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Abstract

We present LBW-Net, an efficient optimization based method for quantization and

training of the low bit-width convolutional neural networks (CNNs). Specifically, we quan-

tize the weights to zero or powers of 2 by minimizing the Euclidean distance between

full-precision weights and quantized weights during backpropagation (weight learning).

We characterize the combinatorial nature of the low bit-width quantization problem. For

2-bit (ternary) CNNs, the quantization of N weights can be done by an exact formula in

O(N logN) complexity. When the bit-width is 3 and above, we further propose a semi-

analytical thresholding scheme with a single free parameter for quantization that is com-

putationally inexpensive. The free parameter is further determined by network retraining

and object detection tests. LBW-Net has several desirable advantages over full-precision

CNNs, including considerable memory savings, energy efficiency, and faster deployment.

Our experiments on PASCAL VOC dataset [5] show that compared with its 32-bit floating-

point counterpart, the performance of the 6-bit LBW-Net is nearly lossless in the object

detection tasks, and can even do better in real world visual scenes, while empirically en-

joying more than 4× faster deployment.

Mathematics subject classification: 90C26, 90C10, 90C90.

Key words: Quantization, low bit width deep neural networks, exact and approximate
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1. Introduction

Deep convolutional neural networks (CNNs) have demonstrated superior performance in

various computer vision tasks [3,13–16,18,22–24]. However deep CNNs typically have hundreds

of millions of trainable parameters which easily take up hundreds of megabytes of memory, and

billions of FLOPs for a single inference. This poses a significant challenge for the deployment

of deep CNNs on small devices with limited memory storage and computing power such as

mobile phones. To address this issue, recent efforts have been made to compress the model

size [7, 9] and train neural networks with heavily quantized weights, activations, and gradients

[1, 2, 6, 7, 9, 17, 20, 21, 26–28], which demand less storage and fewer FLOPs for deployment.

These models include BinaryConnect [1], BinaryNet [2], XNOR-Net [21], TWN [17], TTQ [28],

DoReFa-Net [27] and QNN [9], to name a few. In particular, binary (1-bit) and ternary (2-bit)

weight models not only enable high model compression rate, but also eliminate the need of most
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floating-point multiplications during forward and backward propagations, which shows promise

to resolve the problem. Compared with binary models, ternary weight networks such as TWN

strike a better balance between model size and accuracy. It has been shown that ternary weight

CNNs [17] can achieve nearly lossless accuracy on MNIST [16] and CIFAR-10 [12] benchmark

datasets. Yet with fully ternarized weights, there is still noticeable drop in performance on

larger datasets like ImageNet [4], which suggests the necessity of relatively wider bit-width

models with stronger performance for challenging tasks.

An incremental network quantization strategy (INQ) is proposed in [26] for converting pre-

trained full-precision CNNs into low bit-width versions whose weights are either zero or powers

of two. A b bit-width model can have 2b−1+1 distinct candidate values, in which 2 bits are used

for representing the zero and the signs, while the remaining b − 2 bits for the powers. More

precisely, the parameters are constrained to 2s × {0,±21−2
b−2

,±22−2
b−2

, . . . ,±1} associated

with a layerwise scaling factor 2s, s an integer depending only on the weight maximum in the

layer. At inference time, the original floating-point multiplication operations can be replaced

by faster and cheaper binary bit shifting. The quantization scheme of [26] is however heuristic.

In this paper, we present the exact solution of the general b-bit approximation problem of

a real weight vector W f in the least squares sense. If b = 2 and the dimension of W f is N ,

the computational complexity of the 2 bit solution is O(N logN). At b ≥ 3, the combinatorial

nature of the solution renders direct computation too expensive for large scale tasks. We shall

develop a semi-analytical quantization scheme involving a single adjustable parameter µ to set

up the quantization levels. The exponent s in the scaling factor can be calculated analytically

from µ and the numbers of the downward sorted weight components between quantization

levels. If the weight vector comes from a Gaussian ensemble, the parameter µ can be estimated

analytically. However, we found that the weight vectors in CNNs (in particular ResNet) are

strongly non-Gaussian. In this paper, µ is determined based on the object detection performance

after retraining the network. This seems to be a natural choice in general as quantization is

often part of a larger computer vision problem as is here. Therefore, the optimal parameter µ

should not be decided by approximation (the least squares problem) errors alone. Indeed, we

found that at b ≥ 4, µ = 3
4‖W

f‖∞ gives the best detection performance, which suggests that a

percentage of the large weights plays a key role in representing the image features and should

be encoded during quantization.

Network retraining is necessary after quantization as a way for the system to adjust and ab-

sorb the resulting errors. Besides warm start, INQ [24] requires a careful layerwise partitioning

and grouping of the weights which are then quantized and re-trained incrementally group by

group rather than having all weights updated at once. Due to both classification and detection

networks involved in this work, we opted for a simpler retraining method, a variant of the

projected stochastic gradient descent (SGD) method (see [1,17,21] and references therein). As

a result, our LBW-Net can be trained either from scratch or a partial warm start. During each

iteration, besides forward and backward propagations, only an additional low cost thresholding

(projection) step is needed to quantize the full-precision parameters to zero or powers of two.

We train LBW-Net with randomly initialized weights in the detection network (R-FCN [3]),

and pre-trained weights in ResNet [8]. We conduct object detection experiments on PASCAL

VOC data sets [5] as in [3, 22]. We found that at bit-width b = 6, the accuracies of the quan-

tized networks are well within 1% of those of their 32-bit floating-point counterparts on both
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ResNet-50 and ResNet-101 backbone architectures. In some complex real world visual scenes,

the 6-bit network even detects persons missed by the full-precision network.

The rest of the paper is organized as follows. In section 2, we construct the exact solution of

the general low bit-width approximation problem and present our semi-analytical quantization

scheme with a single adjustable parameter µ. We also outline the training algorithm and the

choice of µ. In section 3, we describe our experiments, the datasets, the object detection results,

the non-Gaussian and sparsity properties of the floating weights in training. In section 4, we

conclude with remarks on future work.

2. Training low bit-width convolutional neural networks

2.1. Weight quantization at low bit-width

For general quantization problem, we seek to minimize the Euclidean distance between the

given full-precision weight vector W f and quantized weight vector W q, which is formulated as

the following optimization problem:

min
W q
‖W q −W f‖2 subject to W q ∈ Q,

where Q is the set of quantized states.

To quantize the full-precision weights into low-precision ones of b bits (b ≥ 2), we constrain

the quantized weights to the value set of 2s×{0,±21−n,±22−n, . . . ,±1} for some integer s ∈ Z,

where n = 2b−2 and 2s serves as the scaling factor. The minimal distance problem becomes:

(s∗, Q∗) = arg min
s∈Z,Q

‖2sQ−W f‖2 subject to Qi ∈ {0,±21−n, . . . ,±1}. (2.1)

Then the optimal quantized weight vector is given by 2s
∗
Q∗. A precise characterization of (2.1)

is as follows.

Theorem 2.1. Let b ≥ 2, n = 2b−2, and k0, . . . , kn−1 ∈ N. Suppose that W f
[k0]

keeps the k0

largest components in magnitude of W f and zeros out the other components; W f
[k1]

extracts the

next k1 largest components and zeros out the other components, and so on. The solution Q∗ to

(2.1) is:

Q∗ =

n−1∑
t=0

sign(W f
[k∗

t ]
)2−t,

where

(k∗0 , . . . , k
∗
n−1) = arg min

k0,...,kn−1∈N
g

(
n−1∑
t=0

‖W f
[kt]
‖12−t,

n−1∑
i=0

kt2
−2t

)
(2.2)

with

g(u, v) := v
(

2blog2
4u
3v c − u

v

)2
− u2

v
.

The bracket b·c in g(u, v) is the floor operation or the closest integer on the left. Moreover, the

optimal power of scaling is:

s∗ = blog2

4
∑n−1

t=0 2−t‖W f
[k∗

t ]
‖1

3
∑n−1

t=0 k
∗
t 2−2t

c.
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Proof. Let kt be the number of entries in Q quantized to ±2−t, t = 0, . . . , n− 1. It follows

that

‖Q‖2 =

n−1∑
i=0

kt2
−2t and |〈Q,W f 〉| ≤

n−1∑
t=0

‖W f
[kt]
‖12−t. (2.3)

Therefore, for any s ∈ Z,

‖2sQ−W f‖2 = 22s‖Q‖2 − 2s+1〈Q,W f 〉+ ‖W f‖2

≥ 22s
n−1∑
i=0

kt2
−2t − 2s+1

n−1∑
t=0

‖W f
[kt]
‖12−t + ‖W f‖2 (by (2.3))

= (

n−1∑
i=0

kt2
−2t)

(
2s −

∑n−1
t=0 ‖W

f
[kt]
‖12−t∑n−1

i=0 kt2
−2t

)2

−
(
∑n−1

t=0 ‖W
f
[kt]
‖12−t)2∑n−1

i=0 kt2
−2t

+ ‖W f‖2

(2.4)

Since s ∈ Z, by symmetry of the parabola, it suffices to find the nearest power of 2 to∑n−1
t=0 ‖W

f
[kt]
‖12−t∑n−1

i=0 kt2−2t
to achieve the lower bound in (2.4). The nearest power 2s satisfies

2s−1 + 2s

2
≤
∑n−1

t=0 ‖W
f
[kt]
‖12−t∑n−1

i=0 kt2
−2t

<
2s + 2s+1

2
,

or equivalently,

log2

4
∑n−1

t=0 ‖W
f
[kt]
‖12−t

3
∑n−1

i=0 kt2
−2t

− 1 < s ≤ log2

4
∑n−1

t=0 ‖W
f
[kt]
‖12−t

3
∑n−1

i=0 kt2
−2t

.

Therefore,

s∗ = blog2

4
∑n−1

t=0 ‖W
f
[kt]
‖12−t

3
∑n−1

i=0 kt2
−2t

c. (2.5)

Let us define g(u, v) := v(2log2b 4u3v c − u
v )2 − u2

v . Then we examine the minimum value of

g(
∑n−1

t=0 ‖W
f
[kt]
‖12−t,

∑n−1
i=0 kt2

−2t) over all possible combinations of natural numbers k0, . . . , kn−1,

i.e., the optimal numbers of quantized weights at the n levels are given by

(k∗0 , . . . , k
∗
n−1) = argmink0,...,kn−1∈N g

(
n−1∑
t=0

‖W f
[kt]
‖12−t,

n−1∑
i=0

kt2
−2t

)

Finally, to achieve the minimum in (2.4) with respect to (k∗0 , . . . , k
∗
n−1), we must have

Q∗ =

n−1∑
t=0

sign(W f
[k∗

t ]
)2−t

so that 〈Q∗,W f 〉 =
∑n−1

t=0 ‖W
f
[k∗

t ]
‖12−t, and choose s∗ = blog2

4
∑n−1

t=0 ‖W
f

[k∗
t ]
‖12−t

3
∑n−1

i=0 k∗
t 2

−2t
c.

In Theorem 2.1, we have assumed that the components of W f have no ties in magnitudes,

as such situation occurs with zero probability for random floating vectors from continuous

distributions. To solve the problem (2.1) by Theorem 2.1, we need to sort the elements of W f
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in magnitude, and find the optimal numbers of weights k∗0 , . . . , k
∗
n−1 at n quantization levels

by solving (2.2). We can then obtain the optimal scaling factor 2s
∗
. The largest k∗0 weights

(in magnitude) are quantized to ±2s
∗
, and the next largest k∗1 weights to ±2s

∗−1, and so on.

Finally, all the remaining small weights are pruned to 0.

The subproblem (2.2) is intrinsically combinatorial. In the simplest case b = 2 of the ternary

weight networks, by Theorem 2.1,

k∗0 = arg min
k0∈N

g(‖W f
[k0]
‖1, k0), (2.6)

and the solution to (2.1) is given by:

Q∗ = sign(W f
[k∗

0 ]
), s∗ = blog2

4 ‖W f
[k∗

0 ]
‖1

3 k∗0
c. (2.7)

The formula (2.6)-(2.7) is first found by the authors in [25]. It shows that the weight ternar-

ization mainly involves sorting magnitudes of the elements in W f and computing a cumulative

sum of the sorted sequence, which requires a computational complexity of O(N log(N)), where

N is number of entries in W f .

When b > 2 and n > 1, solving (2.2) by direct enumeration becomes computationally too

expensive for large scale problems such as convolutional neural networks and thus impractical.

Hereby we propose a low-cost approximation of Q∗, motivated by the empirical quantization

schemes in [17,26]. To this end, by selecting a proper threshold value µ, we set

Q̃∗i =


0 if |W f

i | < 22−n

3 µ,

sign(W f
i )21−n if 22−n

3 µ ≤ |W f
i | < 22−nµ

sign(W f
i )2−t if 2−tµ ≤ |W f

i | < 2−t+1µ, t = 1, . . . , n− 2,

sign(W f
i ) if µ ≤ |W f

i |.

(2.8)

Note that the case t = n − 1 in (2.8) needs special treatment because one of the neighboring

quantized values is 0. The parameter µ is the only free parameter in (2.8).

Theorem 2.2. The optimal power s̃∗ of the scaling factor with respect to the approximate Q̃∗

in (2.8) is

s̃∗ = blog2

4
∑n−1

t=0 2−t‖W f

[k̃∗
t ]
‖1

3
∑n−1

t=0 k̃
∗
t 2−2t

c. (2.9)

Here W[k̃∗
t ]

is defined as in Theorem 2.1, and k̃∗t is the number of entries of W f in the t-th

largest group according to the division of (2.8).

Proof. Let Q̃∗ be defined as in (2.8). Since ‖2sQ̃∗ −W f‖2 is a quadratic function in terms

of 2s, and

‖2sQ̃∗ −W f‖2 = ‖Q̃∗‖2
(

2s − 〈Q̃
∗,W f 〉
‖Q̃∗‖2

)2

− 〈Q̃
∗,W f 〉2

‖Q̃∗‖2
+ ‖W f‖21,
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the minimizer s̃∗ ∈ Z must occur at either blog2
〈Q̃∗,W f 〉
‖Q̃∗‖2 c or the ceiling dlog2

〈Q̃∗,W f 〉
‖Q̃∗‖2 e, the

closest integer from the right. By grouping the elements in Q̃ according to their magnitudes,

we have further

〈Q̃∗,W f 〉 =

n−1∑
t=0

2−t‖W f
[t]‖1

and

‖Q̃∗‖2 =

n−1∑
t=0

kt2
−2t,

where [t] := {i : |Q̃∗i | = 2−t}, t = 0, . . . , b − 2, and kt is the cardinality of [t]. This completes

the proof.

Remark 2.1. We remark that the output of Q̃∗ consists of mostly the scaled signs, hence

Q̃∗ resembles a “phase factor”. On the other hand, the scaling factor 2s̃
∗

is the corresponding

amplitude. Putting the two factors together, one can view the low bit-width weight approximation

as an approximate polar decomposition of the real weight vector.

2.2. Training algorithm

We used a projected SGD-like algorithm as in [1, 17, 21] for training LBW-Net. At each

gradient-descent step, the minibatch gradient is evaluated at the quantized weights, and a

scaled gradient is subtracted from the full-precision weights instead of the quantized weights in

standard projected gradient method. The quantization is done layer by layer by the formulas

(2.8) and (2.9) with µ selected as 3
4‖W

f‖∞ for each layer at bit-width 4 or above. To compute

the optimal power s∗ in (2.9), we find it sufficient to use the partial sums
∑3

t=0 2−t‖W f

[k̃∗
t ]
‖1

and
∑3

t=0 k̃
∗
t 2−2t instead, as the tail values are negligible. In addition, we adopted batch

normalization [10], adaptive learning rate, and Nesterov momentum [19] to promote training

efficiency.

3. Experiments

We implemented our LBW-Net with the R-FCN [3] structure on PASCAL VOC [5] dataset

which has 20 object categories. Same as [3], the training set is the union of VOC 2007 trainval

and VOC 2012 trainval (“07+12”), and test results are evaluated on the VOC 2007 test set.

So there are in total 16, 551 images with 40, 058 objects in the training set, and 4, 952 images

in the test set. The performance of object detection is measured by mean Average Precision

(mAP). All mAP scores are computed with the Python version of the test codes provided by

RCNN/Fast RCNN/Faster RCNN GitHub repositories. Our experiments are carried out on

Caffe [11] with a Titan X GPU under Linux system.

3.1. R-FCN on PASCAL VOC

We employed ResNet-50 [8] as the backbone network architecture for R-FCN. In the exper-

iments, we tested 4, 5, 6-bit LBW-Net and compared evaluation results with the corresponding

32-bit floating point models. For fair comparison, all these tests used the same initial weights,

which are pre-trained convolutional feature maps from ResNet-50 while the weights in the other
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convolution layers are randomly initialized. A similar procedure is applied for experiments with

ResNet-101. In [20], comparable results to ours were reported on ResNet-50 based detection.

However, their method did not work on the deeper ResNet-101 based detection. Interesting

though, their approach succeeded in the classification task using ResNet-101, which suggests

that quantization of detection networks is more challenging.

In the R-FCN structure, there is no fully-connected layer. We quantized all convolutional

layers with the same low bit-width quantization formula for each layer.

R-FCN, ResNet-50 mAP R-FCN, ResNet-101 mAP

4-bit LBW 74.37% 4-bit LBW 76.79%

5-bit LBW 76.99% 5-bit LBW 77.83%

6-bit LBW 77.05% 6-bit LBW 78.24%

32-bit full-precision 77.46% 32-bit full-precision 78.94%

Table 3.1:: Object detection experiments on PASCAL VOC with R-FCN + ResNet-50/ResNet-

101. Training set is VOC 07+12 trainval. The results are evaluated on VOC 07 test.

Table 1 shows mAP results from our experiments. With larger bit-width, LBW models

achieved higher mAP values, true for both R-FCN + ResNet-50 and R-FCN + ResNet-101.

The models trained with the 6-bit LBW scheme almost approach the best mAP of 32-bit full

precision models. Besides these quantitative measures, in Fig. 3.1, we illustrate detection

accuracies using R-FCN + ResNet-50 via samples processed by 6-bit LBW in comparison with

those by the ‘ground truth’ full precision model. The first 2 photos are chosen from the 2007

Pascal VOC dataset and the third photo is taken at a university campus with a much more

complicated visual scene. In the first 2 photos, both the 6-bit LBW and full precision models

detected the major objects correctly, with nearly the same bounding box positions and high

classification scores. In the third photo, the 6-bit LBW even surpassed the performance of the

full precision model, by detecting a student at the very left side of the top staircase with a score

of 0.710. Also the 3rd student from the right (the student in the middle) on the top staircase is

detected with a score of 0.952 (0.906) by the 6 bit LBW vs. 0.886 (0.820) by the full precision

model. Interestingly, these three students are all side-viewed.

3.2. Statistical Analysis of Weights

In Fig. 2, we illustrate the weight distributions of two floating convolutional layers by

histograms. The p-values of a standard hypothesis testing procedure in statistics on normality

showed up very small (less than 10−5), indicating the strong non-Gaussian behavior of the

floating weights in training. This phenomenon posed a challenge to the analytical effort of

estimating the parameter µ in quantization using probability distribution functions as suggested

for TWN [8].

In Table 2 and Table 3, we show the weight percentage distribution of two sample convo-

lutional layers in R-FCN + ResNet50 between different magnitude levels of the quantization

for low-bit width and full-precision models. The three low bit-width models involve truncation

and encoding operations. The 6 bit-width columns appear to approach the 32-bit float columns

on most rows. However, the percentages on the last three (two) rows under the low-bit LBW
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models in Table 2 (3) are identical to each other and are much larger than the corresponding

percentage in the full precision model. This shows that the trained low-bit LBW models cap-

tured rather well a small percentage of the large weights. In deep CNNs, the large magnitude

weights occupy a small percentage yet have a significant impact on the model accuracy. That

is why we chose the partition parameter µ to be near the maximum norm of the weights.

It is worthwhile to note from the two tables that the 4-bit LBW can save lots of memory

thanks to both low-bit weights and high sparsity. Over 82% (58%) of the weights are zeros

in the convolutional residual block (RPN layer) of the R-FCN plus ResNet50 network. With

the help of ’Mask’ technology in circuit chip design, zero-valued weights will be skipped and

the computational efficiency can be much improved. However, as shown in Table 1, the 4-bit

LBW still suffers a few more percentages of accuracy loss than the 5-bit and 6-bit models.

The 6-bit LBW model approximates the feature representation capability of the full precision

network the best with a sufficient number of smaller levels of quantized weights. For that

reason, it almost recovers the performance of the full precision model on the test set. The 6-bit

LBW model saves around 5.3× weights memory with a small loss of accuracy. The memory

savings and the near lossless accuracy of the 6-bit LBW may work well on a modern chip design

where all multiplication operations in the convolutional layers can be replaced by bit-wise shift

operations, thus highly improving the computing efficiency in applications.

R-FCN, ResNet-50 4-bit LBW 5-bit LBW 6-bit LBW 32-bit full-precision

|w| < 2−16 82.882% 10.072% 0.030% 0

2−16 ≤ |w| < 2−15 0 0 0.060% 0.076%

2−15 ≤ |w| < 2−14 0 0 0.141% 0.225%

2−14 ≤ |w| < 2−13 0 0 0.233% 0.271%

2−13 ≤ |w| < 2−12 0 0 0.486% 0.613%

2−12 ≤ |w| < 2−11 0 0 0.922% 1.283%

2−11 ≤ |w| < 2−10 0 0 1.964% 2.610%

2−10 ≤ |w| < 2−9 0 0 3.776% 4.945%

2−9 ≤ |w| < 2−8 0 0 7.343% 9.524%

2−8 ≤ |w| < 2−7 0 18.392% 13.509% 16.713%

2−7 ≤ |w| < 2−6 0 21.221% 21.221% 23.581%

2−6 ≤ |w| < 2−5 0 24.270% 24.270% 22.993%

2−5 ≤ |w| < 2−4 0 17.706% 17.706% 12.627%

2−4 ≤ |w| < 2−3 15.479% 6.700% 6.700% 3.784%

2−3 ≤ |w| < 2−2 1.408% 1.408% 1.408% 0.608%

2−2 ≤ |w| < 2−1 0.228% 0.228% 0.228% 0.098%

2−1 ≤ |w| 0.003% 0.003% 0.003% 0

Table 3.2:: Statistics of low-bit and full precision weights (w) of one convolutional residual

block layer in R-FCN + ResNet-50 at different bit-widths. For 4, 5, 6-bit LBW models, the

weights in the first row of partition are exactly equal to 0, and come from rounding down small

floating weights during training.
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R-FCN, ResNet-50 4-bit LBW 5-bit LBW 6-bit LBW 32-bit full-precision

|w| < 2−19 58.188% 4.000% 0.016% 0.019%

2−19 ≤ |w| < 2−18 0 0 0.031% 0.022%

2−18 ≤ |w| < 2−17 0 0 0.047% 0.045%

2−17 ≤ |w| < 2−16 0 0 0.095% 0.089%

2−16 ≤ |w| < 2−15 0 0 0.185% 0.177%

2−15 ≤ |w| < 2−14 0 0 0.370% 0.355%

2−14 ≤ |w| < 2−13 0 0 0.751% 0.714%

2−13 ≤ |w| < 2−12 0 0 1.501% 1.413%

2−12 ≤ |w| < 2−11 0 0 2.993% 2.836%

2−11 ≤ |w| < 2−10 0 7.949% 5.952% 5.616%

2−10 ≤ |w| < 2−9 0 11.676% 11.685% 11.061%

2−9 ≤ |w| < 2−8 0 21.571% 21.588% 20.625%

2−8 ≤ |w| < 2−7 0 31.553% 31.539% 31.370%

2−7 ≤ |w| < 2−6 39.837% 21.137% 21.134% 23.257%

2−6 ≤ |w| < 2−5 1.953% 2.093% 2.091% 2.397%

2−5 ≤ |w| < 2−4 0.022% 0.021% 0.022% 0.004%

2−4 ≤ |w| 0.0001% 0.0001% 0.0001% 0

Table 3.3:: Statistics of low-bit and full precision weights (w) of one RPN layer in R-FCN +

ResNet-50 at different bit-widths. For 4, 5, 6-bit LBW models, the weights in the first row of

partition are exactly equal to 0, and come from rounding down small floating weights during

training.

4. Concluding Remarks

We discovered the exact solution of the general low-bit approximation problem of a real

weight vector in the least squares sense, and proposed a low cost semi-analytical quantization

scheme with a single adjustable parameter. This parameter is selected and optimized through

training and testing on object detection data sets to approach the performance of the corre-

sponding full precision model. The accuracy of our 6-bit width model is well-within 1% of

the full precision model on PASCAL VOC data set, and can even outperform the full-precision

model on real-world test images with complex visual scenes. Moreover, our low-bit-width model

is 4× faster. In future work, we plan to improve the low bit width models (especially the 4 bit-

width model) further by exploring alternative training algorithms and adapting quantization

levels so that small weights are quantized with fewer levels than in the current work. Quantizing

small weights with two many levels due to the restriction of powers of 2 is prone to introducing

noise to the network. This problem can be solved in a more general quantization framework [20]

where our quantization formulas in Theorem 2.1 and Theorem 2.2 extend.
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32-bit 6-bit

Fig. 3.1.: Curated examples of 6-bit LBW detection results on 3 sample images, compared with

those from the corresponding full precision model. The left columns are results of 32-bit full-

precision model, while the right images come from 6-bit LBW model. The network is R-FCN

+ ResNet-50, and the training data is 2007+2012 trainval. The threshold value 0.5 is used for

display.
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Conv layer in residue block RPN layer [22]

Kurtosis = 6.113, Skewness = −0.112 Kurtosis = 9.398, Skewness = −0.481

Fig. 3.2.: Histograms of the float weights in 2 convolutional layers of 32-bit full-precision trained

R-FCN + ResNet-50 model. For both of these 2 layers, the p-values of normal distribution

hypothesis testing are extremely small, less than 10−5. Also the excess kurtosis measures are

much larger than the value for normal distribution, which is 0. Thus these weights are far from

being normally distributed.


