batch normalization layer, features generated by the pre-
ceding convolutional layer are normalized by their mean and variance within the same
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Fig. 2. Visualization of batch normalization on a feature map. The mean and variance of the
values of the pixels of the same colors corresponding to the channels are computed and are used
to normalize these pixels.

channel. Afterward, a linear transformation is applied to compensate for the loss of their
representative abilities.

We mathematically describe the process of the batch normalization layer. First we
suppose that we are working with 2D images. Let x be a feature computed by a convo-
lutional layer. Its entry x; is indexed by We define the index set S; = {k : k¢ = ic},
where k¢ and i are the respective subindices of £ and ¢ along the C' axis. The mean

w; and variance o2 are computed as follows:
1 2 1 2
=g 2wk o= e D (e - m) e 5)
"l kes; " kes;

for some small value ¢ > 0, where |.A| denotes the cardinality of the set .A. Then z is
normalized as &; = % for each index 4. In short, the mean and variance are com-
puted from pixels of the same channel index, and these values are used to normalize
these pixels. Visualization is provided in Fig. 2. Lastly, the output of the batch normal-
ization layer is computed as a linear transformation of the normalized features:

Yi = YieZi + Bics (6)

where v, , i € R are trainable parameters.

3.2 Network Slimming with Nonconvex Sparse Regularization

Since the scaling factors ;. ’s in (6) are associated with the channels of a convolutional
layer, we aim to penalize them with a sparse regularizer in order to determine which
channels are irrelevant to the compressed CNN model. Suppose we have a training
dataset that consists of N input-output pairs {(z;,;)}2; and a CNN with L con-
volutional layers, where each is followed by a batch normalization layer. Then we
have a set of vectors {(v;, 3;)}, for each layer I, where v, = (71,1,...,%,c;) and
B = (Bi1,---,0,c,) with C; being the number of channels in the /th convolutional
layer. Let W be the set of weight parameters such that {(v;, 3;)}£., C W. Hence, the
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Table 1. Sparse regularizers and their subgradients.

Name | R(z) OR(x)
- sgn(z;) ifa; #0
l = i 0 = eR":z; =
v llalh ;m Il { 2 {E C11) e =0
n p-sgn(z:) .
P800 if g #£0
bzl =l Ollzlp =z €R 1z = JaiflP
i=1 zi €R ifx; =0
a(a + 1)sgn(zs) .
RET PERTL it gy £ 0
Th | Pa(a) = Z(aﬂ)‘w" OP) =z R in={ (@tla)? 7
a+ il 0 ifz =0

trainable parameters I of the CNN are learned by minimizing the following objective
function:

L

N
Z (20, W) yi) +AY_ R, (7)

=1

where h(-,-) is the output of the CNN used for prediction, L(-,-) is a loss function,
R(-) is a sparse regularizer, and A > 0 is a regularization parameter for R(-). When
R(:) = || - ||1, we have the original network slimming method. As mentioned earlier,
since /7 regularization may not yield the sparsest solution, we investigate the method
with a nonconvex regularizer, where R(-) is || - || or P,(-). To minimize (7) in gen-
eral, stochastic gradient descent is applied to the first term while subgradient descent
is applied to the second term [40]. Subgradients of the regularizers are presented in
Table 1. After the CNN is trained, channels with low scaling factors are pruned, leaving
us with a compressed model.

4 Experiments

We apply the proposed nonconvex network slimming with ¢, and T/, regularization on
CIFAR 10/100 datasets on VGGNet [41] and Densenet [20]. Code for the experiments
is given at https://github.com/kbuil993/NonconvexNetworkSlimming.

Both sets of CIFAR 10/100 consist of 32 x 32 natural images. CIFAR 10 has 10
classes; CIFAR 100 has 100 classes. CIFAR 10/100 is split between a training set of
50,000 images and a test set of 10,000 images. Standard augmentation [18,21,30] is
applied to the CIFAR 10/100 images.

For our experiments, we train VGGNet with 19 layers and Densenet with 40 lay-
ers for five runs with and without scaling-factor regularization as done in [31]. (We
refer “regularized models” as the models with scaling-factor regularization.) On CIFAR
10/100, the models are trained for 160 epochs with a training batch size of 64. They
are optimized using stochastic gradient descent with learning rate 0.1. The learning
rate decreases by a factor of 10 after 80 and 120 epochs. We use weight decay of
10~* and Nesterov momentum [42] of 0.9 without dampening. Weight initialization
is based on [17] and scaling factor initialization is set to all be 0.5 as done in [31].
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Fig.3. Effect of channel pruning ratio on the mean test accuracy of five runs of VGGNet on
CIFAR 10/100. Baseline refers to the mean test accuracy of the unregularized model that is not
pruned.

Table 2. Effect of channel pruning ratio on the mean pruned ratio of parameters of five runs of
VGGNet trained on CIFAR 10/100 for each regularization.

Pruning Ratio | CIFAR 10 CIFAR 100
2 L3y bz [liya [Tl (a=1) [Tl (a=0.5) b l3ys b2 (liya [Tl (a=1)| Tl (a=0.5)
0.10 0.2110{0.2114 | 0.21120.1995 | 0.2116 0.2094 0.2191{0.2198 | 0.2202 | 0.2200 | 0.2187 0.2167
0.20 0.3934 | 0.3955 | 0.3962 | 0.3766 | 0.3935 0.3929 0.4036 | 0.4064 | 0.4085 | 0.4071 | 0.4047 0.4033
0.30 0.5488 | 0.5513 | 0.5529 | 0.5299 | 0.5494 0.5492 0.5583 | 0.5604 | 0.5629 | 0.5621 | 0.5599 0.5597
0.40 0.6756 | 0.6796 | 0.6809 | 0.6620 | 0.6788 0.6783 0.6745 | 0.6801 | 0.6841 | 0.6853 | 0.6822 0.6849
0.50 0.7753 ] 0.7799 | 0.7810 | 0.7707 | 0.7806 0.7822 0.7535{0.7654 | 0.7719 | 0.7816 | 0.7718 0.7799
0.60 0.8471 | 0.8524 | 0.8543 | 0.8576 | 0.8555 0.8592 N/A |N/A 08307 0.8571 | 0.8290 0.8409
0.70 0.8881 | 0.8969 | 0.9001 | 0.9214 | 0.9034 0.9088 N/A  |N/A  |N/A 09148 | N/A N/A
0.80 N/A N/A N/A 1 0.9654 | N/A N/A N/A N/A N/A 0.9654 | N/A N/A
0.90 N/A N/A N/A 0.9905 | N/A N/A N/A N/A N/A N/A N/A N/A
With regularization parameter A = 10~*, we train the regularized models with £;,

£y(p =0.25,0.5,0.75), and T¢; (@ = 0.5, 1) penalties on the scaling factors.

4.1 Channel Pruning

After training, we prune the regularized models globally. In particular, we specify a
ratio such as 0.35 or a percentage such as 35%, determine the 35th percentile among all
scaling factors of the network and set it as a threshold, and prune away channels whose
scaling factors are below that threshold. After pruning, we compute the compressed
networks’ mean test accuracies. Mean test accuracies are compared against the base-
line test accuracy computed from the unregularized models. We evaluate the mean test
accuracies as we increase the channel pruning ratios in increment of 0.05 to the point
where a layer has no more channels.

For VGGNet, the mean test accuracies across the channel pruning ratios are shown
in Fig. 3. The mean pruned ratios of parameters (the number of parameters pruned
to the total number of parameters) are shown in Table 2. For CIFAR 10, according
to Fig. 3a, the mean test accuracies for £,/ and ¢/, are not robust against pruning
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Fig.4. Effect of channel pruning ratio on the mean test accuracy of five runs of Densenet on
CIFAR 10/100. Baseline refers to the mean test accuracy of the unregularized model that is not
pruned.

Table 3. Effect of channel pruning ratio on the mean pruned ratio of parameters of five runs of
Densenet-40 trained on CIFAR 10/100 for each regularization.

Pruning Ratio | CIFAR 10 CIFAR 100
0 by |l s [T (@=1)]T6 (@=05) 6 by |liys by [Tl (a=1)|Th (a=0.5)

0.10 0.0922]0.0932 [ 0.0933 | 0.0935 [ 0.0935 0.0935 0.0918]0.0919 ] 0.0920 | 0.0926 | 0.0926 0.0925

0.20 0.1835] 0.1864 | 0.1859 | 0.1871 | 0.1863 0.1872 0.1834]0.1839 | 0.1841 | 0.1853 | 0.1846 0.1849

030 0.2757|0.2787 | 0.2797 | 0.2813 | 0.2785 0.2808 0.2753|0.2757 | 0.2762 | 0.2785 | 0.2772 0.2775

0.40 0.3673 | 0.3714 | 0.3726 | 0.3752 | 0.3717 0.3739 0.3669 | 0.3676 | 0.3685 | 0.3717 | 0.3691 0.3698

0.50 0.4595 | 0.4642 | 0.4662 | 0.4705 | 0.4641 0.4673 0.4584 | 0.4595 | 0.4606 | 0.4651 | 0.4615 0.4624

0.60 0.5515]0.5562 | 0.5588 | 0.5669 | 0.5573 0.5616 0.5498 | 0.5513 | 0.5526 | 0.5594 | 0.5535 0.5546

0.70 0.6438 ] 0.6490 | 0.6512 | 0.6656 | 0.6514 0.6549 0.6412]0.6433 | 0.6444 | 0.6573 | 0.6455 0.6471

0.80 0.7375 | 0.7425 | 0.7447 | 0.7702 | 0.7446 0.7488 0.7339]0.7356 | 0.7367 | 0.7628 | 0.7378 0.7392

0.90 0.8376 | 0.8402 | 0.8436 | N/A | 0.8423 0.8445 N/A 08334 NJA | N/A |0.8348 0.8360

since they gradually decrease as the channel pruning ratio increases. On the other hand,
3,4 and T¢; are more robust than /; to channel pruning since their accuracies drop
at higher pruning ratios. So far, we see T¢;(a = 0.5) to be the most robust with its
mean test accuracy to be close to its pre-pruned mean test accuracy. For CIFAR 100,
in Fig. 3b, £; is less robust than /3,4, £; /o and T/;. Like for CIFAR 10, T/;(a = 0.5)
is the most robust since its accuracy does not drop off until after 55% of channels are
pruned while the accuracies of the other regularizers drop by when 50% of channels are
pruned. According to Table 2, the pruned ratio of parameters are comparable among the
regularizers for each channel pruning percentage, but always a nonconvex regularizer
prunes more weight parameters than does /7.

For Densenet-40, the mean test accuracies across the channel pruning ratios are
depicted in Fig. 4. The mean pruned ratios of parameters are shown in Table 3. For both
CIFAR 10/100, £, 4 is the least robust among the regularizers and following it is /;.
T¢1(a = 0.5) is the most robust because its test accuracy drops at a higher pruning ratio
than do other regularizers. According to Table 3, ¢; compresses the models the least
while generally ¢, /4 prunes the most number of parameters for both CIFAR 10/100.
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Overall, we see thatas p — 0T, ¢, regularization tends to prune more weight param-
eters, but its mean test accuracy decreases and it becomes less robust against pruning.
Because smaller value of p strongly encourages sparsity, many of the scaling factors are
close to zeroes, causing their respective subgradients to become larger and thus affect-
ing the model accuracy. For T¢;, a = 0.5 manages to prune more weight parameters
than does a = 1.0 and it improves the robustness of the model against pruning.

Table 4. Results from retrained VGGNet on CIFAR 10/100 after pruning. Baseline refers to the
VGGNet model trained without regularization on the scaling factors.

Number of Parameters

Pruning Percentage (%)

Average Test Accuracy
before Retraining (%)

Average Test Accuracy
after Retraining (%)

Baseline 20.04M 0.00 93.83 N/A
71 (0% Pruned) 20.04M 0.00 93.63 N/A
01 (70% Pruned) 2.24M 88.81 28.28 93.91
25,4 (0% Pruned) 20.04M 0.00 9353 N/A
£54 (70% Pruned) 2.07M 89.69 88.87 93.90
254 (75% Pruned) 1.79M 91.06 16.18 93.79
€35 (0% Pruncd) 20.04M 0.00 9357 N/A
£1/5 (70% Pruned) 2.00M 90.01 40.07 93.77
01 /5 (75% Pruned) 1.66M 91.70 13.65 93.82
2y /4 (0% Pruned) 20.04M 0.00 86.97 N/A
£44 (70% Pruned) 1.58M 92.14 47.59 92.15
01,4 (90% Pruned) 0.19M 99,05 10.00 81.57
TC; (a = 1) (0% Pruned) 20.04M 0.00 93,55 N/A
T4y (a = 1) (70% Pruned) 1.93M 90.35 93.54 93.86
T¢; (a = 1) (75% Pruned) 1.66M 91.71 86.83 93.82
TZ1 (a = 0.5) (0% Pruned) 20.04M 0.00 93.15 N/A
T4y (a = 0.5) (70% Pruned) 1.83M 90.88 93.14 93.75
T4y (a = 0.5) (75% Pruned) 1.53M 92.38 9238 93.77

Number of Parameters

(a) CIFAR 10

Pruning Percentage (%)

Average Test Accuracy
before Retraining (%)

Average Test Accuracy
after Retraining (%)

Baseline 20.08M 0.00 7273 N/A
1 (0% Pruned) 20.08M 0.00 7257 N/A
1 (55% Pruned) 431M 78.53 1.00 72.98
75,4 (0% Pruned) 20.08M 0.00 7214 N/A
254 (55% Pruned) 4.10M 79.59 3.40 73.26
7y /3 (0% Pruned) 20.08M 0.00 72.06 N/A
£15 (55% Pruned) 3.95M 80.35 2732 7325
€1 /5 (60% Pruned) 3.40M 91.70 1.08 71.45
77 /2 (0% Pruncd) 20.08M 0.00 70.95 N/A
£14 (55% Pruned) 3.58M 82.19 630 7220
214 (80% Pruned) 0.69M 99.05 1.00 15.43
T¢; (a = 1) (0% Pruned) 20.08M 0.00 72.07 N/A
T¢1(a = 1) (55% Pruned) 3.94M 80.37 69.13 73.08
T¢; (a = 1) (60% Pruned) 3.43M 91.71 1.84 72.93
T¢1(a = 0.5) (0% Pruned) 20.08M 0.00 71.63 N/A
T4y (a = 0.5) (55% Pruned) 3.72M 81.46 71.57 72.69
T¢; (a = 0.5) (60% Pruned) 3.20M 92.38 66.50 72.61

(b) CIFAR 100
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4.2 Retraining After Pruning

After a model is pruned, we retrain it without regularization on the scaling factors with
the same optimization setting as the first time training it. The purpose of retraining is to
at least recover the model’s original accuracy prior to pruning. For VGGNet, the results
are shown in Table 4; for Densenet-40, the results are shown in Table 5.

Table 5. Results from retrained Densenet-40 on CIFAR 10/100 after pruning. Baseline refers to
the Densenet-40 model trained without regularization on the scaling factors.

Number of Parameters

Pruning Percentage (%)

Average Test Accuracy
before Retraining (%)

Average Test Accuracy

after Retraining (%)

Baseline 1.02M 0.00 94.25 N/A
£1 (0 % Pruned) 1.02M 0.00 93.46 N/A
41 (82.5% Pruned) 0.25M 76.21 78.27 93.46
41 (90% Pruned) 0.17M 83.76 17.47 91.42
L34 (0% Pruned) 1.02M 0.00 93.19 N/A
L34 (82.5% Pruned) 0.25M 76.57 90.17 93.33
€374 (90% Pruned) 0.16M 84.02 15.06 91.54
£1 /2 (0% Pruned) 1.02M 0.00 93.28 N/A
£y /2 (82.5% Pruned) 0.25M 76.84 83.17 93.43
€1 /5 (90% Pruned) 0.16M 84.36 13.76 91.31
£1 /4 (0% Pruned) 1.02M 0.00 89.48 N/A
£y /4 (82.5% Pruned) 0.22M 79.81 11.29 91.68
£y /4 (85% Pruned) 0.18M 82.57 10.05 91.44
T4y (a = 1) (0% Pruned) 1.02M 0.00 93.16 N/A
Ty (a = 1) (82.5% Pruned) 0.25M 76.80 93.17 93.26
T4y (a = 1) (90% Pruned) 0.16M 84.23 18.91 91.70
T4y (a = 0.5) (0% Pruned) 1.02M 0.00 92.78 N/A
T4y (a = 0.5) (82.5% Pruned) 0.24M 77.21 92.74 93.05
T4y (a = 0.5) (90% Pruned) 0.16M 84.45 18.12 91.69
(a) CIFAR 10
. Average Test Accuracy | Average Test Accuracy
Number of Parameters | Pruning Percentage (%) before Retraining (%) | after Retraining (%)
Baseline 1.06M 0.00 74.58 N/A
41 (0% Pruned) 1.06M 0.00 73.24 N/A
41 (75% Pruned) 0.35M 68.74 54.68 73.73
41 (85% Pruned) 0.23M 78.08 2.94 72.40
£3 /4 (0% Pruned) 1.06M 0.00 72.97 N/A
L34 (75% Pruned) 0.34M 68.93 63.60 73.75
L34 (85% Pruned) 0.23M 78.26 4.44 72.63
£3/4 (90% Pruned) 0.18M 83.34 1.23 69.33
£1/2 (0% Pruned) 1.06M 0.00 72.98 N/A
£y /2 (75% Pruned) 0.34M 69.13 66.59 73.39
£1 /2 (85% Pruned) 0.23M 78.42 5.05 72.52
£1 /4 (0% Pruned) 1.06M 0.00 69.02 N/A
£1 /4 (75% Pruned) 0.32M 70.81 7.25 71.62
£1 /4 (85% Pruned) 0.19M 82.28 1.00 67.76
Tl1(a = 1) (0% Pruned 1.06M 0.00 72.63 N/A
T¢1(a = 1) (75% Pruned) 0.34M 69.13 72.34 73.42
T¢1(a = 1) (85% Pruned) 0.23M 78.47 7.5 72.52
T¢1(a = 1) (90% Pruned) 0.18M 83.49 1.24 69.98
T¢y (a = 0.5) (0% Pruned) 1.06M 0.00 72.57 N/A
T4y (a = 0.5) (75% Pruned) 0.34M 69.33 72.59 73.23
T4y (a = 0.5) (85% Pruned) 0.23M 78.58 13.41 72.56
T4y (a = 0.5) (90% Pruned) 0.17M 83.60 1.37 70.16

(b) CIFAR 100
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For VGGNet on CIFAR 10, we examine models pruned at 70%, the highest percent-
age that /1 -regularized models can be pruned at. According to Table 4a, the nonconvex
regularized models, except for £, /4, attain similar mean test accuracy after retraining as
the ¢;-regularized models. However, test accuracies of only ¢1, /5 /4, and T¢1(a = 1.0)
exceed the baseline mean test accuracy. Although ¢; has higher test accuracy than other
nonconvex regularized models, it is less compressed than the other regularized models.
We also examine higher percentages for other nonconvex regularized models. Mean
test accuracies improve for £; /5 and T/; (a = 0.5), but they drop slightly for most other
models. ¢, 4 experiences the worst decrease, but it is due to having 90% of its chan-
nel pruned, resulting in significantly more weight parameters pruned compared to other
nonconvex regularized models.

For VGGNet on CIFAR 100, we examine the mean test accuracy at 55%, the highest
percentage that the ¢;-regularized models can be pruned at. By Table 4b, only /34,
{12, and T¢1(a = 1.0) outperform ¢; in terms of compression and mean test accuracy.
Increasing the pruning percentages higher for some other models, we observe slight
decrease in test accuracies for £, 5 and T¢;(a = 0.5, 1). The ¢; /4-regularized models
are unable to recover its original test accuracy as evident by their mean test accuracy of
15.43% with 80% of channels pruned.

For Densenet-40 on CIFAR 10, from Table 5a, when 82.5% channels are pruned, ¢,
has the least number of weight parameters pruned. In addition, with better compression,
the other nonconvex regularized models have slightly lower mean test accuracies after
retraining. Models regularized with /; 4 have the worst mean test accuracy of 91.68%.
Increasing the channel pruning percentages, we observe that the mean test accuracies
decrease from at least 93% to 91-92% for all models, except £; /4. Models regularized
with £3,4 and T/ (a = 0.5, 1) have higher mean test accuracy and less weight param-
eters than models regularized with ¢;. For this set of models, the trade off between
accuracy and compression is apparent.

In Table 5b, all regularized models, except for /1,4 have at least 73% as their mean
test accuracies after pruning 75% of their total channels and retraining them. The ¢;
regularized models are the least compressed compared to the nonconvex regularized
models. Pruning at least 85% of the total channels decreases the mean test accuaracies
after retraining. Again, accuracy is sacrificed by compressing the models even further.

5 Conclusion

We suggest a novel improvement to the network slimming method by replacing the
¢, penalty with either the ¢, or T¢; penalties on the scaling factors in the batch nor-
malization layer. We demonstrate the effectiveness of the nonconvex regularizers with
VGGNet and Densenet-40 trained on CIFAR 10/100 in our experiments. We observe
that nonconvex regularizers compress the models more than ¢; at the same channel
pruning ratios. In addition, T/; preserves the model accuracy against channel prun-
ing, while /3,4 and /; /5 result in more compressed models than does ¢; with similar
or higher model accuracy after retraining the pruned models. Hence, if deep learning
practitioners do not have the option to retrain a compressed model, they should select
T/, penalty for network slimming. Otherwise, they should choose £,,,p > 0.5 for a
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model with better accuracy attained after retraining. For future direction, we plan to
apply relaxed variable splitting method [14] to regularization of the scaling factors in
order to apply other nonconvex regularizers such as ¢; — 5 [34,52].
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