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Abstract
In this paper, we introduce a preprocessing technique for blind source separation of nonnegative and overlapped data. For
nuclear magnetic resonance spectroscopy (NMR), the classical method of Naanaa and Nuzillard (NN) requires the condition
that source signals to be non-overlapping at certain locations, while they are allowed to overlap with each other elsewhere.
NN’s method works well with data signals that possess stand-alone peaks (SAPs). The SAP does not hold completely for
realistic NMR spectra, however. Violation of SAP often introduces errors or artifacts in the NN’s separation results. To address
this issue, a preprocessing technique is developed here based on Lorentzian peak shapes and weighted peak sharpening. The
idea is to superimpose the original peak signal with its weighted negative second-order derivative. The resulting sharpened
(narrower and taller) peaks enable NN’s method to work with a more relaxed SAP condition, the so-called dominant peaks
condition, and deliver improved results. To achieve an optimal sharpening while preserving the data nonnegativity, we prove
the existence of an upper bound of the weight parameter and propose a selection criterion. Numerical experiments on NMR
spectroscopy data show satisfactory performance of our proposed method.

Keywords Blind source separation · Peak sharpening · Linear programming · Nuclear magnetic spectroscopy

1 Introduction

In applications such as computer tomography, biomedical
imaging, and spectroscopic sensing, the data collected are
usually nonnegative and correlated, and the objects being
imaged are oftenmixtures of substances,whichpose a serious
challenge for direct identification and quantification of the
constituents. In many situations, we need to decompose the
data into a set of basic components (source signals) without
knowing the mixing process, or solve a blind source sepa-
ration (BSS) problem. The objective of BSS is to extract a
number of source signals from their linear mixtures without
the knowledge of the mixing process. BSS has been playing
a central role in a wide range of signal and image process-
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ing problems such as speech recognition, sound unmixing,
image separations, and text mining [2,3,5]. In this paper, we
are interested in a BSS problem arising from the nuclear
magnetic resonance (NMR) spectroscopy [8]. Being one of
the preeminent imaging techniques in chemistry, NMR spec-
troscopy is frequently used by chemists and biochemists to
study the molecular structures of organic compounds. NMR
spectroscopy and other imaging techniques have made it
possible to identify and classify pure substances by their fin-
gerprint spectra. The real-world data, however, may involve
multiple unknown substances besides impurities and are sub-
ject to background and environment changes. This makes the
data analysis hopeless unless we can unmix or separate the
mixed data into a list of source components. In many prac-
tical situations, we need to determine from a mixture the
constituent chemicals and their coefficients as a BSS prob-
lem whose mathematical model takes the following matrix
form:

X = A S + N (1.1)

where X ∈ R
m×p, A ∈ R

m×n, S ∈ R
n×p. Rows of X repre-

sent the spectral mixtures, rows of S are the source signals,
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entries of matrix A are the mixing coefficients, and N is
the noise matrix. The goal of BSS is to solve for A and
S given X . If P is a permutation matrix and D an invert-
ible diagonal matrix, one can immediately notice that AS =
(APD)(D−1P−1S); hence, (A, S) and (APD, D−1P−1S)

are considered equivalent solutions in BSS.
There have been mainly two classes of BSS methods for

solving (1.1). The first class of methods belong to statisti-
cal regime. Among others, independent component analysis
(ICA) is the most well-studied statistical BSS approach, and
it decomposes a mixed signal into additive source compo-
nents based on themutual independence of the non-Gaussian
source signals. The statistical independence requires uncor-
related source signals, and this condition, however, is not
always satisfied by realistic data. For example, the statis-
tical independence does not hold in the NMR spectra of
chemical compounds where molecules responsible for each
source share common structural features. The determinis-
tic BSS methods include nonnegative matrix factorization
(NMF) and geometrical methods. Introduced by Paatero and
Tapper [18] and popularized by Lee and Seung [12], NMF
has become the prevalent method for solving nonnegative
BSS problems. NMF seeks a factorization of X into product
of two nonnegative matrices by minimizing the cost function
of a certain distance or divergence metric [2]. NMF does
not impose source independence; however, some additional
constraints such as sparsity of the sources and/or the mix-
ing matrix are often imposed to control the non-uniqueness.
In [13], the orthogonality constraints and prior knowledge
of a target spectrum are incorporated into NMF to guide
the factorization and improve the effectiveness in chemical
agent detection. Although they have been successful in some
BSS problems, the NMF and ICA are both non-convexmeth-
ods which can be unreliable in decomposing real-world data.
Geometrical BSS methods are based on convex geometry of
the data matrix X . The columns of X are nonnegative linear
combinations of those of A. In the hyperspectral unmixing
(HSI) setting, a condition called pure pixel assumption (PPA)
was proposed in [1] which requires the presence in the data of
at least one pure pixel of each endmember (source signal). In
NMR spectroscopy, PPA was reformulated by Naanaa and
Nuzillard [16]. The source signals are only required to be
non-overlapping at some locations of acquisition variable.
This condition was applied to NMR data unmixing and led to
amajor success of a convex conemethod. Such a local sparse-
ness condition greatly reduces this problem to a convex one
which is solvable by linear programming. Though the convex
cone method is geometrically elegant, the working condition
is still restrictive. In fact, NNA or PPA is not always satis-
fied in either NMR or HSI. Within the convex framework, a
recent work of the authors studied how to postprocess with
the abundance of mixture data and how to improve mixing
matrix estimation with major peak-based corrections when

the strict sparseness in NNA is violated mildly [19]. Other
geometrical methods includeminimum volume conemethod
which is to fit a simplex (convex cone) of minimum volume
to the data set [6,15]. This method is a non-convex approach
which amounts to solving aminimization problem by finding
a matrix with minimum volume under a constraint.

In the present work, we are concerned with a class of
NMR spectral data from chemicals sharing common molec-
ular structures. Hence, their spectra should consist of similar
peak components. In fact, the sparseness condition NNA
proposed by Naanaa and Nuzillard can be interpreted as a
stand-alone peak (SAP) condition for NMR data with peak
components. That is, each source signal possesses a stand-
alone peak extending over an acquisition interval, while other
source spectra are identically zero over this interval. In this
paper, we consider how to generalize NN method if the SAP
condition is not satisfied strictly. We shall consider a regime
where the source signals have dominant peaks (DPS) over
one another on certain acquisition intervals. The idea is to
sharpen these peaks (shrink the dominant intervals) so that
the dominant peaks approximately become stand-alonepeaks
andhence to improve theNNseparation results. In the context
of image enhancement (for example, deblurring), Kovasznay
and Joseph [11] in 1955 found that a blurred image could
be deblurred and sharpened by subtracting a fraction of its
LaplacianUe = Uo − k�Uo , whereUo represents the orig-

inal image, Ue the enhanced image, �Uo = ∂2Uo
∂x2

+ ∂2Uo
∂ y2

,
and k > 0 is a weight parameter predefined by the users.
This idea can be applied to signals to sharpen their peaks
and enhance the resolution for peak detection an identifica-
tion [14,17]. Note that a NMR spectrum can be expressed as
the nonnegative linear combinations of Lorentz functions, as
shown in the left plot of Fig. 2. To sharpen the Lorentzian
peaks, we subtract a weighted second-order derivative from
the original signal to enhance the resolution: Ŝ = S − kS′′ ,

where Ŝ is the sharpened signal, S is the original signal, S′′
is the second-order derivative, and k is the weight param-
eter whose selection will be discussed in detail later. The
sharpening makes the peaks narrower with enhanced resolu-
tion, so they approximately become stand-alone peaks. After
the preprocessing is accomplished, the NN approach is then
applied to retrieve themixingmatrix A. The separation of the
source signals may be solved by a nonnegative least squares
method. In the study of Raman data (nonnegative) for source
extraction of biomedical samples, preprocessing method is
developed in [10] to reduce or eliminate the spectral dis-
tortions effects (such as peak misalignment and peak width
heterogeneity) of the raw data on the separation results: A
major preprocessing step is to align peak locations across all
the spectral mixtures by choosing a reference spectrum from
the data and compare to all other spectra (mathematically
via solving a least squares problem). The processed data are
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then separated by independent component analysis. In non-
negative matrix factorization (NMF), the author [9] studied
the uniqueness of the NMF solutions and proposed to prepro-
cess the datamatrix bymultiplying it with an inverse-positive
matrix which generated a sparser data matrix.

The paper is organized as follows: In Sect. 2, we briefly
review the NN method and its partial sparseness condition
and then state the more suitable stand-alone peaks and domi-
nant peaks assumptions for NMR data. In Sect. 3, we present
the weighted peak sharpening method and its mathemati-
cal analysis. A selection criterion of the weight parameter
is proposed for optimal sharpening and data nonnegativity.
In Sect. 4, numerical experiments are performed to test the
effectiveness of the proposed method. Concluding remarks
are given in Sect. 5.

2 Sparse BSS and geometric constructions

2.1 NN’s Method

In this part, we shall reviewNN’smethod for nonnegative and
overlapped data [16]. The working criterion of their method
is a local sparseness assumption on source signals; it is that
the signals are only allowed to be non-overlapping at certain
acquisition locations, while they might overlap with each
other elsewhere. Mathematically speaking, the source matrix
S needs to satisfy the following assumption (recall that m is
the number of mixed signals, n the number of source signals,
and p the number of samples):

Assumption 1 (NNA) For each i ∈ {1, 2, . . . , n} there is an
ji ∈ {1, 2, . . . , p} such that si, ji > 0 and sk, ji = 0 (k =
1, . . . , i − 1, i + 1, . . . , n) .

Let us consider Eq. (1.1) in terms of columns

X j =
n∑

k=1

sk, j A
k, j = 1, . . . , p, (2.1)

then X ji = si, ji A
i , i = 1, . . . , n or Ai = 1

si, ji
X ji by the

NNA condition. Therefore, equation (2.1) can be expressed
as:

X j =
n∑

i=1

si, j
si, ji

X ji , (2.2)

which implies that every column of X is in fact a non-
negative linear combination of the columns of the matrix
[X j1 , . . . , X jn ]. Denote Â = [X j1, . . . , X jn ], a submatrix of
X with n columns. Examining Eqs. (2.1) and (2.2), we see
that each columnof Â is collinear to a particular columnof A .
Once all the ji ’s are found, an estimation of themixingmatrix
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Fig. 1 Left :NMRspectrawith stand-alone peaks P1, P2,and P3. Right:
the scattered plot of X (columns of X ) scaled to be on plane x+y+z = 1

is achieved. The identification of Â’s columns is equivalent to
identifying the edges of a convex cone that encloses the data
columns of X . For a noiseless case X = AS, the following
constrained equations are formulated for the identification of
Â,

p∑

j=1, j �=k

X jλ j = Xk, λ j ≥ 0, k = 1, . . . , p. (2.3)

Then, a column vector Xk will be a column of Â if and
only if the constrained equation (2.3) is inconsistent (has no
solution X j , j �= k). The Moore–Penrose inverse Â+ of Â is
then calculated, and an estimate of S is obtained: Ŝ = Â+X .

As it applies to NMR spectra with peak, NNA can be
restated as the stand-alone peak (SAP) condition: Each
source signal possesses a stand-alone peakover certain acqui-
sition interval, where other sources are identically zero.
Precisely, the source matrix S should satisfy the following
condition:

Assumption 2 (SAP) For each i ∈ {1, 2, . . . , n}, there exists
a set of consecutive integers I ⊂ {1, 2, . . . , p} such that
Si,k > 0 for k ∈ I and S j,k = 0 ( j = 1, . . . , i − 1, i +
1, . . . , n) .

The SAP condition is illustrated by NMR spectra of three
sources in the left plot of Fig. 1, and it can be seen that each
source signal has a stand-alone peak denoted by P1, P2, and
P3, respectively. In this illustrative example, there are three
mixtures and three sources for the linearmixturemodel (1.1):

Example 1 X3×p = A3×3S3×p, we shall view each column
of X as a point in the 3-space, then

[
X1, X2, · · · , X p

]
=

[
A1, A2, A3

]

×
⎛

⎝
∗ · · · ∗ u o o ∗ · · · ∗
∗ · · · ∗ o v o ∗ · · · ∗
∗ · · · ∗ o o w ∗ · · · ∗

⎞

⎠ .

Here, u, v,w are the stand-alone peaks from the three source
signals.
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These stand-alone peaks span a convex cone enclosing all
the columns of X , illustrated in the right plot in Fig. 1. The
estimation of A is then equivalent to the identification of this
cone. To do so, the following optimization problem is solved
for each scaled column of X (i.e., the columns are scaled to
be on a plane)

c=min
p∑

j=1, j �=k

λ j , s.t.
p∑

j=1, j �=k

X(:, j)λ j = X(:, k) , λ j ≥0.

(2.4)

It is shown in [7] that X(:, k) is a vertex of the convex cone if
and only if the optimal objective function value c∗ is greater
than 1. Once A is located, S maybe thereafter recovered by
nonnegative least squares. This geometric construction of A
is also called vertex component analysis (VCA).

2.2 Relaxation of Stand-Alone Peaks: Dominant
Peaks

The NN method proves to be successful in separating data
signals if the working condition is strictly satisfied. The
real-world data may not satisfy the SAP completely due to
measurement noises or the underlying physical process; con-
sequently, the NN’s method might introduce errors (spurious
peaks) in the output. It is more realistic to assume that the sig-
nals are positive extending over the whole acquisition range
and stand-alone peaks could overlap to some extent, that is,
the stand-alone peaks become dominant peaks (DPS). More
formally, the sourcematrix is required to satisfy the following
condition.

Assumption 3 (DPS) For each i ∈ {1, 2, . . . , n}, there exists
a set of consecutive integers I ⊂ {1, 2, . . . , p} such that
Si,k > 0 for k ∈ I and S j,k = εk j � Si,k ( j = 1, . . . , i −
1, i + 1, . . . , n) .

Simply said, each source signal has a dominant peak over
an acquisition interval where the other sources are allowed
to be nonzero. DPS condition is more appropriate for NMR
spectra consisting of positive-valued peaks with tails extend-
ing over the whole range of acquisition variable. In DPS
signals, the previous example (1) of three source signals
matrix S would look like

S =
⎛

⎝
∗ · · · ∗ u ε1 ε2 ∗ · · · ∗
∗ · · · ∗ ε3 v ε4 ∗ · · · ∗
∗ · · · ∗ ε5 ε6 w ∗ · · · ∗

⎞

⎠ ,

where u, v,w indicate the three dominant peaks.
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Fig. 2 Left: the NMR spectrum of Propane (www.study.com). Right: a
Lorentzian function and its derivatives with w = 5, h = 5

3 Themethod

3.1 Lorentz Function and Its Sharpening

From analytic chemistry [8], we learned that an NMR spec-
trum is represented as a sum of symmetrical, positive valued,
Lorentzian-shaped peaks, that is, the spectral components
of an NMR spectrum are Lorentz functions as shown in
Fig. 2. Therefore, the NMR spectrum consists of weighted
sum of Lorentz functions in the following form L(x) =(

1
2�

)2
h

(x−x0)2+
(
1
2�

)2 , where � is the scale parameter which speci-

fies its full width at half maximum (FWHM), x0 is the center
of the peak, and h is the height. Apparently, the function
reaches its maximum height h at x = x0. For the purpose of
analysis, we shall consider the case of x0 = 0 (since one can
simply translate the function to achieve the Lorentzian curve

at the desired center), in the form L(x) = w2h

x2 + w2 , where

w = 1
2�, the half width at half maximum (HWHM). Below

are its first several derivatives

L(x) = w2h

x2 + w2 ,L′(x) = −2w2h
x

(x2 + w2)2
,

L′′(x) = 2w2h
3x2 − w2

(x2 + w2)3
,L(3)(x)=2w2h

12x(w2 − x2)

(x2 + w2)4
,

and their graphs are shown in Fig. 2.We consider the function
D(x) = L(x)−L′′(x) and get an idea how the peak in D(x)
is sharper than L(x)

D(x) = L(x) − L′′(x) = w2h

x2 + w2 − 2w2h
3x2 − w2

(x2 + w2)3

= w2h
x4 + 2(w2 − 3)x2 + w4 + 2w2

(x2 + w2)3
.

As shown in left plot in Fig. 3, a slightly enhanced signal
is achieved as a result of cancelation in the side regions and
reinforcements in the center region. For the data analysis
and application, the sharpened curve needs to be nonnegative
for all the x values. We shall next investigate under what
condition the sharpened signal D(x) remains nonnegative.
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The following theorem offers a lower bound of w for the
nonnegativity of D(x).

Theorem 1 The sharpened signal D(x) = L(x) − L′′(x) is
nonnegative for all values of x if and only if w2 ≥ 9

8 (or
w ≥ 3

2
√
2
).

Proof Before we get into the proof. We notice the function
L′′(x) has three critical points x = 0, x = ±w (the zeros
of L(3)(x) ) and it attains absolute minimum value − 2h

w2 at

x = 0, and maximum h
2w2 at x = ±w. It can also be seen

that function L(x) has the absolute maximum at x = 0,
so the sharpened signal D(x) achieves its maximum value
h(1+ 2

w2 ) at x = 0. We define α = 1+ 2
w2 as the sharpening

factor; clearly, a bigger α means a better sharpening. This
also implies that the sharpening is less noticeable for wider
peaks (bigger w).

In order for D(x) = L(x)−L′′(x) to be nonnegative only
if its numerator part N (x) = x4 + 2(w2 − 3)x2 + w4 +
2w2 ≥ 0 (because its denominator is always positive), then
the problem is to determine for what values of w, N (x) ≥ 0.
First of all, if w2 ≥ 3, x4 + 2(w2 − 3)x2 + w4 + 2w2 ≥ 0.
Now, we investigate the case when w2 < 3, consider the
derivative of N (x),

N ′(x) = 4x3 − 4(3 − w2)x = 0

solves for the three critical points of N (x), x = 0; x =
±√

3 − w2. By the first-order derivative test, N (x) attains
its minimum at x = ±√

3 − w2 (symmetry),

N (±
√
3 − w2) = (3 − w2)2 − 2(3 − w2)(3 − w2) + w4 + 2w2

= −(3 − w2)2 + w4 + 2w2

= 8w2 − 9 .

Therefore, N (x) will remain nonnegative if 8w2 − 9 ≥ 0.
We conclude that if w2 ≥ 9

8 (or w ≥ 3
2
√
2
), then D(x) =

L(x) − L′′(x) is nonnegative for all values of x . 
�
Remark 2 Note that the wider the peaks, the less noticeable
sharpening will be achieved since the sharpening factor α =
1+ 2

w2 is close to 1 forwide peak signals. In order to achieve a
recognizable and better sharpening for such signals, we shall
consider a weighted sharpening below.

Dk(x) = L(x) − kL′′(x)

= w2h
x4 + 2(w2 − 3k)x2 + w4 + 2kw2

(x2 + w2)3
(3.1)

where theweight k > 0. The sharpening factor α = 1+k 2
w2 .

An immediate question is to the find the optimal value for k
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Fig. 4 Left: a signal with three peaks and their sharpening. Right is a
mixed signal combined by three spectra and sharpened peaks

to achieve the best balance of sharpening and flatness of the
line (nonnegativity). We have the following result.

Theorem 3 The upper bound value of k for the weighted
sharpening defined in Eq. (3.1) is wopt = 8

9w
2, in which

case the sharpening factor is α = 25
9 .

Proof Following the similar argument in the proof of Theo-
rem 1, it is clear that ifw2 ≥ 3k, (k ≤ w2

3 ), the term Nk(x) =
x4+2(w2−3k)x2+w4+2kw2 ≥ 0. If k > w2

3 , the zeros of

N ′
k(x) = 4x3 − 4(3k − w2)x are x = 0, x = ±√

3k − w2.
Nk(x) obtain its absolute minimum at x = ±√

3k − w2;
Nk = −(3k − w2)2 + w4 + 2kw2 = 8kw2 − 9k2. Hence,
Nk(x) will be always nonnegative if 8kw2 − 9k2 ≥ 0 or
k ≤ 8

9w
2. The optimal choice is kopt = 8

9w
2 for the

best sharpening enhancement, and the sharpening factor is
α = 1 + 8

9w
2 · 2

w2 = 25
9 , which means that the sharpened

peak is about 2.8 times higher yet narrower. Note that the
value of k is user preset and can be any number between 1
and kopt. 
�

The sharpening effects are depicted in Fig. 3, and the first
plot shows a one-peak signal and the sharpening without
weight where it can be seen that the sharpening is barely
noticeable comparing to the original signal, while the sec-
ond plot shows that the better performance by the weighted
sharpening. More plots in Fig. 4 demonstrate the results of
weighted sharpening of a multi-peak signal as well as super-
imposition of multiple signals.

3.2 Mixed Signal Sharpening and Separation

We shall make the following definition
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Definition 1 For a given signal s(x), theweighted sharpening
operatorP is defined asPs(x) = s(x)−ks′′(x), where k > 0
is the user preset weight parameter.

The linearity of theoperator follows fromP (as1(x) + bs2(x))
= aPs1(x) + bPs2(x). Consider the linear mixture model
equation (1.1) X = AS, where X ∈ R

m×p, A ∈ R
m×b, S ∈

R
n×p. Rows of X represents the measured spectral mixtures,

and rows of S are the source signals. Matrix A contains
the mixing coefficients. Each row Xi can be expressed as

Xi =
∑m

j=1
ai j S j . Then, we apply the weighted sharpen-

ing operator on Xi :PXi = P ∑m
j=1 ai j S j = ∑m

j=1 ai jPS j .

By the previous discussion, PS j is the j th sharpened sig-
nal with narrower peaks of enhanced resolution than S j and
then the dominant peak condition is clearly much better sat-
isfied. We shall sharpen all the mixed signals (all the rows
of matrix X ) to have the following preprocessed data (which
can be formally written)

X̂ = PX = PAS = AŜ , Ŝ = PS .

Each row of Ŝ represents a sharpened source signal. For the
halfwidth at halfmaximumparameterw used in the selection
of the weight k (since kopt = 8

9w
2) for numerical implemen-

tation, an estimate of the narrowest peak width suffices. One
can read off approximate value from mixture signals if the
dominant interval(s) happen to contain a peak. In more com-
plicated NMR data, the expertise of an analytical chemist
may also be helpful to estimate this parameter.

Once the rows of the mixture matrix X are preprocessed
(peaks sharpened), we then apply theNNmethod on X̂ = AŜ
to retrieve the columns of A by solving either problem (2.3)
or (2.4). In the presence of noise, the following optimization
problem is suggested to solve for an estimate the mixing
matrix A

score = min
λ j≥0

1

2
‖

p∑

j=1, j �=k

X̂ jλ j − X̂ k‖22 , k = 1, . . . , p ,(3.2)

which can be solved by nonnegative least squares method.
A column with a low score is unlikely to be a column of A
because this column is approximately a nonnegative linear
combination of the other columns of X , while a high score
may suggest that the corresponding column is far from being
a nonnegative linear combination of other columns of X . In
practice, the n columns from X with highest scores will be
selected as an estimate of A. In NN method, the Moore–
Penrose inverse A+ of A is computed and used to obtain an
estimate of the source signal S: S = A+X . The recovered S
might contain negative values due to the error in the estimate
of A. For a remedy, if m ≥ n (over-determined), then a non-
negative least squares method can be adopted for solving the

source matrix S; for each column Si of S, solve the problem
minSi≥0

1
2‖Xi − ASi‖22 . If m < n (under-determined), the

solution of S is non-unique, but one can solve a nonnegative
�1 optimization problem for a sparse solution of Si ,

min
Si≥0

1

2
‖Xi − ASi‖22 + μ‖Si‖1 . (3.3)

We shall assign a tiny value to μ when there is minimal
measurement error to heavily weigh the term ‖Xi − ASi‖22
so that Xi = ASi is nearly satisfied. To solve (3.3) , we may
use linearized Bregmanmethod [20] with a proper projection
onto nonnegative convex set.

4 Numerical experiments

We report in this section the numerical results of the pro-
posed method. Hereafter, NN method is the convex cone
method without sharpening preprocessing, while the term
NNP method is NN method with peak sharpening. First
example contains synthetic data, and there are two mixture
and two source signals (m = n = 2). The source spectra
are synthesized using Lorentzian-shaped peaks to mimic the
real NMR spectra, and the mixture matrix is generated by
the model X = AS. Figure 5 shows the source spectra, while
the left panel in Fig. 6 is a mixed signal and its sharpening.
We also show the scattered cloud of the columns of X in the
right panel of Fig. 6; NN method identified the columns of
mixing matrix as the vertices (green triangles) of a convex
cone enclosing the columns of X , while NNP found the blue
circles which are closer to the red diamonds representing the
columns of true mixing matrix. The recovered source spectra
by NNmethod and NNP method are depicted in Fig. 7. Both
methods recovered the source signals rather well comparing
to the ground truth. The estimate of mixing matrix ANN by
NN method, ANNP by NNP, and the true mixing matrix ATR

(noted that first rows of all matrices are scaled to the same
for the purpose of illustration) are shown and compared in
the following.

ATR =
(
0.6 0.8
0.8 0.6

)
, ANN =

(
0.6 0.8

0.748 0.643

)
,

ANNP =
(

0.6 0.8
0.789 0.609

)
.

To compare the performance of mixing matrix estimates,
we calculate Comon’s index defined here.

Definition 2 Consider two non-singular matrices let A and
Â with normalized columns. The distance between A and Â
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Fig. 5 The spectra used in example one sharing majority of their spec-
tral components; two dominant peaks are located to the right
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Fig. 6 Left: a mixed signal and its sharpening. Right: the scattered
cloud of the columns of X indicated by black stars
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Fig. 7 Left: recovered source signals by NN method; right: recovered
source signals by NNP method
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Fig. 8 Comon’s indices v.s. the sharpening weights

is denoted by ε(A, Ā) which is

ε(A, Ā) =
∑

i

∣∣∣∣
∑

j

|di j | − 1

∣∣∣∣
2

+
∑

j

∣∣∣∣
∑

i

|di j | − 1

∣∣∣∣
2

+
∑

i

∣∣∣∣
∑

j

|di j |2 − 1

∣∣∣∣ +
∑

j

∣∣∣∣
∑

i

|di j |2 − 1

∣∣∣∣ ,

where D = A−1 Ā and di j is the entry of D.

Comon proved in [4] that A and Ā are considered nearly
equivalent in BSS problems if ε(A, Ā) ≈ 0. We computed
Comon’s index between the truemixingmatrix and estimates
by NN method and NNP method

ε(ATR, ANN) = 0.8012 , ε(ATR, ANNP) = 0.1818.

ANNP is much closer to ATR, implying a better estimate.
We also studied the relation of the sharpening weight w and
separation results: We let k vary from 5 to 100, computed the
Comon’s indices, and show the curve in Fig. 8.

In the second example, we present the numerical results
of three mixtures and three sources signals. With the concept
of Comon’s index, we show the robust performances of NNP
method for noisy spectral data. The three sources signals in
Fig. 9were linearly combined to generate threemixtures, and
then,Gaussian noiseswith SNR (signal-to-noise ratio1) vary-
ing from 30 to 120 dB were added. Figure 12 indicates the
robustness of our method with small indices even in the low
SNR zone. The comparison of the recovered mixing matrix
by NN method, NNP method, and the ground truth is shown
here

ATR =
⎛

⎝
0.6667 0.2727 0.2000
0.2222 0.4545 0.3000
0.1111 0.2727 0.5000

⎞

⎠ ,

ANN =
⎛

⎝
0.6667 0.2727 0.2000
0.2793 0.3875 0.2904
0.1672 0.2688 0.4428

⎞

⎠ ,

ANNP =
⎛

⎝
0.6667 0.2727 0.2000
0.2416 0.4551 0.3039
0.1312 0.3044 0.5082

⎞

⎠ .

Comon’s index between the truemixingmatrix and estimates
by NN method and NNP method is

ε(ATR, ANN) = 1.3362 , ε(ATR, ANNP) = 0.4952.

Clearly, the NN method with sharpening preprocessing
delivers better results. Figures 9, 10, 11, and 12 show the
computational results for the readers’ perusal. In Fig 9,
NN method identifies the columns of mixing matrix as the
edges of a minimal cone enclosing the mixtures (depicted
by red diamonds). The deviation of NN’s results is due
to the violation of the condition SAP. With a preprocess-
ing peak sharpening, NNP method delivers a better results
(green stars) being closer to the blue circles. The sharpen-
ing parameter we used in this example is k = 40 which
proves to work well. It can be seen that both methods are
able to capture the peaks and their locations of the source
signals as shown in Fig. 11; a closer look at the compar-
ison with the real source signal in the left plot of Fig. 12
clearly shows the better performance of NNP method. The
regions marked by arrows are the discrepancies of the result
of NN method with the ground truth. The similarity between
the signals measured by their inner products is calculated
sim(sNN, sTR) = 0.9767, sim(sNNP, sTR) = 0.9998.

Next, we test the method with real-world NMR experi-
mental data. In the left plot of Fig. 13, there are threemixtures,
and each is formed by a linear combination of three 4-peak

1 SNR is a measure that compares the level of a desired signal to the

level of background noise. It can be calculated as SNR = μ2

σ 2 , where μ

is the signal mean and σ is the standard deviation of the noise.
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Fig. 9 Left: Lorentzian source signals with dominant peaks. Right:
columns of mixing matrix recovered from NN method( red diamonds),
NNP method (green stars), and the ground truth ( blue circles)

0 500
0

1

2

3

4

5

0 500

spectral index

0

1

2

3

4

5

6

7

re
la

tiv
e 

in
te

ns
ity

0 500
0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700

spectral index

0

5

10

15

20

re
la

tiv
e
 in

te
n
si

ty

one mixed signal
the sharpened signal

Fig. 10 Source spectra(left); a mixed signal and sharpening (right)
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Fig. 11 Source signals recovered by NN (left) and NNPmethod (right)
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Fig. 12 The closeness of the recovered source signals and the real ones
(left); performance comparison of NN method and NNP method for
noisy data (right)

source signals; the right plot shows one mixed signal and its
sharpening. The three source signals computed by the two
methods are shown in the three plots from Fig. 14. Although
there are small spurious noisy peaks (or artifacts) around in
the results, the four major peaks of signals are well captured
and recognizable by both NNmethod and NNP method. The
second and third plots of Fig. 14 show rather similar results by
the two methods. In the first plot, we observe two noticeable
bleeds through peaks in the signal recovered by NN method,
while the two peaks can be barely seen in NNP recovery. In
this example, an estimate of the lower bound of the half peak
width w = 4 (the narrowest peak) is obtained by examin-
ing the mixture signals, and we chose the sharpening weight
parameter k = 10. Here, we also present the recovered mix-
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Fig. 13 Left: Three mixed realistic NMR spectra (from three sources).
Right: One of the mixed NMR signal and its sharpening
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Fig. 14 Source signals recovered byNNmethod ( red) andNNPmethod
(black). Two bleeds through peaks in the third signal by NN method
can be seen, while they are absent in NNP result

ing matrices by the two methods (note that we do not have
ground truth matrix to compare with)

ANNP =
⎛

⎝
0.7601 0.7454 0.8675
0.6481 0.3659 0.0496
0.0473 0.5573 0.4949

⎞

⎠ ,

ANNP =
⎛

⎝
0.7189 0.8741 0.7616
0.6952 0.0398 0.3640

0 0.4841 0.5362

⎞

⎠

5 Conclusion

This paper presented a preprocessing technique for sparse
blind source separation of positive and overlapped data.
Arising in NMR spectroscopy, the blind source separation
problem attempts to unmix the spectral data into a set of
basic components (source signals) under a local sparseness
condition (the stand-alone peaks or SAPs). Based on the
data geometry and SAP, vertex component analysis (such
as NN’s method) proves to be successful in identifying the
mixing matrix whose columns are the edges of the convex
cone enclosing the data points. However, the results of VCA
deviate from the truth due to the violation of the SAP in
realistic data. To overcome this problem and improve the sep-
aration results, we preprocess the mixture data by a weighted
sharpening technique, which manages to enhance the peak
resolution by subtracting a constant multiple of its second-
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order derivative. The fact that the sharpened peaks greatly
reduce the violation of SAP source condition leads to an
improvement in the identification of the convex cone. Once
an estimate of the mixing matrix is retrieved, the recov-
ery of the source signals can be obtained by a nonnegative
least squares (with sparsity constraint if needed). Besides, we
investigate how to tune in the weight parameter and provide
an upper bound for this parameter to guide the implemen-
tation of the method. Numerical results on NMR spectra
data show satisfactory performance of the proposed method.
For a future line of inquiry, we plan to test and evaluate the
method on realistic data fromNMRand other spectroscopies,
in collaboration with chemists and researchers, and, based on
feedback, further improve the performance and robustness of
the algorithms toward real-world applications.
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