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ABSTRACT In this paper, we propose a feature affinity (FA) assisted knowledge distillation (KD) method
to improve quantization-aware training of deep neural networks (DNN). The FA loss on intermediate feature
maps of DNNs plays the role of teaching middle steps of a solution to a student instead of only giving final
answers in the conventional KDwhere the loss acts on the network logits at the output level. Combining logit
loss and FA loss, we found via convolutional network experiments on CIFAR-10/100, and Tiny ImageNet
data sets that the quantized student network receives stronger supervision than from the labeled ground-
truth data. The resulting FA quantization-distillation (FAQD), trained to convergence with a cosine annealing
scheduler for 200 epochs, is capable of compressingmodels on label-free data up to or exceeding the accuracy
levels of their full precision counterparts, which brings immediate practical benefits as pre-trained teacher
models are readily available and unlabeled data are abundant. In contrast, data labeling is often laborious
and expensive. Finally, we propose and prove error estimates for a fast feature affinity (FFA) loss function
that accurately approximates FA loss at a lower order of computational complexity, which helps speed up
training for high resolution image input. Source codes are available at: https://github.com/lzj994/FAQD

INDEX TERMS Model compression, quantization, knowledge distillation, image classification, convolu-
tional neural networks.

I. INTRODUCTION
Quantization is one of the most popular methods for deep
neural network compression, by projecting network weights
and activation functions to lower precision thereby acceler-
ate computation and reduce memory consumption. However,
there is inevitable loss of accuracy in the low bit regime.
One way to mitigate such an issue is through knowledge
distillation (KD [9]). In this paper, we study a feature affinity
assisted KD so that the student and teacher networks not only
try to match their logits at the output level but also match
feature maps in the intermediate stages. This is similar to
teaching a student through intermediate steps of a solution
instead of just showing the final answer (as in conventional
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KD [9]). Our method does not rely on ground truth labels
while enhancing student network learning and closing the
gaps between full and low precision models.

A. WEIGHT QUANTIZATION OF NEURAL NETWORK
Quantization-aware training (QAT) searches the optimal
model weight in training. Given an objective L, the classical
QAT scheme ([6], [20]) is formulated as

{
wt+1

= wt − ∇uL(ut ),
ut+1

= Quant(wt+1),
(1)

where Quant is projection to a low precision quantized space.
Yin et al. [27] proposed BinaryRelax, a relaxation form of
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FIGURE 1. Plot of 2-bit quantized ReLU σ (x, α).

QAT, which replaces the second update of (1) by

ut+1
=
wt+1

+ λt+1Quant(wt+1)
1 + λt+1 ,

λt+1
= ηλt with η > 1. (2)

Darkhorn et al. [7] further improved (2) by designing a more
sophisticated learnable growing scheme for λt and adding a
learnable parameter into Quant(·). Polino et al. [18] proposed
quantized distillation (QD), a QAT framework that lever-
ages knowledge distillation for quantization. Under QD, the
quantized model receives supervision from both ground truth
(GT) labels and a trained teacher in float precision (FP). The
objective function has the generalized form (α ∈ (0, 1)):

LQD = αLKD + (1 − α)LGT (3)

where LKD is Kullback–Leibler divergence (KL) loss, and
LGT is negative log likelihood (NLL) loss. In order to com-
pare different methods fairly, we introduce two technical
terms: end-to-end quantization and fine-tuning quantization.
End-to-end quantization is to train a quantized model from
scratch, and fine-tuning quantization is to train a quantized
model from a pre-trained float precision (FP) model. With
the same method, the latter usually lands a better result than
the former. Li et al. [14] proposed amixed quantization (a.k.a.
BRECQ) that takes a pre-trained model and partially retrains
the model on a small subset of data.

B. ACTIVATION QUANTIZATION
In addition to weight quantization, the inference of neural
networks can be further accelerated through activation quanti-
zaton. Given a resolution α > 0, a quantized ReLU activation
function of bit-width b ∈ N is σ = σ (x, α):

σ =


0 x < 0
kα (k − 1)α ≤ x < kα, 1 ≤ k ≤ 2b − 1
(2b − 1)α x ≥ (2b − 1)α

(4)

where the resolution parameter α is learned from data. A plot
of 2-bit quantized ReLU is shown in Fig. 1. However,
such quantized activation function leads to vanished gradient

during training, which makes the standard backpropagation
inapplicable. Indeed, it is clear that ∂σ

∂x = 0 almost every-
where. Bengio et al. [2] proposed to use a straight through
estimator (STE) in backward pass to handle the zero gradient
issue. The idea is to simply replace the vanished ∂σ

∂x with
a non-trivial derivative ∂σ̃

∂x of a surrogate function σ̃ (x, α).
Theoretical studies on STE and convergence vs. recurrence
issues of training algorithms have been conducted in ([16]
and [26]). Among a variety of STE choices, a widely-used
STE is the x-derivative of the so-called clipped ReLU [3]
α̃(x, α) = min{max{x, 0}, (2b − 1)α}, namely,

∂σ̃

∂x
=

{
1 0 < x < (2b − 1)α
0 else.

In addition, a few proxies of ∂σ
∂α

have been proposed
([4], [28]). In this work, we follow [28] and use the three-
valued proxy:

∂σ

∂α
≈


0 x ≤ 0
2b−1 0 < x < (2b − 1)α
2b − 1 x ≥ (2b − 1)α.

(5)

C. KNOWLEDGE DISTILLATION
Several works have proposed to impose closeness of the
probabilistic distributions between the teacher and student
networks, e.g. similarity between feature maps. A flow of
solution procedure (FSP) matrix in [25] measures the infor-
mation exchange between two layers of a given model. Then
l2 loss regularizes the distance between FSP matrices of
teacher and student in knowledge distillation. An attention
transform (AT) loss [29] directlymeasures the distance of fea-
ture maps outputted by teacher and student, which enhances
the learning of student from teacher. Similarly, feature affinity
(FA) loss [23] measures the distance of two feature maps. In a
dual learning framework for semantic segmentation [23], the
FA loss is applied on the output feature maps of a segmenta-
tion decoder and a high-resolution decoder. In [24], FA loss
is applied on multi-resolution paths in knowledge distillation
of semantic segmentation models. It improves mean Average
Precision of the lightweight student model. Given two feature
maps with the same height andwidth (interpolate if different),
FS ∈ RC1×H×W and FT ∈ RC2×H×W , we first normalize
the feature map along the channel dimension. Given a pixel
of feature map Fi ∈ RC , we construct an affinity matrix
S ∈ RWH×WH as:

Sij = ∥Fi − Fj∥θ := cos θij =
⟨Fi,Fj⟩

||Fi||||Fj||
.

where θij measures the angle between Fi and Fj. Hence, the
FA loss measures the similarity of pairwise angular distance
between pixels of two feature maps, which can be formulated
as

Lfa(FS ,FT ) =
1

W 2H2 ||ST − SS ||22. (6)
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D. CONTRIBUTIONS
In this paper, our main contributions are:

1) We find that using mean squares error (MSE) gives bet-
ter performance than KL on QAT, which is a significant
improvement of QD ([18]).

2) We consistently improve the accuracies of various
quantized student networks by imposing the FA loss
on feature maps of each convolutional block. We also
unveil the theoretical underpinning of feature affinity
loss in terms of the celebrated Johnson-Lindenstrass
lemma for low-dimensional embeddings.

3) We achieve state-of-art quantization accuracy on
CIFAR-10, CIFAR-100, and Tiny ImageNet. Our
FAQD framework can train a quantized student net-
work on unlabeled data up to or exceeding the accuracy
of its full precision counterpart.

4) We propose a randomized Fast FA (FFA) loss to accel-
erate the computation of training loss, and prove its
convergence and error bound.

E. ORGANIZATION
This paper is organized as follows: In Sec. II, we introduce
the main objective of FAQD. In particular, we present fea-
ture affinity loss and go over the comparison between MSE
and KL loss. In Sec. III, we numerically verify that FAQD
outperforms baseline methods. In Sec. IV, we introduce Fast
feature affinity loss and verify its acceleration to FAQD.

II. FEATURE AFFINITY ASSISTED DISTILLATION AND
QUANTIZATION
A. FEATURE AFFINITY LOSS
In quantization setting, it is unreasonable to require thatFS be
close to FT , as they are typically in different spaces (FS ∈ Q
in full quantization) and of different dimensions. However,
FS can be viewed as a compression of FT in dimension,
and preserving information under such compression has been
studied in compressed sensing. Researchers ([19], [21]) have
proposed to compress graph embedding to lower dimension
so that graph convolution can be computed efficiently. In K-
means cluttering problem, several methods ([1], [17]) have
been designed to project the data into a low-dimensional
space such that

||Proj(x) − Proj(y)|| ≈ ||x − y||, ∀ (x, y), (7)

and so pairwise distances from data points to the centroids
can be computed at a lower cost.

In view of the feature maps of student model as a compres-
sion of teacher’s feature maps, we impose a similar property
in terms of pairwise angular distance:

||FSi − FSj ||θ ≈ ||FTi − FTj ||θ , ∀ (i, j)

which is realized by minimizing the feature affinity loss.
On the other hand, a Johnson–Lindenstrauss (JL [10]) like
lemma can guarantee that we have student’s feature affin-
ity matrix close to the teacher’s, provided that the number

of channels of student network is not too small. In con-
trast, the classical JL lemma states that a set of points in
a high-dimensional space can be embedded into a space of
much lower dimension in such a way that the Euclidean
distances between the points are nearly preserved. To tailor
it to our application, we prove the following JL-like lemma
in the angular distance case:
Theorem 2.1 (JohnsonLindenstrauss lemma, Angular Case):

Given any ϵ ∈ (0, 1), an embedding matrix F ∈ Rn×d , for
k ∈ (16ϵ−2 ln n, d), there exists a linear map T (F) ∈ Rn×k

so that

(1 − ϵ)||Fi − Fj||θ ≤ ||T (F)i − T (F)j||θ
≤ (1 + ϵ)||Fi − Fj||θ , ∀ 1 ≤ i, j ≤ n (8)

where ||Fi − Fj||θ =
⟨Fi,Fj⟩

∥Fi∥∥Fj∥
is the angular distance.

It is thus possible to reduce the embedding dimension down
from d to k , while roughly preserving the pairwise angu-
lar distances between the points. In a convolutional neural
network, we can view intermediate feature maps as FS ∈

RHW×C1 and FT ∈ RHW×C2 , and feature affinity loss will
help the student learn a compressed feature embedding. The
FA loss can be flexibly placed between teacher and student
in different positions (encoder/decoder, residual block, etc.)
for different models. In standard implementation of ResNet,
residual blocks with the same number of output channels
are grouped into a sequential layer. We apply FA loss to the
features of such layers.

LFA =

L∑
l=1

Lfa(FTl ,FSl )

where FTl and FSl are the feature maps of teacher and student
respectively. For example, the residual network family of
ResNet20, ResNet56, ResNet110, and ResNet164 have L =

3, whereas the family of ResNet18, ResNet34, and ResNet50
have L = 4.

B. CHOICE OF LOSS FUNCTIONS
In this work, we propose two sets of loss function choices
for the end-to-end quantization and pretrained quantization,
where end-to-end quantization refers to having an untrained
student model with randomly initialized weights. We investi-
gate both scenarios of quantization and propose two different
strategies for each.

The Kullback–Leibler divergence (KL) is a metric of the
similarity between two probabilistic distributions. Given a
ground-truth distribution P, it computes the relative entropy
of a given distribution Q from P:

LKL(P||Q) =

∑
x∈X

P(x) ln
P(x)
Q(x)

. (9)

While KD is usually coupled with KL loss ([9], [18]), it is not
unconventional to choose other loss functions. Kim et al. [13]
showed that MSE, in certain cases, can outperform KL in the
classic teacher-student knowledge distillation setting. KL loss
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TABLE 1. Comparision of KL loss and MSE loss on CIFAR-10 data set. All
teachers are pre-trained FP models, and all students are initial models
(end-to-end quantization).

is also widely used for trade-off between accuracy and robust-
ness under adversarial attacks, which can be considered as
self-knowledge distillation. Given a classifier f , an original
data point x and its adversarial example x’, TRADES [30] is
formulated as

LTRADES = LCE (f (x), y) + LKL(f (x)||f (x ′)).

Li et al. [15] showed that LCE
(
f (x′), y

)
outperforms

LKL(f (x)||f (x ′)) both experimentally and theoretically.
Inspired by the studies above, we conduct experiments on

different choices of the loss function. We compare KD on
quatization from scratch (end-to-end). As shown in Tab. 1,
MSE outperforms KL in quantization.

On the other hand, we find that KL loss works better
for fine-tuning quantization. One possible explanation is that
when training from scratch, the term ln P(x)

Q(x) is large. However,
the derivative of logarithm is small at large values, which
makes it converge slower and potentially worse. On the other
hand, when P(x)

Q(x) is close to 1, the logarithm has sharp slope
and converges fast.

C. FEATURE AFFINITY ASSISTED DISTILLATION AND
QUANTIZATION
Inspired by previous studies ([12], [14], [18]), we propose a
feature affinity assisted quantized distillation (FAQD). The
end-to-end quantization objective function is formulated as:

L = αLKD + β LFA + γ LGT

= αLMSE
(
f T (x), f S (x)

)
+ β

L∑
l=1

Lfa(FTl ,FSl )

+ γ LNLL(f S (x), y). (10)

In fine-tuning quantization, we replace MSE loss in (10) by
KL divergence loss. In FAQD, the student model learns not
only the final logits of the teacher but also the intermediate
extracted feature maps of the teacher using feature affinity
norm computed as in [23].
In addition to (10), we also propose a label-free objective

which does not require the knowledge of labels:

Llabel-free = αLMSE
(
f T (x), f S (x)

)
+ β

L∑
l=1

Lfa(FTl ,FSl ).

(11)

Despite the pre-trained computer vision models being avail-
able from cloud service such as AWS and image/video data
abundantly collected, the data labeling is still expensive and

TABLE 2. End-to-end quantization accuracies of some existing
quantization-aware training methods on CIFAR-10 dataset. To stick with
the original work, we apply channel-wise quantization in BRECQ, denoted
by ∗. All the other methods are under layer-wise quantization.

time consuming. Therefore, a label-free quantization frame-
work has significant value in the real world. In this work,
we verify that the FA loss can significantly improve KD
performance. The label-free loss in Eq. (11) can outperform
the baseline methods in Tab. 2 as well as the prior supervised
QD in (3).

III. EXPERIMENTAL RESULTS
In Tab. 2, we listed the performance of previous methods
mentioned in the introduction section. We would like to
remark that the BRECQ results are from channel-wise quan-
tization. Namely, each channel of a convolutional layer has
its own float scaler and projection map. All other results in
Tab. 2 are layer-wise quantization.
All experiments reported here were conducted on a desktop
with Nvidia RTX6000 8GB GPU card at UC Irvine.

A. WEIGHT QUANTIZATION
In this section we test FAQD on the dataset CIFAR-10. First,
we experiment on fine-tuning quantization. The float preci-
sion (FP) ResNet110 teaches ResNet20 and ResNet56. The
teacher has 93.91% accuracy, and the two pre-trained models
have accuracy 92.11% and 93.31% respectively. While both
SGD and Adam optimization work well on the problem,
we found KL loss with Adam slightly outperform SGD in
this scenario. The objective is

L = LKL + LFA
for the label-free quantization. When calibrating the ground-
truth label, the cross-entropy loss LNLL is used as the super-
vision criterion.

For end-to-end quantization, we found that MSE loss per-
forms better than KL loss. Adam optimization struggles to
reach acceptable performance on end-to-end quantization
(with either KL or MSE loss). We further test the perfor-
mance of FAQD on larger dataset CIFAR-100 where an FP
ResNet 164 teaches a quantized ResNet110. We report the
accuracies for both label-free and label-present supervision.
We evaluate FAQD on both fine-tuning quantization and
end-to-end quantization. In the CIFAR-100 experiment, the
teacher ResNet164 has 74.50% testing accuracy. For the
pretrained FAQD, the FP student ResNet110 has 72.96%
accuracy. As shown in Tab. 3 and Tab. 4, FAQD has sur-
prisingly superior performance on CIFAR-100. The binarized
student almost reaches the accuracy of FP model, and the 4-
bit model surpasses the FP teacher.
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FIGURE 2. FAQD framework. The intermediate feature maps are supervised by FA loss, and the raw logits by MSE loss.

TABLE 3. Fine-tuning knowledge distillation for quantization of all
convolutional layers.

B. FULL QUANTIZATION
In this section, we extend our results to full quantization
where the activation function is also quantized. In Tab. 5,
we list the fine-tuning results from aforementioned methods.
Among the methods in Tab. 5, only Quantized Distillation
(QD) is stable under end-to-end full quantization. We extend
our results to the tiny Tiny ImageNet dataset, which contains

TABLE 4. End-to-end FAQD of ResNet110 on CIFAR-100. The accuracy of
4-bit label-free quantization surpasses 72.96% of FP ResNet110 and is
close to FP ResNet164.

100K downsampled 64 × 64 images across 200 classes for
training. To simulate ImageNet, we interpolate the resolution
back to the original 224 × 224. As shown in Tab. 6, the
4W4A fune-tuning quantization has accuracy similar to float
ResNet20. Meanwhile, we close the long existing perfor-
mance gap [8] when reducing activation precision to 1-bit,
as the accuracy drop is linear (with respect to activation
precision) and small. When fine-tuning a fully quantized
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TABLE 5. Fine-tuning full quantization results of existing methods on
CIFAR-10. The ∗ means the same as in Tab. 2.

TABLE 6. End-to-end and fine-tuning full quantization on CIFAR-10,
CIFAR-100 and Tiny ImageNet, with teacher networks same as in Tab. 4.

FIGURE 3. Fast feature affinity loss with a low-rank random matrix Z .

model, we follow a two-step process. First, we train an
activation quantized model with floating-point weights. Sub-
sequently, we apply full quantization using the FAQD. This
technique proves to be essential, especially when scaling up
the Tiny ImageNet dataset. In our experiments, we observed
the following phenomenon when replacing all ReLU activa-
tion functions with 1-bit Quantized ReLU. For a pretrained
32A32W ResNet20 model, originally trained on CIFAR-10,
the accuracy dropped to 80.03% from its original accuracy of
92.21%. However, when working with a pretrained ResNet-
18 model on the Tiny ImageNet dataset, the accuracy plum-
meted to 0.62% from its initial accuracy of 64.23%.

IV. FAST FEATURE AFFINITY LOSS
A. PROPOSED METHOD
Despite the significant increase of KD performance, we note
that introducing FA loss will increase the training time. If we
normalize the feature maps by row beforehand, computing
FA loss between multiple intermediate feature maps can be
expensive.

Lfa(F1,F2) = ∥F1FT1 − F2FT2 ∥
2
2. (12)

As we freeze the pre-trained teacher, feature map of the
teacher model F1 = f T (x) is a constant, in contrast to student

feature map F2 = f S (2, x). Denote S1 = F1FT1 ∈ RWH×WH

and g(2, x) = f S (2, x)[f S (2, x)]T . The feature affinity can
be formulated as

Lfa(2) =
1

|X |

∑
x∈X

∥S1 − g(2, x)∥22. (13)

Computing S1 and g(2,X ) requires O(W 2H2C) complexity
each (C is the number of channels), which is quite expensive.
We introduce a random estimator of Lffa(2):

Lffa(F1,F2, z) =
1

|X |

∑
x∈X

∥(S1 − g(2, x))z∥22, (14)

where z ∈ RHW is a vector with i.i.d unit normal components
N (0, 1). We show below that Eq. (14) is an unbiased estima-
tor of FA loss (13).
Proposition 4.1:

Ez∼N (0,1)[Lffa(F1,F2, z)] = Lfa(2).

This estimator can achieve computing complexity O(HWC)
by performing two matrix-vector multiplication F1

(
FT1 z

)
.

We define the Fast Feature Affinity (FFA) loss to be the k
ensemble of (14):

Lffa,k (2) =
1

|X |

∑
x∈X

1
k
∥(S1 − g(2, x))Zk∥22 (15)

where Zk ∈ RHW×k with i.i.d N (0, 1) components, and we
have k ≪ WH . The computational complexity of Lffa,k (2)
is O(kWHC).
Finally, we remark that FFA loss can accelerate computa-

tion of pairwise Euclidean distance in dimensional reduction
such as in (7). The popular way to compute the pairwise
distance of rows for a matrix A ∈ Rn×c is to broadcast the
vector of row norms and compute AAT . Given the row norm
vector v = (∥A1∥2, · · · , ∥An∥2), the similarity matrix (Sij),
Sij = ∥Ai − Aj∥2, is computed as

S = 1 ⊗ v− 2AAT + v⊗ 1.

The term 2AAT can be efficiently approximated by FFA loss.

B. EXPERIMENTAL RESULTS
We test Fast FA loss on CIFAR-10 and Tiny ImageNet.
As mentioned in the previous section, ResNet-20 has 3 resid-
ual blocks. The corresponding width and height for feature
maps are 32, 16, and 8, H = W for all groups, so the
dimension (HW ) of similarity matrices are 1024, 256, and
64. We test the fast FA loss with the number of ensemble
k = 1, 5, and 15. The results are shown in Tab. 7. Meanwhile,
FFA has added training time for each step. When k = 1,
the accuracies are inconsistent due to large variance. With
too few samples in the estimator, the fast FA norm is too
noisy and jeopardizes distillation. At k = 5, the fast FA
loss stabilizes and the accuracy improves towards that of the
baseline, L = LMSE + LCE in Tab. 1. When k increases to
15, the performance of fast FA loss is comparable to that of
the exact FA loss. Moreover, we experiment with the time
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TABLE 7. 4A4W FFA accuracy and training time per epoch for ResNet20
on CIFAR-10 and ResNet18 on Tiny ImageNet, with teacher networks
same as in Tab. 4. The FFA loss accelerates training and approaches the
performance of exact FA loss with a proper choice of the ensemble
number k .

FIGURE 4. Plots for inference time of FA loss and FFA loss with k = 1.

consumption for computing FA loss and FFA loss. We plot
the time in log scale vs. H , (H = W ) for feature maps.
Theoretical time complexity for computing exact FA loss
is O(H4) and that for FFA loss is O(H2). Fig. 4(a) shows
the agreement with the theoretical estimate. The larger
the H , the more advantageous the FFA loss. For (medical)
images with resolutions in the thousands, the FFA loss will
have significant computational savings. In Tab. 7, we report
training time per epoch. We train models 200 epochs with
cosine annealing learning rate.

C. THEORETICAL ANALYSIS OF FFA LOSS
As shown in Proposition 4.1, the FFA loss is a k-ensemble
unbiased estimator of FA loss. By the strong law of large
numbers, the FFA loss converges to the exact FA loss with
probability 1.

Theorem 4.1: For given 2, suppose that |Lfa(2)| < ∞,
then

∀ϵ > 0, ∃N s.t. ∀k > N , |Lffa,k (2) − Lfa(2)| < ϵ.

Namely, the FFA loss converges to FA loss pointwise:

∀ 2, lim
k→∞

Lffa,k (2) = Lfa(2).

We also establish the following error bound for finite k .
Proposition 4.2:

P
(
|Lffa,k (2) − Lfa(2)| > ϵ

)
≤

C
ϵ2k

,

where C ≤ 3 ∥Lfa(2)∥42.
Proposition 4.2 says that the probability that the FFA

estimation has an error beyond a target value decays like
O( 1k ). The analysis guarantees the accuracy of FFA loss as
an efficient estimator of FA loss. Another question one might
ask is whether minimizing the FFA loss is equivalent to
minimizing the FA loss. Denote 2∗

= argminLfa(2) and
2∗
k = argminLffa,k (2), and assume the minimum is unique

for each function. In order to substitute FA loss by FFA loss,
one would hope that 2∗

k converges to 2∗. Unfortunately, the
point-wise convergence in Theorem 4.1 is not sufficient to
guarantee the convergence of the optimal points, as a counter-
example can be easily constructed. In the rest of this section,
we show that such convergence can be established under an
additional assumption.
Theorem 4.2 (Convergence in the general case): Suppose

that Lffa,k (2) converges to Lfa(2) uniformly, that is

∀ ϵ > 0, ∃N s.t. ∀ k > N , |Lffa,k (2) − Lfa(2)| < ϵ

and |Lfa(2)| < ∞, ∀2. Then

lim
k→∞

||2∗
k − 2∗

||
2

= 0. (16)

The uniform convergence assumption can be relaxed if Lfa is
convex in 2. A consequence of Theorem 4.2 is below.
Corollary 2.1 (Convergence in the convex case): Let Lfa :

Rn
→ R be convex and L-smooth, and that ∃ constant M >

0 such that ||2∗
k || ≤ M , ∀k . Then Lffa,k is also convex for

any k , and limk→∞ ||2∗
k − 2∗

||
2

= 0.

V. CONCLUSION
We presented FAQD, a feature assisted (FA) knowledge dis-
tillation method for quantization-aware training. It couples
MSE loss with FA loss and significantly improves the accu-
racy of the quantized student network. FAQD applies to both
weight only and full quantization, and outperforms baseline
Resnets on CIFAR-10/100 and Tiny ImageNet. We also ana-
lyzed an efficient randomized approximation (FFA) to the
FA loss for large dimensional feature maps, which provided
theoretical foundation for FFA loss to benefit future model
training on high resolution images in applications.
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APPENDIX
Proof of Theorem 2.1: It suffices to prove that for any set of
n unit vectors in Rd , there is a linear map nearly preserving
pairwise angular distances, because the angular distance is
scale-invariant.

Let T be a linear transformation induced by a random
Gaussian matrix 1

√
k
A ∈ Rk×d such that T (F) = FAT . Define

the events A−

ij = {T : (1 − ϵ)∥Fi − Fj∥2 ≤ ∥T (F)i −

T (F)j∥2 ≤ (1 + ϵ)∥Fi − Fj∥2 fails} and A+

ij = {T : (1 −

ϵ)∥Fi+Fj∥2 ≤ ∥T (F)i+T (F)j∥2 ≤ (1+ϵ)∥Fi+Fj∥2 fails}.
Following the proof of the classical JL lemma in the

Euclidean case [22], we have:

P(A−

ij ) ≤ 2e−
(ϵ2−ϵ3)k

4 , P(A+

ij ) ≤ 2e−
(ϵ2−ϵ3)k

4 . (17)

Let Bij = {T : |Fi · Fj − T (F)i · T (F)j| > ϵ}, where · is the
shorthand for inner product. We show that Bij ⊂ A−

ij ∪ A+

ij

for ∥Fi∥ = ∥Fj∥ = 1 by showing A−

ij
C

∩A+

ij
C

⊂ BCij .
If A−

ij
C

∩A+

ij
C
holds, we have

4T (F)i · T (F)j
= ∥T (F)i + T (F)j∥2 − ∥T (F)i − T (F)j∥2

≤ (1 + ϵ)∥Fi + Fj∥2 − (1 − ϵ)∥Fi − Fj∥2

= 4Fi · Fj + 2ϵ(∥Fi∥2 + ∥Fj∥2)

= 4Fi · Fj + 4ϵ.

Therefore, Fi · Fj − T (F)i · T (F)j ≥ −ϵ. By a similar
argument, we have Fi ·Fj −T (F)i ·T (F)j ≤ ϵ. Then we have
A−

ij
C

∩A+

ij
C

⊂ BCij , and thus

P(Bij) ≤ P(A−

ij ∪ A+

ij ) ≤ 4 exp{−
(ϵ2 − ϵ3)k

4
}

and

P(∪i<jBij) ≤

∑
i<j

P(Bij) ≤ 4n2 exp{−
(ϵ4 − ϵ3)k

4
}.

This probability is less than 1 if we take k > 16 ln n
ϵ2

.
Therefore, there must exist a T such that∩i<jBCij holds, which
completes the proof.

Proof of Proposition 4.1: Letting N = WH , aij =

(F1FT1 )ij, and bij = (F2FT2 )ij in equation (14), we have:

EzLffa(F1,F2; 2)

= Ez

N∑
i=1

(
N∑
j=1

|aij − bij|zj)2

= Ez

N∑
i=1

(
N∑
j=1

|aij − bij|2z2j + 2
∑
j̸=k

|aij − bij||aik − bik |zjzk )

=Ez

N∑
i=1

N∑
j=1

|aij − bij|2z2j + 2
N∑
i=1

∑
j̸=k

|aij − bij||aik − bik |zjzk

=

N∑
i=1

N∑
j=1

|aij − bij|2Ezz2j

+ 2
N∑
i=1

∑
j̸=k

|aij − bij||aik − bik |Ezzjzk

=

N∑
i=1

N∑
j=1

|aij − bij|2 = Lfa(F1,F2; 2).

Proof of Theorem 4.1: Given a Gaussian matrix Zk =

[z1, · · · , zk ] ∈ Rn×k ,

Lffa,k (2) =
1
k

k∑
l=1

Lffa(F1,F2, zl).

For any fixed 2, Lffa(F1,F2, zl), l = 1, · · · , k , are i.i.d
random variables. Suppose the first moment of each ran-
dom variable is finite, by the strong law of large num-
bers,Lffa,k (2) converges toE[Lffa(F1,F2, z1)] almost surely.
In other words, limk→∞ Lffa,k (2) = Lfa(2) with probability
1.

Proof of Proposition 4.2: By Chebyshev’s inequality,
we have

P
(∣∣Lffa,k (2) − E[Lffa,k (2)]

∣∣ > ϵ
)

≤

Var(Lffa,k (2))
ϵ2

=
Var(Lffa(F1,F2, z1))

ϵ2k
. (18)

In order to estimate

Var(Lffa(F1,F2, z1) = E[L2
ffa(F1,F2, z1)]

−
(
E[Lffa(F1,F2, z1)]

)2
, (19)

it suffices to estimate

E[L2
ffa(F1,F2, z1)] =

Ez
( N∑
i=1

N∑
j=1

|aij − bij|2z2j +

N∑
i=1

∑
j̸=k

|aij − bij||aik − bik |zjzk
)2

which equals (as cross terms are zeros):

Ez
( N∑
i=1

N∑
j=1

|aij − bij|2z2j
)2

+
( N∑
i=1

∑
j̸=k

|aij − bij||aik − bik |zjzk
)2

.

Direct computation yields:

N∑
i=1

N∑
j=1

|aij − bij|4z4j +

N∑
i=1

N∑
j=1

N∑
l ̸=i

|aij − bij|2|alj − blj|2z4j

+ 2
N∑
i=1

N∑
j=1

N∑
l ̸=j

|aij − bij|2|ail − bil |2z2j z
2
l

+

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l ̸=j

|aij − bij|2|akl − bkl |2z2j z
2
l

Notice thatE[z4i ] = 3. TakingE[·], we derive the upper bound
3∥Lfa∥42.
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Proof of Theorem 4.2: Since lim
k→∞

Lffa,k (2∗) = Lfa(2∗),

it suffices to show that

lim
k→∞

inf
2
Lffa,k (2) = Lfa(2∗).

Note that

∀2, lim
k→∞

Lffa,k (2) = Lfa(2) ≤ Lfa(2∗).

Then,

Lfa(2∗) ≥ lim
k→∞

inf
2
Lffa,k (2).

On the other hand, for arbitrary ϵ > 0, we have:

∃N s.t. ∀k > N |Lffa,k (2) − Lfa(2)| <
ϵ

2
, ∀2

and there exists a sequence {2k} s.t.

Lffa,k (2k ) < inf
2
Lffa,k (2) +

ϵ

2
.

Note that |Lffa,k (2k ) − Lfa(2k )| < ϵ
2 for k > N , so:

Lfa(2∗) − ϵ ≤ Lfa(2k ) − ϵ < inf
2
Lffa,k (2), ∀k > N .

Since ϵ is arbitrary, taking k → ∞, we have

Lfa(2∗) ≤ lim
k→∞

inf
2
Lffa,k (2).

Proof of Corollary 4.2.1: For readability, we shorthand:
Lffa,k = fk and Lfa = f . Let

H =
∇

2f
∇2∇2T ≽ 0 ∈ Rn×n

be the Hessian matrix of FA loss, which is positive
semi-definite by convexity of Lfa. Then,

∇
2fk

∇2∇2T = ZTk HZk ≽ 0 ∈ Rk×k

which implies the convexity of fk for all k . Moreover, it is
clear that fk is smooth for all k since

∥∇fk (x) − ∇fk (y)∥ = ∥Zk (∇f (x) − ∇f (y))∥

≤ L · ∥Zk∥ · ∥x− y∥. (20)

We note that fk is also smooth. Although we cannot claim
equi-smoothness since we cannot bound ∥Zk∥ uniformly in
k , the above is sufficient for us to prove the desired result.

For ∀k , given any initial parameters20, by smoothness and
convexity of fk , it is well-known that

∥2t
k − 2∗

k∥ ≤ ∥20
− 2∗

k∥

where 2t
k is the parameter we arrive after t steps of gradient

descent. Hence, we can pick a compact set K = BR(2∗) for
R large enough such that {2k}

∞

k=1 ⊂ K (denote 2∗
∞ = 2∗).

Now, it’s suffices to prove fk converges to f uniformly on K .
In fact, fk converges to f on any compact set. To begin with,
we state a known result from functional analysis ([5], [11]):
Lemma 5.1: (Uniform boundedness and equi-Lipschitz)

Let F be a family of convex function on Rn and K ⊂ Rn be a

compact subset. Then, F is equi-bounded and equi-Lipschitz
on K .
This result is established in any Banach space in [11], so it
automatically holds in finite dimensional Euclidean space.
By Lemma 6.1, we have that the sequence {fk}∞k=1, where
f∞ = f , is equi-Lipschitz. ∀ > 0, ∃ δ > 0 s.t. |fk (x) −

fk (y)| < ϵ for all k and x, y ∈ K when |x − y| < δ. Since
{B(x, δ)}x∈K forms an open cover for K , we have a finite sub-
cover {B(xj, δ)}mj=1 of K . Since there are finitely many points
xj, there exists Nϵ such that

∀k > Nϵ, |fk (xj) − f (xj)| < ϵ, for j = 1, · · · ,m.

For any x ∈ K , x ∈ B(xj∗ , δ) for some j∗. For all k > Nϵ ,
we have

|fk (x) − f (x)| ≤

|fk (x) − fk (xj∗ )| + |fk (xj∗ ) − f (xj∗ )| + |f (xj∗ ) − f (x)|

≤ (2L̃ + 1)ϵ (21)

where L̃ is the Lipschitz constant for equi-Lipschitz family.
Therefore, fk converges to f uniformly on K .
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