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Abstract. Multi-resolution paths and multi-scale feature representation
are key elements of semantic segmentation networks. We develop two
techniques for efficient networks based on the recent FasterSeg network
architecture. One is to use a state-of-the-art high resolution network
(e.g. HRNet) as a teacher to distill a light weight student network. Due
to dissimilar structures in the teacher and student networks, distillation
is not effective to be carried out directly in a standard way. To solve this
problem, we introduce a tutor network with an added high resolution
path to help distill a student network which improves FasterSeg student
while maintaining its parameter/FLOPs counts. The other finding is
to replace standard bilinear interpolation in the upscaling module of
FasterSeg student net by a depth-wise separable convolution and a Pixel
Shuffle module which leads to 1.9% (1.4%) mIoU improvements on low
(high) input image sizes without increasing model size. A combination
of these techniques will be pursued in future works.
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1 Introduction

Semantic segmentation is concerned with pixel-wise classification of images and
has been studied as a long-standing problem in computer vision, see [7,14] and
references therein. Predictions are first made at a range of scales, and are then
combined with averaging/pooling or an attention layer. A class of efficient net-
works (called FasterSeg) have been recently constructed [2] based on differen-
tiable neural architecture search [8] of a supernet and a subsequent knowledge
distillation [5] to generate a smaller student net with 3.4M parameters and 27G
FLOPs on full resolution (1024 × 2048) image input1.

1 This model was searched on our machine based on source code from FasterSeg [2].
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We are interested in distilling such a light weight Student Net from a high
performance Teacher Net which we choose as HRNet-OCR [17] in this work. Our
motivation is to improve the FasterSeg Student Net while maintaining its size
and FLOPs by enhancing the resolutions of its multi-scale feature maps and their
combinations for better prediction. The HRNet has about 10% higher accuracy
than the FasterSeg Teacher Net on Cityscapes dataset [4]. Specifically, we first
add a higher resolution path to the FasterSeg Student Net architecture and
train it through distilling HRNet predictions. Then we let this high resolution
path guide the prediction of the lower resolution paths in FasterSeg Student Net
through a feature affinity (FA) matrix. At inference, the high resolution path is
absent hence its role is virtual and does not add computational overheads on the
Student Net. Though knowledge distillation at intermediate level was known in
FitNets [10], the knowledge passing across multi-resolution paths for semantic
segmentation appears new. In addition, we improve the inaccurate interpolation
treatment in FasterSeg’s feature fusion module by a combination of depth-wise
separable convolutions and Pixel Shuffle (PS) technique [11], resembling the
efficient operations in Shufflenets [9,18] for regular image classification task.

Our main contributions are:

1) introducing a novel teacher-tutor-student framework to enhance multi-
resolution paths by path-wise knowledge distillation with application to
Faster-Seg Student Net while keeping computational costs invariant, which
utilizes the intermediate feature information from the tutor model;

2) improving multi-scale feature map fusion by depth-wise separable convolution
and Pixel Shuffle techniques to gain 1.9% (1.4%) validation accuracy in mIoU
on low (high) resolution input images from Cityscapes dataset, at reduced
computational costs.

The rest of the paper is organized as follows. Sect. 2 is a summary of related
works. Sect. 3 presents our teacher-tutor-student distillation framework. Sect. 4
shows improved semantic segmentation results by our student network with vir-
tual high resolution path on Cityscapes data sets, and their analysis. Sect. 5
describes the Pixel Shuffle technique for multi-scale feature fusion and support-
ing experimental results. The concluding remarks are in Sect. 6.

2 Related Works

2.1 Overview

Semantic segmentation has been studied for decades. Recent lines of research
include hierarchical architecture search, knowledge distillation (introduced in
[5] for standard classification), and two-stream methods. Among large capacity
models are Autodeeplabs ([7] and references therein), high resolution net (HRNet
[17]), zigzag net [6] and hierarchical multi-scale attention network [14]. Among
the light weight models are FasterSeg [2], and BiSenet [16]. In Gated-SCNN [13],
a high level stream on region masks guides the low level stream on shape features
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for better segmentation. A gated structure connects the intermediate layers of
the two streams, and resulted in 2% mask (mIoU) gain over DeepLabV3+ [1]
on Cityscapes dataset [4]. In [15], a dual super-resolution learning framework
is introduced to produce high resolution representation on low resolution input.
A 2% gain in mIoU over various baseline models is accomplished on Cityscapes
data. A feature affinity function is used to promote cooperation of the two super-
resolution networks, one on semantic segmentation, the other on single image
super-resolution.

Though knowledge distillation at an intermediate level [10] has been known
conceptually, how to set it up in the multi-resolution paths for semantic segmen-
tation networks is not much studied. In part, a choice of corresponding locations
in the Teacher Net and Student Net depends on network architecture. This is
what we set out to do on FasterSeg Student Net.

Besides the conventional upscaling methods like bilinear interpolation, Pixel
Shuffle (PS) is widely adopted in various multi-resolution image processing tasks.
In the super-resolution task [11], an artful PS operator has been applied to the
output of the convolutional layer in the low resolution, and hence has reduced
the computational complexity. This technique is inherited by [15] for the super-
resolution semantic segmentation, boosting the performance of the model with
low resolution input.

2.2 Search and Training in FasterSeg

The FasterSeg search space [2] consists of multi-resolution branches with search-
able down-sampling-path from high resolution to low resolution, and searchable
operations in the cells (layers) of the branches. Each cell (layer) contains 5 oper-
ations: skip connect, 3×3 Conv, 3×3 Conv ×2, Zoomed 3×3 Conv and Zoomed
3×3 Conv ×2. The “Zoomed Conv” contains bilinear down-sampling, 3×3 Conv
and bi-linear up-sampling.

Below we recall FasterSeg’s architecture search and training procedure [2] in
order to introduce our proposed path-wise distillation. In the search stage, the
overall optimization objective is:

L = Lseg(M) + λLat(M) (1)

where Lat(M) is the latency loss of the supernet M ; Lseg is the supernet loss
containing cross-entropy of logits and targets from different branches. Note that
the branches come from resolutions: 1/8, 1/16, 1/32, 1/8+1/32 and 1/16+1/32,
as well as losses from different expansion ratios (max, min, random and archi-
tecture parameter ratio).

The architecture parameters (α, β, γ) are in a differentiable computation
graph, and optimized by gradient descent. The α is for operations in each cell, β
for down-sampling weight, and γ for expansion ratio. Following [8], the training
dataset is randomly half-split into two disjoint sets Train-1 and Train-2. Then
the search follows the first order DARTS [8]:

1) Update network weights W on Train-1 by gradient: ∇wLseg(M |W,α, β, γ).
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2) Update architecture α, β, γ on Train-2 by gradient:

∇α,β,γLseg(M |W,α, β, γ) + λ · ∇α,β,γLAT (M |W,α, β, γ).

For teacher-student co-searching with two sets of architectures (αT , βT ) and
(αS , βS , γS), the first order DARTS [8] becomes:

1) Update network weights W by ∇wLseg(M |W,αT , βT ) on Train-1,
2) Update network weights W by ∇wLseg(M |W,αS , βS , γS) on Train-1,
3) Update architecture αT , βT by ∇α,β,γLseg(M |W,αT , βT ) on Train-2,
4) Update architecture αS , βS , γS by ∇α,β,γLseg(M |W,αS , βS , γS)

+λ∇α,β,γLAT (M |W,αS , βS , γS) on Train-2.

The next step is to train the weights to obtain final models.
Step 1): train Teacher Net by cross-entropy to compute the losses between

logits of different resolutions and targets.

lossT = CE(pred8T , target) + λCE(pred16T , target) + λCE(pred32T , target)
(2)

where prednT is the prediction of the 1/n resolution path of the Teacher Net.
Step 2): train Student Net with an extra distillation loss between logits of

resolution 1/8 from Teacher Net and logits of resolution 1/8 from Student Net.

LossS = CE(pred8S , target) + λCE(pred16S , target)
+λCE(pred32S , target) + KL(pred8T , pred8S). (3)

Here prednS is the prediction of 1/n resolution path of the Student Net.

3 Resolution Path Based Distillation

In Sect. 3.1, we first show how to build a FasterSeg Student Net with 1/4 reso-
lution path. Then we introduce feature affinity loss in Sect. 3.2, with search and
training details in Sect. 3.3.

3.1 Tutor Model with 1/4 Resolution Path

We build a FasterSeg Student Net (“student tutor”) with 1/4 resolution path, see
in Fig. 1. The 1/4 resolution path follows the 1/4 resolution stem and contains 2
basic residual 2× layers also used in other stems. The 1/4 path then merges with
the 1/8 resolution path by interpolating output of the 1/8 resolution path to the
1/4 resolution size, refining and adding. The model is trained with HRNet-OCR
as the Teacher Net.

In Fig. 1, the stem is a layer made up of Conv and Batch normalization and
ReLU. The cell is mentioned in Sect. 2.2. And the head is to fuse outputs of
different resolution paths together. In 1/4 path, its output is directly added to
the output of 1/8 path. While for the other paths, the outputs are concatenated
with up-sampled output of lower resolution paths, and then go through a 3×3
Conv.
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Fig. 1. Tutor net: a FasterSeg form of Student Net with 1/4 resolution path added.

3.2 Feature Affinity Loss

Feature Affinity (FA) loss [15] is a measure to overcome dimension inconsistency
in comparing two feature maps by aggregating information from all channels.
Consider a feature map with dimensions (H,W,C), which contains H×W vectors
(in pixel direction) of length C. A pixel of a feature map F is denoted by Fi,
where 1 ≤ i ≤ H ×W . The affinity of two pixels is reflected in the affinity matrix
with entries being the pairwise normalized inner product:

Sij = (
Fi

‖Fi‖p
)T · (

Fj

‖Fj‖p
). (4)

In other words, the affinity matrix consists of cosine similarities of all pixel-
pairs. In order to make sure their consistency in the spacial dimension, we need
to interpolate the student affinity matrix to the same dimensional size of the
teacher affinity matrix. Let the two affinity matrices for the Teacher and Student
Nets be denoted by St

ij and Ss
ij . Then the Feature Affinity (FA) loss is defined

as [15]:

Lfa =
1

H2W 2

HW∑

i=1

HW∑

j=1

‖St
ij − Ss

ij‖q. (5)

where q is not necessarily the dual of p. Here we choose p = 2, q = 1, and consider
adding the FA loss (5) to the distillation objective for gradient descent.

Let S1/n be the output of the 1/n resolution path of Student Net after passing
to ConvNorm layers, T 1/n be the output of the 1/n resolution path of Teacher
Net. We introduce a path-wise FA loss as:

FA loss = Lfa(S1/8, T 1/4) + λLfa(S1/16, T 1/16) + λLfa(S1/32, T 1/32), (6)

where λ balances the FA losses on different paths. In our experiment, λ = 0.8 is
chosen to weigh a little more on the first term for the 1/8 path of the student net
to mimic the 1/4 path of the tutor net. Figure 2 illustrates how our path-wise
FA loss is constructed for distillation learning in the training process.
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Fig. 2. Student Net with virtual 1/4 path (lower) distilled from tutor net (upper).

3.3 Teacher Net Guided Student Net Search and Training

We summarize our search and training steps below.

Search:
FasterSeg searches its own teacher model, which takes time and may not be most
ideal. Instead, we opt for a state-of-the-art model as teacher to guide the search
of a light weight Student Net. In our experiments, the Teacher Net is HRNet-
OCR [14]. To shorten inference time, we set it back to the original HRNet [12].
The search objective is:

L = Lseg(M) + λ1 Lat(M) + λ2 Dist(M,HR). (7)

The Lseg(M) and Lat(M) are same as in Eq. (1) of FasterSeg, with the added
third term to narrow the distance between Student Net and the Teacher Net
HR.

By first order DARTS [8] on the randomly half split training datasets (Train-1
and Train-2), we have:

1) Update network weights W by ∇wLseg(M |W,α, β, γ) on Train-1
2) Update architecture α, β, γ by ∇α,β,γL(M |W,α, β, γ) on Train-2.

Training:

1) The baseline model is a FasterSeg student model distilled from HRNet. The
training objective is:

LossS = CE(pred8S , target) + λCE(pred16S , target)
+ λCE(pred32S , target) + KL(predHR, pred8S). (8)
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Here predHR is the prediction of the HRNet and prednS is the same notation
as in FasterSeg training.

2) For the Student Net with virtual 1/4 path, we first train a FasterSeg Student
Net with additional 1/4 resolution path as in Sect. 3.1. This more accurate yet
also heavier temporary Student Net serves as a “tutor” for the final Student
Net.

Similar to FasterSeg, we only use the outputs of the 1/4, 1/16 and 1/32
resolution paths. The output of the 1/8 path is fused with that of the 1/4 path
for computational efficiency and memory savings. The resulting loss is:

LossTu = CE(pred4Tu, target) + λCE(pred16Tu, target)
+λCE(pred32Tu, target) + KL(predHR, pred4Tu). (9)

Here Tu stands for the “tutor” model with 1/4 resolution path.
Next we distill the true Student Net from the “tutor net” by minimizing the

loss function:

LossS = c FA loss + CE(pred8S , target) + λCE(pred16Tu, target)
+λ CE(pred32Tu, target) + KL(pred4Tu, pred8S), (10)

where prednTu is the prediction of the tutor model.

4 Experiments

In Sect. 4.1, we introduce the dataset and our computing environment. We
present experimental results and analysis in Sect. 4.2, and analyze FA loss in
Sect. 4.3.

4.1 Dataset and Implementations

We use the Cityscapes [4] dataset for training and validation. There are 2975
images for training, 500 images for evaluation, and 1525 images for testing. The
class mIoU (mean Intersection over Union) is the accuracy metric.

Our experiments are conducted on Quadro RTX 8000. Our environment is
CUDA 11.2 and CUDNN 7.6.5, implemented on Pytorch.

4.2 Experimental Results and Analysis

We perform our method on both low resolution (256 × 512) input and high
resolution (512 × 1024) input. The different resolution here means the cropping
size of the raw image input. The evaluation is on the original image resolution
of 1024 × 2048. And we use only the train dataset for training and perform
validation on validation (Val) dataset.
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During the search process, we set pretrain epochs as 20, number of epochs as
30, batch size as 6, learning rate as 0.01, weight decay as 5.e−4, initial latency
weight λ1 as 1.e−2, distillation coefficient λ2 as 1.

We first train a baseline student model with total epochs as 500, batch size
as 10, learning rate as 0.012, learning rate decay as 0.990, weight decay as 1.e−3.
The baseline model is comparable to FasterSeg’s student [2] in performance.

Then we train our 1/4 path tutor model for low (high) resolution input as a
student initialized from the baseline model above with HRNet as teacher. The
total number of epochs is 350 (400 for high), batch size is 10, learning rate is
0.0026 (0.003 for high), learning rate decay is 0.99, and weight decay is 1.e−3.

Finally, we distill the student model with virtual 1/4 path from the 1/4 path
tutor model with 400 epochs, batch size 10, learning rate 0.003, learning rate
decay 0.99, weight decay 1.e−3 and coefficient c for FA loss as 1.

The results are in Table 1 where the baseline Student Net has 60.1% (71.1%)
mIoU for low (high) resolution input. The tutor net with 1/4 path has 63.6%
(73.03%) mIoU for low (high) resolution input. The Student Net with virtual
1/4 path increases the accuracy of the baseline Student Net to 62.2% (72.3%)
mIoU for low (high) resolution input. While we have trained the Student Net for
different input sizes (256 × 512 and 512 × 1024), the inferences are made on the
full resolution (1024×2048). For all of our experiments, FLOPs is also computed
on the full resolution (1024× 2048) images, regardless of the training input size.
The improvement by the student net with virtual 1/4 path over the baseline
student net are illustrated through images in Fig. 3. In the rectangular regions
marked by dashed red lines, more pixels are correctly labeled by the student
net with virtual 1/4 path. On test dataset, the baseline Student Net has 57.7%
(69.3%) mIoU for low (high) resolution input, and the virtual 1/4 path Student
Net has 60.2% (69.7%) mIoU for low (high) resolution input.

We show ablation experimental results for low resolution input in Table 2. It
contains student nets with virtual 1/4 path trained from scratch and different
coefficient c settings for the FA loss in Eq. (10). Both fine tuning and FA loss
contribute to the improvement of the accuracy.

To further understand our teacher-tutor-student distillation framework, we
studied direct student net distillation from HRNet with the help of FA loss.
However, the mIoU is lower than that from the above teacher-tutor-student
distillation framework. This might be due to the more disparate architectural
structures between the teacher model and the FasterSeg form of the student net.
We notice that our improvement is lower for the high resolution input. This may
be due to reaching the maximal capability of the student net. In our experiment,
we only have 2 layers in the 1/4 resolution path of the student net. For more
gain in mIoU, adding more layers in the path is a viable approach to be explored
in the future.

4.3 Analysis of FA Loss

In [15], the authors added a ConvNorm layer right after the extraction of feature
maps to adjust their distributions before computing FA loss. We found that it
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Table 1. Tutor/student net with virtual 1/4 path for low/high image input sizes on
Cityscapes Val dataset.

Input size 256 × 512 512 × 1024 Param/FLOPs

Baseline student net 60.1 71.1 3.4M/27G

Tutor net w. 1/4-path 63.6 73.0 3.9M/100G

Student net (w. virtual 1/4-path) 62.2 72.3 3.4M/27G

Table 2. Student nets with virtual 1/4 path on low input size images of Val dataset.

Input size 256 × 512

Baseline student net 60.1

Student net (w. virtual 1/4-path) from scratch 59.9

Student net (w. virtual 1/4-path) c = 0 60.9

Student net (w. virtual 1/4-path) c = 1 62.2

would be better not add extra layers to the tutor model in our case as the
tutor model is already fixed. By checking the affinity matrices with and without
ConvNorm layers, we observed that given the tutor model, adding such extra
layers to both student and tutor models before computing FA loss forces the
entries of affinity matrices all close to 1 (a trivial way to reduce FA loss). This
phenomenon is illustrated in Fig. 4. And we also find that enlarging the coefficient
c in FA loss will help the model converge faster but might cause overfitting.

5 Pixel Shuffle Prediction Module

In this section, we develop a specific technique for FasterSeg student prediction
module, see Fig. 5. FasterSeg [2] uses Feature Fusion Module (FFM) to fuse two
feature maps from different branches, with the outcome of size C × H × W ,
which is passed through the Head Module to generate the prediction map of size
19 × H × W . Afterward, a direct interpolation by a factor of 8 up-scales the
prediction map to the original input size. This treatment makes FasterSeg fast
however at an expense of accuracy.

We discovered an efficient improvement by generating a larger prediction map
without introducing too many parameters and operations. The idea is to adopt
depth-wise separable convolution [3] to replace certain convolution operations in
FasterSeg. First, we reduce the channel number of FFM by half and then use
Refine Module (group-wise convolution) to raise the channel number. Finally, we
apply Pixel Shuffle on the feature map to give us a feature map of size C/2×2H×
2W . Let us estimate the parameters and operations of FFM and Heads focusing
on the convolution operations. The FFM is a 1×1 convolution with C2 param-
eters and C2HW operations. The Head contains a 3×3 Conv and a 1×1 Conv,
whose parameters are 9 C2+C N and the operations are 9C2HW + CNHW . In
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Fig. 3. Baseline student net improved by student net with virtual 1/4-path (pixels in
rectangular regions). The 4 columns (left to right) display input images, true labels,
output labels of the baseline net and the student net with virtual 1/4-path resp. The
5 example images are taken from the validation dataset.

Table 3. Comparison of validation mIoUs of our proposed up-scaling method with
depth-wise separable convolution (dep. sep. conv) and Pixel Shuffle (PS) on low/high
input image sizes vs. those of the FasterSeg student (original net) [2] implemented on
our local machine.

Input size 256 × 512 512 × 1024 Param/FLOPs

Original net 60.1 71.1 3.4 MB/27 GB

Our net with dep. sep. conv & PS 62.0 72.5 3.3 MB/27 GB

total, there are 10C2HW +NCHW and 10C2+ NC operations. Similarly in our
structure, FFM consumes C2/2 parameters and (C2/2)HW operations, Refine
costs 50C parameters and 50CHW operations, the Head takes 9 (C/2)2+(C/2)N
parameters and 9(C/2)22H2W + (C/2)N2H2W operations. In total, there are
(11/4)C2 + NC/2 + 50C parameters and 9.5C2HW + 2CNHW + 50CHW
operations. If C is large enough, our proposed structure has fewer parameters
and operations to produce a larger prediction map.

In our experiments, we replace the Prediction Module of FasterSeg model
with our Pixel Shuffle Prediction Module, keeping all the other choices in training
the same. As shown in Table 3, our proposed model has 0.1 MB fewer parameters,
yet has achieved 1.9 % (1.4 %) mIoU improvement for low (high) resolution input
images.
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Fig. 4. Histograms of affinity matrix entries in tutor-student distillation learning.

Fig. 5. Proposed pixel shuffle prediction module vs. that of FasterSeg [2].

6 Conclusion

We presented a teacher-tutor-student resolution path based knowledge distilla-
tion framework and applied it to FasterSeg Student Net [2] guided by HRnet.
While preserving parameter sizes and FLOPs counts, our method improves mIoU
by 2.1% (1.2%) on low (high) input image sizes on Cityscapes dataset. We
designed a depth-wise separable convolution and Pixel Shuffle technique in the
resolution upscaling module which improved FastserSeg’s Student Net by 1.9%
(1.4%) on low (high) input image sizes with slightly lower (same) parameter
(FLOPs) count. In future work, we plan to add more cells on the 1/4 resolution
path, combine the two methods developed here for further improvements.

Acknowledgements. The work was partially supported by NSF grants DMS-
1854434, DMS-1952644, and a Qualcomm Faculty Award. The authors would like to
thank Dr. Shuai Zhang and Dr. Jiancheng Lyu for helpful and enlightening discussions,
and ISVC2021 reviewers for their constructive comments.



336 B. Yang et al.

References

1. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with
atrous separable convolution for semantic image segmentation. In: ECCV (2018)

2. Chen, W., Gong, X., Liu, X., Zhang, Q., Li, Y., Wang, Z.: Fasterseg: Searching for
faster real-time semantic segmentation. ICLR, 2020; arXiv 1912.10917 (2019)

3. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In:
Proceedings of IEEE CVPR, July 2017

4. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding.
In: CVPR (2016)

5. Hinton, H., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In:
NeurIPS-Workshop (2014)

6. Lin, D., Shen, D., Shen, S., Ji, Y., Lischinski, D., Cohen-Or, D., Huang, H.: Zigzag-
net: fusing top-down/bottom-up context for object segmentation. In: CVPR (2019)

7. Liu, C., Chen, L., Schroff, F., Adam, H., Wei, H., Yuille, A., Li, F.: Auto-deeplab:
Hierarchical neural architecture search for semantic image segmentation. CVPR
(2019). arXiv:1901.02985v2 (2019)

8. Liu, H., Simonyan, K., Yang, Y.: DARTS: Differentiable architecture search. ICLR
(2019). arXiv preprint arXiv:1806.09055 (2018)

9. Lyu, J., Zhang, S., Qi, Y., Xin, J.: Autoshufflenet: Learning permutation matrices
via an exact Lipschitz continuous penalty in deep convolutional neural networks.
KDD (2020)

10. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets:
Hints for thin deep nets (ICLR, 2015)

11. C Shi, W., et al.: Real-time single image and video super-resolution using an effi-
cient sub-pixel convolutional neural network. In: Proceedings of the IEEE confer-
ence on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

12. Sun, K., et al.: High-resolution representations for labeling pixels and regions.
arXiv: 1904.04514 (2019)

13. Takikawa, T., Acuna, D., Jampani, V., Fidler, S.: Gated-SCNN: gated shape CNNs
for semantic segmentation. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp. 5229–5238 (2019)

14. Tao, A., Sapra, K., Catanzaro, B.: Hierarchical multi-scale attention for semantic
segmentation. arXiv: 2005.10821 (2020)

15. Wang, L., Li, D., Zhu, Y., Tian, L., Shan, Y.: Dual super-resolution learning for
semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 3774–3783 (2020)

16. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: BiSenet: Bilateral segmen-
tation network for real-time semantic segmentation (ECCV, 2018)

17. Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic seg-
mentation. arXiv preprint arXiv:1909.11065v5 (ECCV, 2020)

18. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolu-
tional neural network for mobile devices. In: CVPR (2017)

http://arxiv.org/abs/1901.02985v2
http://arxiv.org/abs/1806.09055
http://arxiv.org/abs/1904.04514
http://arxiv.org/abs/2005.10821
http://arxiv.org/abs/1909.11065v5

	Improving Efficient Semantic Segmentation Networks by Enhancing Multi-scale Feature Representation via Resolution Path Based Knowledge Distillation and Pixel Shuffle
	1 Introduction
	2 Related Works
	2.1 Overview
	2.2 Search and Training in FasterSeg

	3 Resolution Path Based Distillation
	3.1 Tutor Model with 1/4 Resolution Path
	3.2 Feature Affinity Loss
	3.3 Teacher Net Guided Student Net Search and Training

	4 Experiments
	4.1 Dataset and Implementations
	4.2 Experimental Results and Analysis
	4.3 Analysis of FA Loss

	5 Pixel Shuffle Prediction Module
	6 Conclusion
	References


