
Network Compression via Cooperative Architecture
Search and Distillation

Fanghui Xue
Department of Mathematics

University of California, Irvine
Irvine, CA, USA.

fanghuix@uci.edu

Jack Xin
Department of Mathematics

University of California, Irvine
Irvine, CA, USA.

jack.xin@uci.edu

Abstract—Neural Architecture Search (NAS) and its variants
are competitive in many computer vision tasks lately. In this
paper, we develop a Cooperative Architecture Search and Distil-
lation (CASD) method for network compression. Compared with
prior art, our method achieves better performance in ResNet-
164 pruning on CIFAR-10 and CIFAR-100 image classifications,
promising to be extended to other tasks.

Index Terms—NAS, distillation, network compression, pruning

I. INTRODUCTION

While neural networks have been widely used in a great

number of academic and industrial scenarios, the huge com-

putational costs for training and inference are not always

affordable. Researchers have developed numerous network

compression methods in order to increase efficiency. Many

recent papers formulate this problem in a Neural Architecture

Search (NAS) [1] framework. Network Slimming [2] has

set up a group of scaling factors, which can indicate the

significance of corresponding channels of features in the batch

normalization layers of a convolutional neural network. This

scaling tensor tends to be sparse when �1 regularization is

applied. TAS [3] searches for the number of channels in each

convolutional layer and the number of layers as well, using

knowledge distillation to further increase network accuracy.

Some fast NAS algorithms can be utilized to search the

optimal compressed networks. DARTS [4] splits the training

dataset into two, and each half of the dataset is used to learn

the weights and the architecture respectively, via a two-step

gradient descent. Based on DARTS, TAS has further proposed

a penalized loss to limit computational costs and manage the

FLOPs. Although TAS is able to compress the network by

around 30%, one shall be aware that TAS performs much
worse in accuracy than the un-pruned baseline for the task of
CIFAR classification. In addition, the 1st-order DARTS used

in TAS has poor convergence while the 2nd-order alternative

is slow and used less often. DARTS also suffers from the

model collapse problem [5]. Motivated by these thoughts, the

aim of this paper is to develop a Cooperative Architecture

Search and Distillation (CASD) method to improve accuracy
appreciably for the compressed networks in a consistent and
reliable manner.

II. METHODOLOGY

In this section, we discuss our formulation of the network

compression problem and the search, pruning and distillation

algorithms.

When fitting a dataset with a neural network, typically we

need to specify a model with several layers, set up a loss

function, and learn the weight tensor with SGD or its variants.

As our purpose now is to prune the network, we build the

following framework accordingly:

1) Introduce a channel scoring tensor S and include it in

the loss as a learnable parameter.

2) Learn the channel tensor S as well as the weight tensor

w by some NAS algorithms.

3) Remove those channels with low scores (pruning).

4) Fine-tune the pruned network with knowledge distilla-

tion.

An easy way to impose the scoring tensor is to multiply

the output of each channel Cij by a significance indicator

Sij directly, where i and j stand for the indices of the

layer and the channel. We adopt the method of Network

Slimming [2], which delicately uses the scale of each channel

in batch normalization layers as the score. With this learnable

scoring tensor added, the loss becomes a function L(w, S),
depending on both w and S. Our goal of Step 2) is find

the optimal scoring tensor S so that the pruned network is

optimal. This is clearly a special case of NAS, which can

be solved by a group of NAS algorithms. In view of the

convergence and efficiency problems of DARTS, we adopt a

relaxed differentiable architecture search (RARTS [6]) method

which proposed a three-step first order gradient descent to

fix model collapse and speed up convergence. The relaxed

Lagrangian to be minimized for model training is:

L(v, w, S) = L1(w, S) + λL2(v, S) +
1

2
β ‖v − w‖22,

where v is the tensor generated from the relaxation, sharing the

same shape with w. L1 and L2 are the loss values computed

on the two half splits of the training dataset. λ and β are

hyperparameters to adjust the scale of the penalty terms. It has

been verified in [6] that RARTS has achieved better accuracy

than DARTS in various image classification tasks, and arrested

the model collapse problem in training.

42

2021 4th International Conference on Artificial Intelligence for Industries (AI4I)

978-1-6654-3410-2/21/$31.00 ©2021 IEEE
DOI 10.1109/AI4I51902.2021.00018

In Step 3), we prune the channels whose scores are low, and

obtain a compact network. Finally, we fine-tune this model

with knowledge distillation [7]. Let ŷ and y to be the logits

of the unpruned baseline and the pruned network. We follow

the settings of TAS [3], which basically penalizes the cross

entropy loss with the KL divergence of the pruned network

from the soft labels of the unpruned network:

Lfine = γLCE + (1− γ)LKL,

where LCE = − log σj(y) is the cross entropy loss when the

target label is j, and

LKL =
∑

i

σi(ŷ/T) log
(
σi(ŷ/T)/σi(y/T)

)

is the KL divergence. Here i goes over all the classification

classes, and σi(y) = exp yi∑
k exp yk

is the softmax function. The

hyper-parameters T and γ and determine the scale of the loss

and the logits. Since the network parameters v and w are

optimized in turn and promote each other via the �2 penalty

(see Algorithm 1), it is called a cooperative method.

Algorithm 1: Cooperative Architecture Search and

Distillation (CASD) for network compression

Input the learning rates ηw, ηv , ηS .

Initialize the weight tensors w0, v0 independently.

Initialize the channel scoring tensor S0.

Optimize the loss L(w, v, S) by RARTS [6]:

while not converged do
vt+1 ← vt − ηtv∇vL(vt, wt, St)
wt+1 ← wt − ηtw∇wL(vt+1, wt, St)
St+1 ← St − ηtS∇SL(vt+1, wt+1, St)

end
Prune the channels whose scores are low.

Fine-tune the network by distillation.

III. EXPERIMENTS

We apply CASD to ResNet-164 [8] pruning on CIFAR-10

and CIFAR-100 [9] classification tasks. The hyperparameters

of search and pruning follow those of Network Slimming:

batch size = 256, learning rate = 0.1, weight day = 10−4,

and epoch = 160. The Pruning Ratios (PR) for Network

Slimming and CASD are predetermined. That means, we rank

the channel scoring parameters in each layer and prune the

lowest 40% or 60% of them. The fine-tuning step is also

similar, except for an extra KL divergence term for distillation.

The hyper-parameters in the final distillation step follow those

of TAS: the weight of cross-entropy loss vs. the weight of KL

divergence = 9:1, the scaling temperature of the logits T = 4.
The baseline model in Table I is the unpruned ResNet-164.

It has obtained the FLOPs of 2.48× 108 with an error 4.22%

on CIFAR-10, and the same FLOPs with an error 21.83% on

CIFAR-100. In order to be consistent, the measure of FLOPs

follows TAS, which is one half of the measure in Network

Slimming. It is fair to assign TAS to the 40% PR group as

its FLOPs is similar to the other two. Clearly, CASD beats

Network Slimming and TAS in accuracy for both datasets.

TABLE I
APPLICATION OF CASD TO RESNET-164 PRUNING ON CIFAR-10 AND

CIFAR-100, IN COMPARISON WITH THE BASELINE (RESNET-164), TAS
AND NETWORK SLIMMING (NS).

Data Method Test Error (%) FLOPs

CIFAR-10

Baseline 4.22 2.48× 108

TAS [3] 6.00 1.78× 108

NS (40% PR) [2] 5.08 1.90× 108

CASD (40% PR) 4.58 1.90× 108

NS (60% PR) [2] 5.27 1.38× 108

CASD (60% PR) 5.01 1.33× 108

CIFAR-100

Baseline 21.83 2.48× 108

TAS [3] 22.24 1.71× 108

NS (40% PR) [2] 22.87 1.67× 108

CASD (40% PR) 21.63 1.78× 108

NS (60% PR) [2] 23.91 1.24× 108

CASD (60% PR) 22.38 1.23× 108

IV. CONCLUSION

We have developed a Cooperative Architecture Search and

Distillation method for network compression. Thanks to the

better search algorithm, it has achieved a comparable effi-

ciency and better accuracy than prior state-of-the-art network

compression methods for the ResNet-164 model on CIFAR.

On CIFAR-100 in particular, CASD realized both 40% com-

pression and better accuracy than the baseline ResNet-164.

CASD can be easily generalized to any other datasets and

networks with no changes other than data processing and

model initialization. In future work, we also plan to further

enhance knowledge distillation aspect of CASD.

ACKNOWLEDGMENTS

The work was partially supported by NSF grant DMS-

1854434, DMS-1952644, and a Qualcomm Faculty Award.

REFERENCES

[1] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” ICLR, 2017; arXiv preprint arXiv:1611.01578, 2016.

[2] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient
convolutional networks through network slimming,” in Proceedings of
the IEEE International Conference on Computer Vision, 2017, pp. 2736–
2744.

[3] X. Dong and Y. Yang, “Network pruning via transformable architecture
search,” in Advances in Neural Information Processing Systems, 2019,
pp. 760–771.

[4] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture
search,” ICLR, 2019; arXiv preprint arXiv:1806.09055, 2018.

[5] X. Chu, T. Zhou, B. Zhang, and J. Li, “Fair darts: Eliminating unfair
advantages in differentiable architecture search,” in European conference
on computer vision. Springer, 2020, pp. 465–480.

[6] F. Xue, Y. Qi, and J. Xin, “Rarts: a relaxed architecture search method,”
arXiv preprint arXiv:2008.03901, 2020.

[7] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” The Conference on Neural Information Processing Systems
Workshop (NeurIPS-W), 2014.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[9] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

43

