
Vol.:(0123456789)

Communications on Applied Mathematics and Computation
https://doi.org/10.1007/s42967-023-00302-9

1 3

ORIGINAL PAPER

Convergence of Hyperbolic Neural Networks Under
Riemannian Stochastic Gradient Descent

Wes Whiting1 · Bao Wang2 · Jack Xin1

Received: 31 October 2022 / Revised: 28 July 2023 / Accepted: 31 July 2023
© The Author(s) 2023

Abstract
We prove, under mild conditions, the convergence of a Riemannian gradient descent
method for a hyperbolic neural network regression model, both in batch gradient descent
and stochastic gradient descent. We also discuss a Riemannian version of the Adam algo-
rithm. We show numerical simulations of these algorithms on various benchmarks.

Keywords Hyperbolic neural network · Riemannian gradient descent · Riemannian Adam
(RAdam) · Training convergence

Mathematics Subject Classification 53Z50 · 68T07

1 Introduction

In machine learning, we routinely encode data as vectors in the Euclidean space. However,
some data have a latent geometric structure which is not suited to Euclidean embedding,
and instead can be represented more faithfully in other geometries. In particular, hyperbolic
embeddings have recently gained momentum, especially for data with latent hierarchical or
tree-like structure, like synonym or type hierarchies [3]. Just as ordinary neural networks
can be used to interpolate functions of data in the Euclidean space, a hyperbolic neural net-
work can be used to interpolate functions on data embedded in the hyperbolic space.

Hyperbolic feed-forward neural networks, or HFFNNs, were introduced in [4], and
generalizations to Riemannian manifolds for common training methods like the gradient
descent were introduced in [1, 2]. It is known that HFFNNs can outperform conventional
FFNNs on some problems such as textual entailment and noisy-prefix recognition [4],
and a universal approximation theorem for HFFNNs was proved in [6]. However, little is
known about their convergence under the gradient descent.

 * Wes Whiting
 wwhiting@uci.edu

1 Department of Mathematics, University of California, Irvine, CA, USA
2 Department of Mathematics, Scientific Computing and Imaging Institute, University of Utah,

Salt Lake City, UT, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s42967-023-00302-9&domain=pdf
http://orcid.org/0000-0002-4750-5060

 Communications on Applied Mathematics and Computation

1 3

In this paper, we show that under natural conditions, the training of an HFFNN under
Riemannian gradient descent will indeed converge. We also present numerical results of
training a network under Riemannian gradient descent versus Riemannian Adam (RAdam),
showing that it provides the accelerated convergence in practice. Previous papers have
examined only networks of limited depth or which are fully linear, while our result applies
to nonlinear HFFNNs of arbitrary depth, in exchange for requiring an adaptive step size to
be computed at each iteration of training.

2 Background

2.1 Hyperbolic Neural Networks

Here we summarize some facts about gyrovector spaces and hyperbolic neural networks
which we will need for our main result. A more complete introduction of hyperbolic neural
networks can be found in [4], and of gyrovector spaces in [12].

The hyperbolic space, denoted as �n
c
 , can be modeled in several ways. We use the Poin-

caré ball model, which is the Riemannian manifold (�n
c
, g�) where

This model has the benefit of being conformal to the Euclidean space, as well as allowing
us to use the closed-form expressions from [4] for certain operations. Other models have
advantages of their own. In particular, the Lorentz half-sheet model can avoid the numeri-
cal instability that is encountered in the Poincaré model [11].

In ℝn considered as a Riemannian manifold, vector addition can be written as
x + y = expc

x
(P0→x log

c
0
(y)) , where P0→x is the parallel transport from 0 to x—this is sim-

ply the “tip-to-tail” method of vector addition often taught to students, restated in the lan-
guage of manifolds. Analogously, we can define the operation of Möbius addition in �n

c
 by

x⊕c y = expc
x
(P0→ logc

0
(y)) , where now the parallel transport is taken along the Levi-Civita

connection of �n
c
 . This can be computed explicitly by

Note in particular that x⊕c y is a rational function in the coordinates of x and y, and by
Cauchy-Schwarz the denominator is nonvanishing in �n

c
 , so gyrovector addition is smooth,

a fact which we will use later.
Analogously we can define Möbius scalar multiplication by

and �n
c
 equipped with the operations ⊕c,⊗c is called a gyrovector space. More generally,

given any function f∶ ℝ
n
→ ℝ

m , we can define its Möbius version f⊗c∶ �
n
c
→ �

m
c
 by

𝔻
n
c
={x ∈ ℝ

n∶ c||x||2 < 1},

g𝔻
x
=(𝜆c

x
)2In, where 𝜆

c
x
= 2∕(1 − c||x||2).

x⊕c y =
(1 + 2c⟨x, y⟩ + c��y��2)x + (1 − c��x��2)y

1 + 2c⟨x, y⟩ + c2��x��2��y��2
.

r⊗c x = expc
0
(r logc

0
(x)),

f⊗c (x) = expc
0
(f (logc

0
(x))).

Communications on Applied Mathematics and Computation

1 3

In particular, we will discuss the Möbius version of an activation function � and of a matrix
W acting as a linear map, which we denote by 𝜎⊗c and W⊗c , respectively. Since we are
working in the Poincaré ball model, we may use the coordinates of the model to unambigu-
ously identify linear maps with matrices, so henceforth we will not mention the distinction.

With these definitions in hand, a hyperbolic neural network layer with the weight matrix
W, the bias b, and the activation function � is given by x ↦ 𝜎⊗c (W⊗c x⊕c b) , analogous to
a Euclidean network layer x ↦ �(Wx + b) , and a network f of k hidden layers of ni neurons
is given by

such a network has parameters W = (W1, b1,⋯ ,Wk, bk) with Wi ∈ ℝ
ni×ni−1 , bi ∈ �

ni
c .

Euclidean and hyperbolic layers can be used in sequence by applying logc
0
 or expc

0
 to move

from �n
c
 to ℝn or vice versa, respectively. Note that unlike the Euclidean case, an HFFNN is

always nonlinear, and thus a non-identity activation function is not strictly necessary to fit
nonlinear data and may not even improve the performance.

2.2 Riemannian Training

Stochastic gradient descent, or SGD, is perhaps the most straightforward way to train a
model. Although the use of the Poincaré ball model allows us to embed �n

c
 into ℝn and thus

we could compute a gradient in the Euclidean sense, this is not geometrically meaningful,
and can behave badly near the boundary. In fact, an ordinary gradient update could even
send the bias outside �n

c
 , which is clearly undesirable. Bonnabel [2] introduced the algo-

rithm of Riemannian stochastic gradient descent, or RSGD, to address this problem on a
Riemannian manifold. Analogous to gradient descent in ℝ

n which proceeds by
wt+1 = wt − �t∇L(Xt,wt) = expc

wt
(−�t∇L(Xt,wt)) where Xt is the stochastically chosen

sample from the dataset X and ∇L is the gradient in the calculus sense, the RSGD proceeds
by

where gradL is the gradient as a vector field on the manifold. Naturally, we require the
samples to be chosen in such a way that L(X,w) = �[L(Xt,w)].

A common modification of gradient descent is to implement momentum, which
can accelerate the convergence and help escape saddle points. The Adam algorithm [5]
uses momentum as a second-moment estimate. Bécigneul and Ganea [1] generalized
these algorithms to Riemannian manifolds as well, interpreting Adam’s adaptivity in
each coordinate as the adaptivity in the components of a product of manifolds. This is
well-suited to our approach, since training a hyperbolic neural network with m layers of
sizes n1,⋯ , nm is precisely an optimization problem on a product manifold of the form
ℝ

n1×n0 × 𝔻
n1
c ×⋯ ×ℝ

nm×nm−1 × 𝔻
nm
c . We restate these algorithms below, alongside the

Euclidean versions for comparison.

(1)
f (x) = fk◦fk−1◦⋯◦f2◦f1(x),

fi(x) = 𝜎
⊗c

i
(W

⊗c

i
x⊕c bi), 1 ⩽ i ⩽ k,

(2)wt+1 = expc
wt
(−�t gradL(Xt,wt)),

 Communications on Applied Mathematics and Computation

1 3

As in Euclidean training, it is often helpful to examine whether a Riemannian gradient is
Lipschitz. We use a generalization of the notion of a Lipschitz vector field, introduced in [9].

Definition 1 A function f∶ (M, g) → ℝ is said to have C-Lipschitz gradient if for any two
points a, b ∈ M,

As one would hope, a Lipschitz Riemannian gradient guarantees that a sufficiently small
step size will cause the loss to decrease, as shown in the following proposition.

| grad f (b) − Pa→b grad f (a)|g ⩽ C distM(a, b).

Communications on Applied Mathematics and Computation

1 3

Proposition 1 Let f∶ M → ℝ be a differentiable function on a manifold M, and denote
the Levi-Civita connection by Pa→b . If f has C-Lipschitz gradient in the above sense, then
f (b) − f (a) ⩽ ⟨ grad f (a), loga(b)⟩g +

C

2
dist (a, b)2.

Proof Let �∶ [0, 1] → M be the geodesic curve from a to b. (Note that in general, such
paths are not unique, but on the manifolds under consideration in this paper, they are.)

 Communications on Applied Mathematics and Computation

1 3

In particular, in RGD since wt+1 = expwt
(−�t grad f (wt)), the distance is dist (w

t+1,wt
)

= �t| grad f (wt)|g , so we obtain

From this, we recover the familiar condition that if 𝛾t <
2

C
 , then f (wt+1) < f (wt).

3 Convergence of HFFNNs Under RSGD

An HFFNN layer has two kinds of parameters: the weight matrix W, which is an ordi-
nary m × n matrix, and the bias b which is a gyrovector in the Poincaré ball. As such, the
gradient descent must be performed in a hybrid fashion. The weights are Euclidean and
thus can be updated in the usual fashion, but since the biases are in the hyperbolic space
rather than ℝn , we use the RSGD. This hybrid gradient descent scheme is equivalent to the
RSGD on the product manifold

∏n

i=1
ℝ

ni+1×ni × 𝔻
ni+1
c , and so we will consider this unified

interpretation.

f (b) − f (a) = ∫�

grad f by the fundamental theorem of line integrals

= ∫
1

0

⟨ grad f (�(t)), � �(t)⟩g dt

= ∫
1

0

⟨Pa→�(t) grad f (a), �
�(t)⟩g dt

+ ∫
1

0

⟨ grad f (�(t)) − Pa→�(t) grad f (a), �
�(t)⟩g dt

= ∫
1

0

⟨ grad f (a), � �(0)⟩g dt + ∫
1

0

⟨ grad f (�(t)) − Pa→�(t) grad f (a), �
�(t)⟩g dt

since � a geodesic and Pa→�(t) metric-preserving

= ⟨ grad f (a), � �(0)⟩g ⋅ length(�)

+ ∫
1

0

⟨ grad f (�(t)) − Pa→�(t) grad f (a), �
�(t)⟩g dt

= ⟨ grad f (a), loga(b)⟩g + ∫
1

0

⟨ grad f (�(t)) − Pa→�(t) grad f (a), �
�(t)⟩g dt

⩽ ⟨ grad f (a), loga(b)⟩g + ∫
1

0

� grad f (�(t)) − Pa→�(t) grad f (a)�g�� �(t)�g dt

⩽ ⟨ grad f (a), loga(b)⟩g + ∫
1

0

C dist (a, �(t))�� �(t)�g dt

= ⟨ grad f (a), loga(b)⟩g +
C

2
dist (a, b)2.

(3)
f (wt+1) − f (wt) ⩽ ⟨ grad f (wt),−�t grad f (wt)⟩g +

C

2
��t grad f (wt)�2g

=
�
−�t +

C

2
�2
t

�
� grad f (wt)�2g.

Communications on Applied Mathematics and Computation

1 3

We will show that an HFFNN converges under the RGD or the RSGD using any C2 acti-
vation functions.1 We rely on the following theorem from [2].

Theorem (Bonnabel 2013) Assume that

Suppose there exists a compact set K such that wt ∈ K for all t ⩾ 0 , and that the gradient
of the loss gradL is bounded on K. Then under the RSGD, the loss L(wt) converges almost
surely, and gradL(wt) converges almost surely to zero.

It is worth noting that, because this theorem is so general, it gives only a weak notion of
the convergence, and in particular does not guarantee that the weights themselves converge
to any sort of critical point.

Theorem 1 Consider an HFFNN of arbitrarily many layers as described above, with loss
given by

for the dataset X and parameters W , with any C2 activation functions. Let Cp denote the
local Lipschitz constant of L on the ball of radius 1 around p established in Lemma 1. If we
select the step size by

then under non-stochastic Riemannian gradient descent, the loss L(Wt) converges, and its
gradient converges to 0.

Proof The loss has locally Lipschitz gradient by Lemma 1, so by (dynamically) selecting a
sufficiently small step size—small enough to not leave a compact neighborhood of the cur-
rent parameters (say, a ball of radius 1, which �t ⩽

1

|gradL(Xt ,Wt−1)|g
 is sufficient to guaran-

tee), and smaller than 2∕Ct where Ct is the local Lipschitz constant on this ball—we can
guarantee that the loss decreases at each step by (3). Furthermore, we restrict these step
sizes �t , so that �t ⩽ 1∕t , which enforces the condition that

∑
𝛾2
t
< ∞ . If

∑
𝛾t < ∞ as well,

then the weights converge absolutely, which gives us an even better result than expected.
Otherwise

∑
�t = ∞ and we are in the case examined by [2]. In this case, the sequence

of loss values is decreasing and in particular is bounded. Thanks to its L2 regularization
term, the loss L is coercive, so the sequence of weights is also bounded, and in particular
they lie in a compact set, and since L is smooth, it is certainly bounded on this set. By the
theorem of Bonnabel from [2], the loss converges and the gradient of the loss converges to
zero.

∑
𝛾2
t
< ∞,

∑
𝛾t = ∞.

(4)L(X,W) =
1

k

∑

x∈X

(f (x; W) − yi)
2 + �|W|2

2

�t ⩽ min

(
2

C
Wt−1

,
1

| grad
W
L(X,Wt−1)|g

,
1

t

)
,

1 In particular, the identity function is C2 and can work perfectly well as an activation function, as we noted
earlier (1). Many activations such as logistic or tanh are also C2 , but unfortunately ReLU is not.

 Communications on Applied Mathematics and Computation

1 3

Theorem 2 Consider an HFFNN as in Theorem 1, with the stochastic objective function L�
satisfying ��[L�] = L . Let C�

Wt−1
 be the local Lipschitz constant of L� in the unit ball around

Wt−1 . If the step size �t is selected to satisfy

then under RSGD, the loss L(Wt) converges almost surely, and the gradient of the loss con-
verges almost surely to zero.

Proof Again by (3) above, we see that for any fixed � , we must have L�(X,Wt+1) ⩽

L�(X,Wt
) , and thus

This shows that L(X,Wt) is decreasing, and thus the same argument as in Theorem 1 above
goes through.

Lemma 1 If the activation functions �i are C2 , then the loss function L (4) has a locally
Lipschitz gradient.

Proof Denote M =
∏n

i=1
ℝ

ni+1×ni × 𝔻
ni+1
c , the Riemannian manifold containing the param-

eters of the network. Let K ⊂
∏n

i=1
ℝ

ni+1×ni × 𝔻
ni+1
c be a compact set, and without loss of

generality, a rectangle (i.e., K =
∏n

i=1
Ri × Hi , for some compact sets Ri ⊂ ℝ

ni+1×ni and
Hi ⊂ �

ni+1
c). We will work in the standard coordinates for the Poincaré ball. As before, we

use ∇ to denote the gradient in the calculus sense, while grad denotes the gradient in the
manifold sense, and similarly we will use || ⋅ || to denote the Euclidean norm when identi-
fying a tangent space of �n

c
 with ℝn.

Since we are performing gradient descent on the product manifold M, it will be helpful
to consider the gradients separately with respect to the weight matrices Wi ∈ ℝ

ni+1×ni and
the biases bi ∈ �

ni
c . Specifically, by Proposition 1, we have

Furthermore, recall that on a product manifold N =
∏

Ni , �v�gN =
�∑

�v�2
gi

 where gi is the

metric in the component Ni , and likewise that dist N(a, b) =
�∑

dist Ni
(ai, bi)

2 . Note in
particular that this implies that for any i,

It is elementary that if each of a family of functions fi are Ci-Lipschitz, respectively, then �∑
f 2
i

 is
�∑

C2
i
-Lipschitz, so we will show that the components of the gradient are each

locally Lipschitz on their respective components of the product to show that the entire gra-
dient is Lipschitz as well.

For a bias component bt
i
∈ �

ni
c at the iteration t, we can write down the following:

�t ⩽ min

(
2

C�
Wt−1

,
1

| grad
W
L�(X,Wt−1)|g

,
1

t

)
,

L(X,Wt+1) = 𝔼�[L�(X,Wt+1)] ⩽ 𝔼�[L�(X,Wt)] = L(X,Wt).

gradL = (gradW1L, grad b1L,⋯ , gradWnL, grad bnL).

(5)dist Ni
(ai, bi) ⩽ dist N(a, b).

Communications on Applied Mathematics and Computation

1 3

We will control these three terms. By compactness, on Hi , the Euclidean and hyperbolic
distances differ by at most a constant factor C1 . Together with (5), it thus suffices to bound
these quantities by a multiple of ||bt+1

i
− bt

i
|| , since

First recall that the Möbius addition is given by

which is a rational function in the components of x and y, and so it is smooth except at its
poles. Moreover, by Cauchy-Schwarz, the denominator is nonvanishing when ��x�� < 1∕

√
c

and ��y�� < 1∕
√
c . Thus, the Möbius addition is smooth on the Poincaré ball. Also, by

Lemma 2 from [4], we have

which are smooth as well. Inspecting (1) and (4), and since W⊗c x = expc
0
(W logc

0
(x)) , we

see that L is written as compositions of these functions and the C2 activation functions �i ,
plus a smooth regularization term, and so L is C2 on �ni

c . Thus, its Hessian (in the calculus
sense) is continuous and thus bounded on compact sets, so ∇L is locally C2-Lipschitz in the
Euclidean sense for some constant C2 . Thus, we obtain a control on the first term by

Now since �c
x
=

2

1−c||x||2 , the coefficient of the second term can be rewritten as

| grad bi
L(bt+1

i
) − Pbt

i
→bt+1

i
grad bi

L(bt
i
)|g(bt+1

i
)

= (�c
bt+1
i

)2||(�c
bt+1
i

)−2∇bi
L(bt+1

i
) − Pbt

i
→bt+1

i
(�c

bt
i

)−2∇bi
L(bt

i
)||

⩽ (�c
bt+1
i

)2
[
||(�c

bt+1
i

)−2∇bi
L(bt+1

i
) − (�c

bt+1
i

)−2∇bi
L(bt

i
)||

+ ||(�c
bt+1
i

)−2∇bi
L(bt

i
) − (�c

bt
i

)−2∇bi
L(bt

i
)||

+ ||(�c
bt
i

)−2∇bi
L(bt

i
) − Pbt

i
→bt+1

i
(�c

bt
i

)−2∇bi
L(bt

i
)||
]

= ||∇bi
L(bt+1

i
) − ∇bi

L(bt
i
)|| +

|||||||
1 −

(�c
bt+1
i

�c
bt
i

)2|||||||
||∇bi

L(bt
i
)||

+

(�c
bt+1
i

�c
bt
i

)2

|I − Pbt
i
→bt+1

i
| ||∇bi

L(bt
i
)||.

||bt+1
i

− bt
i
|| ⩽ C1 dist 𝔻n

c
(bt+1

i
, bt

i
) ⩽ distM(Wt+1,Wt).

x⊕c y =
(1 − 2c⟨x, y⟩ + c��y��2)x + (1 − c��x��2)y

1 + 2c⟨x, y⟩ + c2��x��2��y2��
,

expc
x
(v) =x⊕c

�
tanh

�√
c
𝜆c
x
��v��
2

�
v

√
c��v��

�
,

logc
x
(y) =

2
√
c𝜆c

x

tanh−1(
√
c�� − x⊕c y��)

−x⊕c y

�� − x⊕c y��
,

||∇bi
L(bt+1

i
) − ∇bi

L(bt
i
)|| ⩽ C2||bt+1i

− bt
i
||.

 Communications on Applied Mathematics and Computation

1 3

where C3 is a bound on the coefficient term in Hi since it is continuous.
For the third term, by the continuity we immediately can bound

on Hi , so we turn our attention to the remaining factor |I − Pbt
i
→bt+1

i
| . Since parallel transport

along the Levi-Civita connection is metric preserving, we can write Pbt
i
→bt+1

i
=

�c
bt
i

�c
bt+1
i

U for U

a rotation. Then we decompose

Analogous to the above, on Hi we have

As we said, U is a rotation. The geodesic through bt
i
 and bt+1

i
 is an arc of a circle, which

crosses the boundary perpendicularly, and so the center of this circle is outside the unit
ball. In particular, if r is the radius of this circle, then r > d = dist

ℝ
ni (Hi, 𝜕𝔻

ni
c) . The angle

� by which U rotates is precisely the central angle of the arc b̂t
i
bt+1
i

 (see Fig. 1). For any unit
vector x, we have

1 −

(�c
bt+1
i

�c
bt
i

)2

= 1 −
1 − c||bt

i
||2

1 − c||bt+1
i

||2

=
c||bt

i
||2 − c||bt+1

i
||2

1 − c||bt+1
i

||2

=
c||bt

i
|| + c||bt+1

i
||

1 − c||bt+1
i

||2
(||bt

i
|| − ||bt+1

i
||)

⩽ C3||bt+1i
− bt

i
||,

(�c
bt+1
i

�c
bt
i

)2

||∇bi
L(bt

i
)|| ⩽ C4

�I − Pbt
i
→bt+1

i
� =

������
I −

�c
bt
i

�c
bt+1
i

U

������

⩽

������
I −

�c
bt
i

�c
bt+1
i

I

������
+

������

�c
bt
i

�c
bt+1
i

I −

�c
bt
i

�c
bt+1
i

U

������

=

⎛
⎜
⎜
⎝
1 −

�c
bt
i

�c
bt+1
i

⎞
⎟
⎟
⎠
+

�c
bt
i

�c
bt+1
i

�I − U�.

1 −

�c
bt
i

�c
bt+1
i

=
c||bt+1

i
||2 − c||bt

i
||2

1 − c||bt
i
||2

⩽ C5||bt+1i
− bt

i
||,

�c
bt
i

�c
bt+1
i

⩽ C6.

Communications on Applied Mathematics and Computation

1 3

which shows that this term is Lipschitz as well, and specifically that

Therefore, grad bi
L is Lipschitz on K in the Riemannian sense, with the coefficient C1(C2+

C3 + C4(C5 + C6∕d)).
For the weights, gradWi

L = ∇Wi
L since the weights are Euclidean. By the same con-

siderations as above, the loss function is C2 with respect to W as well, so we immediately
obtain that gradWL is locally Lipschitz since its Hessian is continuous, and thus bounded
on compact sets.

4 Experiments

We evaluate these methods on two benchmarks: the realizable case where the ground-
truth output is given by another network, the MNIST dataset, and the WordNet dataset
[7]. Note that, although we required a dynamic choice of step size above, our results
here all use a constant step size, which suggests that a dynamic step size is not funda-
mentally required.

|(I − U)x| =
||bt+1

i
− bt

i
||

r
⩽

||bt+1
i

− bt
i
||

d
,

(�c
bt+1
i

�c
bt
i

)2

|I − Pbt
i
→bt+1

i
| ||∇bi

L(bt
i
)|| ⩽ C4(C5 + C6∕d)||bt+1i

− bt
i
||.

Fig. 1 The transported vector is
rotated by angle �

 Communications on Applied Mathematics and Computation

1 3

4.1 Realizable Case

We train by RSGD a model f with hidden hyperbolic layers and a Euclidean output
layer, with labels yi generated by a ground-truth network yi = f (W∗, xi) of the same
architecture. The dataset is xi ∼ expc

0
(N(0, I)) . (This is the pseudohyperbolic Gaussian

[8].)
Our results for networks with various depth and width are shown in Fig. 2. We can

see that training does appear to converge regardless of depth.
Although losses appear to decrease smoothly over epochs, by inspecting samples

within an epoch, the stochasticity can be observed (Fig. 3).

Fig. 2 Training by RSGD in the realizable case

Fig. 3 Loss after each sample in
one epoch of training

Communications on Applied Mathematics and Computation

1 3

4.2 WordNet

WordNet is a large database of English noun synsets (collections of synonyms), together
with hyponymy relations (“is-a” relationships). This means that the WordNet dataset has
the hierarchical structure of a directed tree, which is the type of problem on which we
expect hyperbolic networks to perform well in practice. We first generate a hyperbolic
embedding of the transitive closure of the WordNet mammal subtree into �2 , as in [10].

We then train a classifier with 2 hyperbolic hidden layers of width 32 to determine
whether a given point in the embedding represents an aquatic mammal (i.e., is a child node
of the aquatic_mammal synset), using each of the training algorithms discussed in this
paper. Results are shown in Fig. 4. As expected, we see that each algorithm does converge,
with RAdam converging much faster and achieving much better results before plateauing.

5 Conclusion

We showed that HFFNNs are guaranteed to converge under training by RSGD, given some
natural conditions, regardless of the choice of curvature or the number or size of layers.
Experimentally, we use our own implementation to show that the convergence rate is rea-
sonable. Furthermore, we implement RAdam and show that it provides substantial speedup
in practice.

Acknowledgements The work was partially supported by NSF Grants DMS-1854434, DMS-1952644, and
DMS-2151235 at UC Irvine, and Bao Wang is supported by NSF Grants DMS-1924935, DMS-1952339,
DMS-2110145, DMS-2152762, and DMS-2208361, and DOE Grants DE-SC0021142 and DE-SC0002722.

Data Availability The data that support the findings of this study are available from the corresponding
author, Wes Whiting, upon reasonable request.

Fig. 4 Training by RGD, RSGD, and RAdam on WordNet mammals

 Communications on Applied Mathematics and Computation

1 3

Compliance with Ethical Standards

Conflict of Interest On behalf of all authors, the corresponding author states that there is no conflict of inter-
est.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Bécigneul, G., Ganea, O.-E.: Riemannian adaptive optimization methods. arXiv: 1810. 00760 (2019)
 2. Bonnabel, S.: Stochastic gradient descent on Riemannian manifolds. IEEE Trans. Autom. Control

58(9), 2217–2229 (2013)
 3. De Sa, C., Gu, A., Ré, C., Sala, F.: Representation tradeoffs for hyperbolic embeddings. CoRR, arXiv:

1804. 03329 (2018)
 4. Ganea, O.-E., Bécigneul, G., Hofmann, T.: Hyperbolic neural networks. CoRR, arXiv: 1805. 09112

(2018)
 5. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv: 1412. 6980v9 (2014)
 6. Kratsios, A., Bilokopytov, I.: Non-Euclidean universal approximation. CoRR, arXiv: 2006. 02341

(2020)
 7. Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to WordNet: an on-line

lexical database. Int. J. Lexicogr. 3(4), 235–244 (1990)
 8. Nagano, Y., Yamaguchi, S., Fujita, Y., Koyama, M.: A wrapped normal distribution on hyperbolic

space for gradient-based learning. arXiv. 1902. 02992 (2019)
 9. Neto, J.C., De Lima, L., Oliveira, P.: Geodesic algorithms in Riemannian geometry. Balkan J. Geom.

Appl. (BJGA) 3, 01 (1998)
 10. Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. arXiv: 1705.

08039 v2 (2017)
 11. Peng, W., Varanka, T., Mostafa, A., Shi, H., Zhao, G.: Hyperbolic deep neural networks: a survey.

arXiv: 2101. 04562 (2021)
 12. Ungar, A.A.: A Gyrovector Space Approach to Hyperbolic Geometry. Morgan & Claypool Publishers,

San Rafael (2009)

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1810.00760
http://arxiv.org/abs/1804.03329
http://arxiv.org/abs/1804.03329
http://arxiv.org/abs/1805.09112
http://arxiv.org/abs/1412.6980v9
http://arxiv.org/abs/2006.02341
http://arxiv.org/1902.02992
http://arxiv.org/1705.08039v2
http://arxiv.org/1705.08039v2
http://arxiv.org/2101.04562

	Convergence of Hyperbolic Neural Networks Under Riemannian Stochastic Gradient Descent
	Abstract
	1 Introduction
	2 Background
	2.1 Hyperbolic Neural Networks
	2.2 Riemannian Training

	3 Convergence of HFFNNs Under RSGD
	4 Experiments
	4.1 Realizable Case
	4.2 WordNet

	5 Conclusion
	Acknowledgements
	References

