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ABSTRACT Differentiable architecture search (DARTS) is an effective method for data-driven neural
network design based on solving a bilevel optimization problem. Despite its success in many architecture
search tasks, there are still some concerns about the accuracy of first-order DARTS and the efficiency of
the second-order DARTS. In this paper, we formulate a single level alternative and a relaxed architecture
search (RARTS) method that utilizes the whole dataset in architecture learning via both data and network
splitting, without involving mixed second derivatives of the corresponding loss functions like DARTS. In our
formulation of network splitting, two networks with different but related weights cooperate in search of a
shared architecture. The advantage of RARTS over DARTS is justified by a convergence theorem and an
analytically solvable model. Moreover, RARTS outperforms DARTS and its variants in accuracy and search
efficiency, as shown in adequate experimental results. For the task of searching topological architecture, i.e.,
the edges and the operations, RARTS obtains a higher accuracy and 60% reduction of computational cost than
second-order DARTS on CIFAR-10. RARTS continues to out-perform DARTS upon transfer to ImageNet
and is on par with recent variants of DARTS even though our innovation is purely on the training algorithm
without modifying search space. For the task of searchingwidth, i.e., the number of channels in convolutional
layers, RARTS also outperforms the traditional network pruning benchmarks. Further experiments on the
public architecture search benchmark like NATS-Bench also support the preeminence of RARTS.

INDEX TERMS Convolutional neural networks, neural architecture search, differentiable architecture
search, network compression.

I. INTRODUCTION
Neural Architecture Search (NAS) is an automated machine
learning technique to design an optimal neural network
architecture by searching its building blocks of deep neural
networks from a collection of candidate structures and
operations. Although NAS has achieved many successes
in several computer vision tasks [1]–[6], the search pro-
cess demands huge computational resources. The current
search times have come down considerably from as many
as 2000 GPU days in early NAS [2], thanks to subsequent
studies [7]–[13] among others. Differentiable Architecture
Search (DARTS) [14] is an appealing method that avoids
searching over all possible combinations by relaxing the
categorical architecture indicators to continuous parameters.
The higher level architecture can be learned along with lower
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level weights via stochastic gradient descent by approxi-
mately solving a bilevel optimization problem. DARTS can
be further sorted into first-order DARTS and second-order
DARTS, in line with whether a mixed second derivative
estimation of loss function is used or not.

Despite its search efficiency obtained from continuous
relaxation, DARTS can still have some problems experi-
mentally and theoretically. They are the efficiency problem
with second-order DARTS, the convergence problem with
first-order DARTS, and the architecture collapse problem
(i.e., the selected architecture contains too many skip-
connections) with both DARTS. Second-order DARTS takes
much longer search time than first-order DARTS as it
involves the mixed second derivatives. It has also been
pointed out that second-order DARTS can have superposition
effect [15], which means the approximation of the gradient
of α is based on the approximation of the weight w one
step ahead. This is believed to cause gradient errors and
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failures in finding optimal architectures. Therefore, it is used
less often in practice than first-order DARTS [15], [16].
However, first-order DARTS learns the architecture using
half of the data only. Evidences are provided to show that
it can result in incorrect limits and worse performance [14].
The experimental results also show that first-order DARTS
(3.00% error) is less accurate than second-order DARTS
(2.76% error) on the CIFAR-10 dataset [14], [17]. For
the architecture collapse problem, typically such a bias in
operation selection degrades the model performance. This
problem has been observed by a few researchers [18], [19],
who have tried to solve it by replacing some operations of the
architecture.

In addition to the search for topological architectures, i.e.,
edges and operations of cells (building blocks) in some early
NAS works and DARTS [2], [14], many NAS style methods
have been developed to search for the width of a model, i.e.,
the number of channels in convolutional layers [16], [20].
Searching for width is supposed to be a way of channel
pruning, which is a common tool for network compression,
i.e., constructing slim networks from redundant ones [21].
Specifically, channel pruning can be formulated as an archi-
tecture search problem, via the setup of learnable channel
scoring parameters [21]–[23] as architecture parameters. This
is an elegant approach for compression without relying
on channel magnitude (group `1 norm), which is used in
previous regularization methods [24]. The previous way of
setting up channel scoring parameters [21] utilizes the scale
parameters of the batch normalization layers, yet they are
not contained in many modern networks [25], [26]. Another
challenge remains to be solved is to replace its plain gradient
descent by the more accurate DARTS style algorithms.

Apart from the bilevel formulation of DARTS, a single
level approach (SNAS) based on a differentiable loss and
sampling has been proposed [27]. On CIFAR-10, SNAS is
more accurate than the first-order DARTS yet with 50%
more search time than the second-order DARTS. This inspires
us to formulate a new single level method which is more
efficient and accurate. Our main contribution is to introduce
a novel Relaxed Architecture Search (RARTS) method based
on single level optimization, and the computation of only
the first-order partial derivatives of loss functions, for both
topology and width search of architectures. Through both
data and network splitting, the training objective (a relaxed
Lagrangian function) of RARTS allows two networks with
different but related weights to cooperate in the search of a
shared architecture.

We have carried out both analytical and experimental
studies below to show that RARTS achieves better per-
formance than first and second-order DARTS, with higher
search efficiency than second-order DARTS consistently:

• Compare RARTSwith DARTS directly on the analytical
model with quadratic loss functions, where the RARTS
iterations approach the true global minimal point
missed by the first-order DARTS, in a robust fashion.

A convergence theorem is proved for RARTS based
on descent of its Lagrangian function, and equilibrium
equations are discovered for the limits.

• On the CIFAR-10 based search of topological architec-
ture, the model found by RARTS obtains smaller size
and higher test accuracy than that by the second-order
DARTS with 65% search time saving. A hardware-
aware search option via a latency penalty in the
Lagrangian function helps control the model size. Upon
transfer to ImageNet [28], [29], the model found by
RARTS achieves better performance as well, compared
with DARTS and its variants. Apart from the standard
search space used in the DARTS paper, RARTS also
beats DARTS on the public NAS benchmark of search
spaces like NATS-Bench [30].

• For channel pruning of ResNet-164 [31] on CIFAR-10
and CIFAR-100 [17] with fixed pruning ratio (percent-
age of pruned channels), RARTS outperforms the differ-
entiable pruning benchmarks: Network Slimming [21]
and TAS [20]. Comparisons between DARTS and
RARTS have also beenmade in a `1 regularized (unfixed
ratio) pruning task, where RARTS achieves a high
sparsity of 70% and exceeds DARTS in accuracy.

II. RELATED WORK
A. DIFFERENTIABLE ARCHITECTURE SEARCH
DARTS training relies on an iterative algorithm to solve
a bilevel optimization problem [14], [32] which involves
two loss functions computed via data splitting (splitting the
dataset into two halves, i.e. training data and validation data):

min
α
Lval(w∗(α), α),

where w∗(α) = argmin
w

Ltrain(w, α). (1)

Here w denotes the network weights, α is the architecture
parameter, Ltrain and Lval are the loss functions computed on
the training data Dtrain and the validation data Dval . Since
many common datasets like CIFAR do not include the val-
idation data, Dtrain and Dval are usually two non-overlapping
halves of the original training data. We denote Ltrain and Lval
by Lt and Lv to avoid any confusions with the meaning of
the subscripts. Dt and Dv are defined similarly. DARTS has
adopted data splitting because it is believed that joint training
of both α and w via gradient descent on the whole dataset by
minimizing the overall loss function:

L(w, α) = Lt (w, α)+ Lv(w, α) (2)

can lead to overfitting [14], [15]. Therefore, DARTS searches
for the architectures through a two-step differentiable algo-
rithmwhich updates the network weights and the architecture
parameters in an alternating way:
• update weight w by descending along ∇wLt (w, α)
• update architecture parameter α by descending along:

∇α Lv(w− ξ ∇wLt (w, α), α)
where ξ = 0 (ξ > 0 ) gives the first or second-
order approximation. The bilevel optimization problem also
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arises in hyperparameter optimization and meta-learning,
where a second-order algorithm and a convergence theorem
on minimizers have been proposed in previous work [33]
(Theorem 3.2), under the assumption that the α-minimization
is solved exactly, and wt (α) converges uniformly to w(α).
However, the α-minimization of DARTS is approximated by
gradient methods only, and hence the convergence of DARTS
algorithm remains unknown theoretically.

We are aware of the fact that the first-order DARTS
updates the architecture parameters on Dv by descending
along ∇α Lv(w, α), which means it merely uses half of
the data to train α and might cause some convergence
issues (see Fig. 1). MiLeNAS has developed a mixed-level
solution, where the architecture parameters can be learned on
D = Dt ∪ Dv via a first-order descending algorithm [15]:

wt+1 = wt − ηtw∇w Lt (w
t , αt )

αt+1 = αt − ηtα
(
∇αLt (wt+1, αt )+ λ∇αLv(wt+1, αt )

)
, (3)

We shall see that MiLeNAS is actually a constrained
case of RARTS when our two network splits become
identical. However, we point out that computing Lv using
an identical network makes MiLeNAS still suffer from the
same convergence issue in a later example (Section III-D).
The second-order DARTS is observed to approximate the
optimum better than first-order DARTS in a solvable model
and through experiments, yet it requires computing the mixed
derivative ∇2

α,wLt , at a considerable overhead. Searching by
DARTS can also lead to the architecture collapse issue,
meaning the selected architecture contains too many skip-
connections. Typically such a bias in operation selection
degrades the model performance. SNAS [27], FBNet [12],
and GDAS [18] use differentiable Gumbel-Softmax to mimic
one-hot encoding which implies exclusive competition and
risks of unfair advantages [19]. This unfair dominance of
skip-connections in DARTS has also been noted by Fair-
DARTS [19], which has proposed a collaborative competition
approach bymaking the architecture parameters independent,
through replacing the softmax with sigmoid. They have
further penalized the operations in the search space with
probability close to 1

2 , i.e. a neutral and ambiguous selection.
As these methods focus on replacing some operations or
the loss function, it would be worthwhile to explore other
solutions such as replacing the gradient-based DARTS search
algorithm.

In addition to DARTS, many other differentiable methods
for architecture search have been proposed, considering
various aspects such as the search space, selection criterion,
and training tricks. SNAS [27] has discussed it from a
statistical perspective with however a minor to moderate
performance improvement. The search efficiency has also
been improved by sampling a portion of the search space
during each update in training. A perturbation-based selection
scheme has been proposed in [34], as the magnitude of
architecture parameters is believed to be inadequate as a
selection criterion. P-DARTS [35] has adopted operation

dropout and regularization on skip-connections. From the
procedure side to delay a quick short cut aggregation,
it has also divided the search stage into multiple stages and
progressively addsmore depth thanDARTS. PC-DARTS [36]
samples a proportion of channels to reduce the bias of
operation selection and enlarge the batch size as well.
GDAS [18] searches the architecture with one operation
sampled at a time. Other approaches apply differentiable
methods on much larger search spaces with sampling
techniques to save memory and avoid model transfer
[7], [12]. We will see that these variants of the differentiable
architecture searchmethod are actually complementary to our
approach that advances DARTS on the purely algorithmic
side by mobilizing weights. Moreover, many works [7],
[12], [16], [37]–[39] manage to balance latency with the
performance of the model to enhance the efficiency of the
model. Despite the broad use of differentiable methods in
the works we have mentioned, one may wonder how DARTS
and its variants beat random search. A detailed comparison
in [40] has elaborated the advantage of DARTS in accuracy
and efficiency compared with random search.

B. SEARCH FOR WIDTH AND CHANNEL PRUNING
Differentiable search method has contributed to a wide range
of tasks other than topological architecture search. TAS [20]
searches for the width of each layer, i. e. number of channels,
by learning the optimal one from the aggregation of several
candidate feature maps via a differentiable method and
sampling. FasterSeg [16] searches for the cell operations and
layer width, as well as the multi-resolution network path over
the semantic segmentation task. These works of searching
width are closely related to channel pruning, which means
pruning redundant channels from the convolutional layers.
Among numerous methods to prune redundant channels [24],
[41]–[45], a classical approach is to apply group LASSO [46]
on the weights to identify unimportant channels. The weights
in each channel form one group, and the magnitude of each
group is measured by `2 norm of its weights. The network
is trained by minimizing a loss function penalized by the
`1 norm of these magnitudes from all groups. The channels
are pruned based on thresholding their norms. Selecting good
thresholds as hyperparameters for different channels can be
laborious for deep networks. On the other hand, channel
selection is intrinsically a network architecture issue. It is
debatable if thresholding by weight magnitudes is always
meaningful [47].

Another approach of channel pruning [21], [22] involves
assigning a channel scaling (scoring) factor to each channel,
which is a learnable parameter independent of the weights.
In the training process, the factors and the weights are
learned jointly, and the channels with low scaling factors are
pruned. After that, the optimal weights of the pruned network
are adjusted by one more stage of fine-tuning. In terms
of channel scaling factors, the channel pruning problem
becomes a special case of neural architecture search. Besides
this formulation, there are several pruning methods based on
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NAS. AMC [37] has defined a reward function and pruned
the channels via reinforcement learning. MetaPruning [48]
generates the best pruned model and weights from a meta
network.

III. METHODOLOGY
In this section, we introduce the RARTS formulation, its
iterative algorithm and convergence properties. RARTS is
different from all the differentiable algorithms we have
mentioned, in that it puts forward a relaxed formulation of a
single level problem which benefits from both data splitting
and network splitting.

A. DATA SPLITTING AND NETWORK SPLITTING
As pointed out in DARTS [14] and MiLeNAS [15], when
learning the architecture parameter α, splitting training
and validation data should be taken into account to avoid
overfitting. However, we have discussed that the bilevel
formulation (1) and training algorithm of DARTS may lead
to several issues: unknown convergence, low efficiency and
the unfair selection of operations. Therefore, we follow the
routine of train-validation data splitting, but want to formulate
a single level problem, in contrast to DARTS and MiLeNAS.
First, if we use (w, α), the pair of weight and architecture
parameters in Eq. (2) to represent a network, what we propose
to do is to further relax the network weights w via splitting
a network copy denoted by (y, α). We call (y, α) and (w, α)
the primary and auxiliary networks, which share the same
architecture α and the same dimensions as weight tensors,
but can have different weight initialization.

Next, a primary loss Lv(y, α) is computed with parameters
(y, α) fed on data Dv, while an auxiliary loss Lt (w, α) is
computed with parameters (w, α) fed on data Dt . Note that
the computation of the auxiliary loss Lt (w, α) is the same
as that of DARTS. The difference is that the primary loss is
computed on the primary network (y, α), instead of (w, α).
Now we present the single level objective of our relaxed
architecture search (RARTS) framework. With a `2 penalty
on the distance between w and y, the two loss functions are
combined through the following relaxed Lagrangian L =
L(y,w, α) of Eq. (2):

L := Lv(y, α)+ λLt (w, α)+
1
2
β ‖y− w‖22, (4)

where λ and β are hyperparameters controlling the penalty
scale and the learning process. We will see in the search
algorithm that the penalty term enables the two networks to
exchange information and cooperate to search the architec-
ture which they share together. This technique of splitting w
and y is called network splitting, which is also inspired by
some previous work [49]. In their work, splitting of variables
is able to approximate a non-smooth minimization problem
via an algorithm of combined closed-form solutions and
gradient descent.

Since various NAS approaches discover architectures of
inconsistent sizes or FLOPS, it has made the comparison

through different methods unfair, because larger models
are likely to have better performance but low efficiency.
Many NAS methods have adopted latency as a model
constraint [7], [16]. To control model size, we follow
the technique of approximating the model latency with the
sum of latency from all the operations [16], and add the
approximated latency to the loss function as a penalty. Since
each component of the latency tensor (denoted by Lat) is
the latency amount associated with a candidate operation,
the dimension of Lat is the same as that of α. Therefore,
we provide an alternative objective which is penalized by the
latency of the model:

L : = Lv(y, α)+ λLt (w, α)+
1
2
β ‖y− w‖22

+〈Softmax(α),Lat〉, (5)

where the bracket is inner product.

B. RARTS ALGORITHM
We minimize the relaxed Lagrangian L(y,w, α) in (4) by
iteration on the three variables in an alternating way to
allow individual and flexible learning schedules for the three
variables. Similar to Gauss-Seidel method in numerical linear
algebra [50], we use updated variables immediately in each
step and obtain the following three-step iteration:

wt+1 = wt − ηtw ∇wL(y
t ,wt , αt )

yt+1 = yt − ηty ∇yL(y
t ,wt+1, αt )

αt+1 = αt − ηtα ∇αL(y
t+1,wt+1, αt ). (6)

With explicit gradient ∇w,y‖y− w‖22, we have:

wt+1 = wt − λ ηtw∇wLt (w
t , αt )− βηtw(w

t
− yt )

yt+1 = yt − ηty ∇yLv(y
t , αt )− β ηty(y

t
− wt+1)

αt+1 = αt − λ ηtα ∇αLt (w
t+1, αt )

− ηtα ∇αLv(y
t+1, αt ). (7)

To minimize the Lagrangian (5), the first two steps are the
same as Eq. (7) since the latency only depends on α. The third
step becomes:

αt+1 = αt − λ ηtα ∇αLt (w
t+1, αt )

− ηtα ∇αLv(y
t+1, αt )

− ηtα ∇α〈Softmax(αt ),Lat〉. (8)

Note that the update of α in Eq. (7) involves both Lt and Lv,
which is similar to the second-order DARTS but without the
mixed second derivatives. The first-order DARTS uses ∇αLv
only in this step. In the previous section, we have discussed
the architecture collapse issue of DARTS, i.e., selecting
to many skip-connections. A possible reason why DARTS
may lead to architecture collapse is that its architecture
parameters converge more quickly than the weights in the
convolutional layers. That means, when DARTS selects
architecture parameters, it tends to select skip-connection
operations, since the convolutional layers are not trained well.
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Algorithm 1 Relaxed Architecture Search (RARTS)
Input: the number of iterationsN , the hyperparameters λ and

β, a learning rate schedule (ηtw, η
t
u, η

t
α), initialization

of the weight parameters w0, u0 and the architecture
parameters α0.

Output: α∗, the architecture we want
Split the dataset D into two subsets Dp and Da.
for t = 0, 1, . . . ,N do

Compute Lp and La on Dp and Da, respectively, and then
compute L using Eq. (4)
Update the parameters via gradient descent:
wt+1 = wt − ηtw ∇wL(y

t ,wt , αt )
yt+1 = yt − ηty ∇yL(y

t ,wt+1, αt )
αt+1 = αt − ηtα ∇αL(u

t+1,wt+1, αt )

end

The fact that first-order DARTS has only used one of the
two data splits to train the weights, makes the training of
convolutional layers worse. For RARTS, wemake use of both
Lt and Lv to update the weight parameters w and y in the
first two steps of Eq. (7). In the third step of Eq. (7), both
Lt and Lv are also used to update the shared architecture α.
In this way, the architecture is learned better, as more data
are involved during training. If y = w is enforced in Eq.
(7) e.g. through a multiplier, RARTS essentially reduces to
first-orderMiLeNAS [15]. However, relaxing to y 6= w has its
advantages of having more generality and robustness as it is
optimized on two networks with different but related weights.
In contrast, MiLeNAS trains the network weigts on the
training data Dt only, and suffers from the same convergence
issue as first-order DARTS (Section III-D). We summarize
the RARTS algorithm in Algorithm 1.

C. CONVERGENCE ANALYSIS
Suppose that Lt and Lv both satisfy Lipschitz gradient
property, or there exist positive constants L1 and L2 such that
(z = (y, α), z′ = (y′, α′)):

‖∇zLv(z) −∇zLv(z′)‖ ≤ L1‖z− z′‖, ∀(z, z′),

which implies:

Lv(z)− Lv(z′) ≤ 〈∇zLv(z′), (z− z′)〉 +
L1
2
‖z− z′‖2,

for any (z, z′); similarly (ζ = (w, α), ζ ′ = (w′, α′)):

‖∇ζLt (ζ )−∇ζLt (ζ ′)‖ ≤ L2‖ζ − ζ ′‖, ∀(ζ, ζ ′),

which implies:

Lt (ζ )− Lt (ζ ′) ≤ 〈∇ζLt (ζ ′), (ζ − ζ ′)〉 +
L2
2
‖ζ − ζ ′‖2,

for any (ζ, ζ ′).
Theorem 1: Suppose that the loss functions Lt and Lv

satisfy Lipschitz gradient property. If the learning rates ηtw,
ηty and η

t
α are small enough depending only on the Lipschitz

constants as well as (λ, β), and approach nonzero limit at
large t, the Lagrangian function L(y,w, α) is descending
on the iterations of (7). If additionally the Lagrangian L
is lower bounded and coercive (its boundedness implies
that of its variables), the sequence (yt ,wt , αt ) converges
sub-sequentially to a critical point (ȳ, w̄, ᾱ) of L(y,w, α)
obeying the equilibrium equations:

λ ∇ wLt (w̄, ᾱ)+ β(w̄− ȳ) = 0,

∇ yLv(ȳ, ᾱ)+ β(ȳ− w̄) = 0,

λ ∇ αLt (w̄, ᾱ)+∇αLv(ȳ, ᾱ) = 0. (9)

If the loss is penalized by latency as in (5), the last equilibrium
equation becomes:

λ ∇ αLt (w̄, ᾱ)+∇αLv(ȳ, ᾱ)

+∇α〈Softmax(ᾱ),Lat〉 = 0. (10)

Proof: We only need to prove for the loss (5) and the
iterations (8), as the loss (4) is its special case when Lat =
0. We notice the latency penalty function 〈Softmax(αt ),Lat〉
also satisfies the Lipschitz gradient property. This is because

∇αSoftmax(αt ) = diag(Softmax(αt ))

−Softmax(αt )⊗ (Softmax(αt ))′,

and hence all the first and second derivatives of 〈Softmax
(αt ),Lat〉 are bounded uniformly regardless of αt . Applying
Lipschitz gradient inequalities on Lv and Lt , we have:

L(yt+1,wt+1, αt+1)− L(yt ,wt , αt )

= Lv(yt+1, αt+1)+ λLt (wt+1, αt+1)

+
β

2
‖yt+1 − wt+1‖2 + 〈Softmax(αt+1),Lat〉

−Lv(yt , αt )− λLt (wt , αt )−
β

2
‖yt − wt‖2

−〈Softmax(αt ),Lat〉

≤ 〈∇y,α Lv(yt , αt ), (yt+1 − yt , αt+1 − αt )〉

+
L1
2
‖(yt+1 − yt , αt+1 − αt )‖2

+ λ 〈∇w,α Lt (wt , αt ), (wt+1 − wt , αt+1 − αt )〉

+
L2
2
‖(wt+1 − wt , αt+1 − αt )‖2

+
β

2
(‖yt+1 − wt+1‖2 − ‖yt − wt‖2)

+〈∇α〈Softmax(αt ),Lat〉, αt+1 − αt )〉

+
L3
2
‖αt+1 − αt‖2.

Substituting for the (w, y)-gradients from the iterations (8),
we continue:

L(yt+1,wt+1, αt+1)− L(yt ,wt , αt )

≤ −(ηty)
−1

· 〈yt+1 − yt + β ηty (y
t
− wt+1), yt+1 − yt 〉

+ 〈∇αLv(yt , αt )+ λ∇αLt (wt , αt ), αt+1 − αt 〉

+ λ (−ληtw)
−1
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FIGURE 1. Learning trajectories of RARTS approach the global minimal point (1,1) of the solvable model at suitable values of λ, β and y0 (λ = 10 in
middle/right subplots, β = 10 in left/right subplots, y0 = 0 in left/middle subplots), compared with that of the baseline (first-order DARTS).

· 〈wt+1 − wt + β ηtw (w
t
− yt ),wt+1 − wt 〉

+
L1
2
‖yt+1 − yt‖2 +

L1 + L2 + L3
2

‖αt+1 − αt‖2

+
L2
2
‖wt+1 − wt‖2

+
β

2
(‖yt+1 − wt+1‖2 − ‖yt − wt‖2)

+〈∇α〈Softmax(αt ),Lat〉, αt+1 − αt )〉

= (−(ηty)
−1
+ L1/2) ‖yt+1 − yt‖2

+(−(ηtw)
−1
+ L2/2) ‖wt+1 − wt‖2

−β〈yt − wt+1, yt+1 − yt 〉

−β〈wt − yt ,wt+1 − wt 〉

+
β

2
(‖yt+1 − wt+1‖2 − ‖yt − wt‖2)

+〈∇αLv(yt , αt )+ λ∇αLt (wt , αt ), αt+1 − αt 〉

+
L1 + L2 + L3

2
‖αt+1 − αt‖2

+〈∇α〈Softmax(αt ),Lat〉, αt+1 − αt )〉. (11)

We note the following identity

‖yt+1 − wt+1‖2

= ‖yt+1 − wt + wt − wt+1‖2

= ‖yt+1 − wt‖2 + 2〈yt+1 − wt ,wt − wt+1〉

+ ‖wt − wt+1‖2,

where

‖yt+1 − wt‖2

= ‖ − wt + yt − yt + yt+1‖2

= ‖yt − wt‖2 + 2〈yt − wt , yt+1 − yt 〉 + ‖yt+1 − yt‖2.

Upon substitution of the above in the right hand side of (11),
we find that:

L(yt+1,wt+1, αt+1)− L(yt ,wt , αt )

≤ (−(ηty)
−1
+ L1/2+ β/2) ‖yt+1 − yt‖2

+(−(ηtw)
−1
+ L2/2

+β/2) ‖wt+1 − wt‖2

+β〈wt+1 − wt , yt+1 − yt 〉

+β〈yt+1 − yt ,wt − wt+1〉

+ 〈∇αLv(yt , αt )

+ λ∇αLt (wt , αt ), αt+1 − αt 〉

+
L1 + L2 + L3

2
‖αt+1 − αt‖2

+〈∇α〈Softmax(αt ),Lat〉, αt+1 − αt )〉.

The β-terms cancel out. Substituting for the α-gradient from
the iterations (8), we get:

L(yt+1,wt+1, αt+1)− L(yt ,wt , αt )

≤ (−(ηty)
−1
+ L1/2+ β/2) ‖yt+1 − yt‖2

+(−(ηtw)
−1
+ L2/2+ β/2) ‖wt+1 − wt‖2

+ (−(ηtα)
−1
+
L1 + L2 + L3

2
)‖αt+1 − αt‖2

+〈∇αLv(yt , αt )−∇αLv(yt+1, αt ), αt+1 − αt 〉

+ λ〈∇αLt (wt , αt )−∇αLt (wt+1, αt ), αt+1 − αt 〉

where the last two inner product terms are upper bounded by:

(1+ λ)L4 (‖yt − yt+1‖ + ‖wt − wt+1‖) ‖αt+1 − αt‖,

for positive constant L4 := max(L1,L2). It follows that:

L(yt+1,wt+1, αt+1)− L(yt ,wt , αt )

≤

[
−(ηty)

−1
+
L1
2
+
β

2
+(1+λ)

L4
2

]
‖yt+1 − yt‖2

+

[
−(ηtw)

−1
+
L2
2
+
β

2
+(1+λ)

L4
2

]
‖wt+1 − wt‖2

+

[
−(ηtα)

−1
+
L1 + L2 + L3

2
+(1+λ)

L4
2

]
· ‖αt+1 − αt‖2. (12)

If

ηty <
1
2

[
L1
2
+
β

2
+ (1+ λ)

L4
2

]−1
:= c1,

ηtw <
1
2

[
L2
2
+
β

2
+ (1+ λ)

L4
2

]−1
:= c2,

ηtα <
1
2

[
L1 + L2 + L3

2
+(1+λ)

L4
2

]−1
:= c3,
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L is descending along the sequence (yt ,wt , αt ). For c4 =
1
2 min{c−11 , c−12 , c−13 }, it follows from (12) that:

c4‖(yt+1 − yt ,wt+1 − wt , αt+1 − αt )‖2

≤ L(yt ,wt , αt )− L(yt+1,wt+1, αt+1)→ 0

as t →+∞, implying that

lim
t→∞
‖(yt+1 − yt ,wt+1 − wt , αt+1 − αt )‖ = 0.

Since L is lower bounded and coercive, ‖(yt ,wt , αt )‖ are
uniformly bounded in t . Let (ηtw, η

t
y, η

t
α) tend to non-zero

limit at large t . Then (yt ,wt , αt ) sub-sequentially converges
to a limit point (ȳ, w̄, ᾱ) satisfying the equilibrium system (9)
or (10). �

D. A SOLVABLE BILEVEL MODEL
We compare a few differentibale methods through an
example [14] which has an analytical solution. Regardless
of the latency penalty, we consider quadratic functions Lv =
α w−2α+1, Lt = w2

−2α w+α2 for the bilevel problem (1).
Therefore, the solution to the inner level problem is:

w∗(α) = argmin
w

Lt (w, α) = α.

Then Lv(w∗(α), α) = α2 − 2α + 1, and the global minimizer
of this bilevel problem is (w∗, α∗) = (1, 1). However, the
equilibrium equations of first-order DARTS is:

∇wLt (w̄, ᾱ) = 0

∇αLv(w̄, ᾱ) = 0,

which gives a spurious equilibrium (w̄, ᾱ) = (2, 2). The
equilibrium equations of first-order MiLeNAS is:

∇ wLt (w̄, ᾱ) = 0

∇ αLt (w̄, ᾱ)+ λ∇αLv(w̄, ᾱ) = 0,

which also results in the spurious equilibrium (w̄, ᾱ) = (2, 2).
On the other hand, RARTS can approximate the correct

minimizer (w∗, α∗) = (1, 1) better. Note that both Lv and
Lt satisfy the Lipschitz gradient property, which implies the
descent of Lagrangian L by the proof of Theorem 1. If λ >
1/2, β > 3/2, L is bounded and coercive, which follows from
an eigenvalue analysis of linear system (7) and is observed
in computation. Hence, Theorem 1 can be applied to this
example, and the equilibrium system (9) reads:

λ(2w̄− 2ᾱ)+ β(w̄− ȳ) = 0, (13)

ᾱ + β(ȳ− w̄) = 0, (14)

λ(−2w̄+ 2ᾱ)+ ȳ− 2 = 0. (15)

Adding (13) and (14) gives: w̄ = 2λ−1
2λ ᾱ, which together

with (15) determines (ᾱ, w̄, ȳ) uniquely: (ᾱ, w̄, ȳ) =

( 4βλ
4βλ−β−2λ ,

4βλ−2β
4βλ−β−2λ ,

4βλ−2β−4λ
4βλ−β−2λ ), if 4βλ − β − 2λ 6= 0.

At λ = β = 15, (ᾱ, w̄, ȳ) ≈ (1.053, 1.018, 0.947) where
global convergence holds for the whole RARTS sequence.The
learning dynamics starting from (α0,w0, y0) = (2,−2, y0),
is reproduced in Fig. 1, along with three learning curves from

RARTS as the parameters (λ, β) and the initial value y0 vary.
In Fig. 1a, β = 10, y0 = 0. In Fig. 1b, λ = 10, y0 = 0.
In Fig. 1c, λ = β = 10. In all experiments, the learning rates
are fixed at 0.01. For a range of (λ, β) and y0, we see that
our learning curves enter a small circle around (1, 1), while
first-order DARTS converges to the spurious point.

IV. EXPERIMENTS
We show by a series of experiments how RARTS works
efficiently for different tasks: the search for topology and the
search for width, on various datasets and search spaces.

A. SEARCH FOR TOPOLOGY
For the hyperparameters and settings like learning rate
schedules, number of epochs for CIFAR-10 and the trans-
fer learning technique for ImageNet, we follow those of
DARTS [14]. We also consider the results on CIFAR-10
and CIFAR-100 for NATS-Bench [30], which is another
benchmark search space.

1) COMPARISONS ON CIFAR-10
The CIFAR-10 dataset consists of 50,000 training images
and 10,000 test images [17]. These 3-channel images of
32× 32 resolutions are allocated to 10 object classes evenly.
For the architecture search task on CIFAR-10, the Dt and Dv
data we have used are random non-overlapping halves of the
original training data, the same as DARTS. The settings for
searching topology with RARTS follows those of DARTS.
That is, batch size = 64, initial weight learning rate =
0.025, momentum = 0.9, weight decay = 0.0003, initial
alpha learning rate = 0.0003, alpha weight decay = 0.001,
epochs = 50. For the stage of training, batch size = 96,
learning rate = 0.025, momentum = 0.9, weight decay =
0.0003 [14]. For each cell (either normal or reduction),
8 edges are selected, with 1 out of 8 candidate operations
selected for each edge (see Fig. 2). Besides the standard
`2 regularization of the weights, we also adopt the latency
penalty. The latency regularization loss is weighted so that it
is balanced with other loss terms. Typically, if we increase
the latency weight, the model we find will be smaller in
size. The latency term Lat for each operation is measured via
PyTorch/TensorRT [16], and thus it depends on the devices
we use. For the current search, the latency weight is 0.002 so
that the model size is comparable to those in prior works. The
final latency loss is the weighted sum of the latency from each
operation, where the weights are the architecture parameters.

As shown in Table 1, the search cost of RARTS is 1.1
GPU days, far less than that of the second-order DARTS.
The test error of RARTS is 2.65%, outperforming the 3.00%
of the first-order DARTS and the 2.76% of the second-
order DARTS. It should also be pointed out that the model
found by RARTS has 3.2M parameters, which is smaller
than the 3.3M model found by DARTS. Moreover, RARTS
outperforms other recent differentiable methods in accuracy
and search cost at comparable model size. We also notice
that the variance of RARTS performance is lower than that of
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TABLE 1. Comparison of DARTS, RARTS and other methods on CIFAR-10 based network search. DARTS-1/2 stands for DARTS 1st/2nd-order, SNAS-Mi/Mo
stands for SNAS plus mild/moderate constraints. Note that faster search times also depend on speed and memory capacity of local machines used. The
V100 column indicates whether the model is trained on high-end Tesla V100 GPUs or not. Each run of our experiment is conducted on a single GTX 1080 Ti
GPU. The numbers in the parentheses indicate the search GPU days of DARTS on our machine. Average of 5 runs. � These runs are conducted on our
machine.

TABLE 2. Comparison of the latency for the models found under different hyperparameters. The setting of batch size = 64, learning rate = 3× 10−4,
weight decay = 1× 10−3 is consistent with the settings of DARTS and other DARTS variants, and is selected to be our baseline setting.

DARTS. RARTS has also arrested architecture collapse and
only selected one skip-connection, as shown in Fig. 2. We are
aware that different values of hyperparameters in the RARTS
search stage may impact the latency of the models found by
RARTS. Table 2 has listed the latency of several models with
different hyperparameters. Here we use the baseline setting
of latency weight = 2 × 10−3, batch size = 64, learning
rate = 3 × 10−4, weight decay = 1 × 10−3. We change the
value of one hyperparameter and keep the others the same
during each experiment, so that we can see how sensitive
the resulting latency is to a specific hyperparameter. First,
the result shows that a small batch size of 16 can impact
the model’s latency, whereas a batch size of 32 or 64 can
lead to similar latency. This is a positive phenomenon, since
we prefer larger batch size as it requires less training time.
Among the other hyperparameters, it is clear that the only
factor that could cause a significant difference is the latency
weight. A latency weight of 2 × 10−2 is so large that its

model has only 60% latency compared with the baseline. The
model’s latency is not sensitive to the other hyperparameters,
as the latency is around 22.0, and varies within 10% only.
This finding is beneficial, since we can fix the latency level
via fixing the latency weight and find the model with the best
accuracy among the models of similar latency level via tuning
the other hyperparameters.

2) COMPARISONS ON ImageNet
ImageNet [28], [29] is composed of over 1.2 million training
images and 5,000 test images from 1,000 object classes. The
architecture which is built of the cells learned on CIFAR-10
is transferred to be learned on ImageNet-1000, producing the
results in Table 3. Even if our experiments are performed on a
GTX 1080 Ti whose maximum memory allows only a batch
size of 128, our 25.9% error rate outperforms those of DARTS
and SNAS (batch size 128), and is also comparable to those
of GDAS (batch size 128) and MiLeNAS. MiLeNAS among
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TABLE 3. Transfer to ImageNet: test error comparison of DARTS, RARTS and other methods on local machines resp. The V100 column indicates whether
the model is trained on high-end Tesla V100 GPUs or not. The larger GPU memory can support larger batch size, which leads to better accuracy and
training efficiency on ImageNet. The Direct column indicates if the model is searched directly on ImageNet without transfer-learning. The direct search
tends to be more accurate but costs more computational resources.

FIGURE 2. The architecture of the normal (top) and reduction (bottom)
cells found by RARTS. This architecture contains only one skip connection.
The last four edges are simply concatenated together to construct the
next cell. So there is no search along these edges, following the
convention of DARTS [14].

some other algorithms in Table 2 have been implemented
on Tesla V100 with batch size 1024, a much higher end
hardware than that in our experiments. This partly explains
its lower accuracy occurrence (2.80) on CIFAR-10 but higher
accuracy after transfer to ImageNet. Typically ImageNet is
trained better on larger GPU’s because of the larger batch size.
ProxylessNAS has obtained high accuracy on both CIFAR-10
and ImageNet, but their models are much larger than the
other methods. It has avoided transfer learning as the training
cost is reduced via path sampling. Inheriting the building
blocks from DARTS and ProxylessNAS, FairDARTS has
penalized the neutral (close to 0.5) architecture parameters,
but its high accuracy also benefits from the relaxation
on the search space. Their normal cells contain less than
8 operations since the operations with architecture parameters
lower than a preset threshold are eliminated. This explains
their smaller model size and comparable accuracy. P-DARTS
has devised a progressive method to increase the depth
of search. Their work shows that deeper cells have better
capability of representation, which is also an improvement
on the search space. PC-DARTS as a sampling method
has achieved the least searching cost and can be trained
directly on ImageNet. These methods are complemen-
tary to our work which is purely on the differentiable
search algorithm without modifying the search space of
DARTS.

TABLE 4. Test errors of DARTS vs. RARTS on NATS-Bench search space.
The results of DARTS on NATS-Bench are from [30]. Ratio = the number of
skip-connections over the number of total operations in the discovered
architecture.

3) COMPARISONS ON NATS-BENCH
For NATS-Bench, one has to search a block of 6 nodes from
the search space of 5 different operations, including zero,
skip-connection, 3× 3 average pooling, 1× 1 convolution or
3×3 convolution [30]. Therefore, it includes 15,625 different
candidate architectures and any DARTS style methods can be
adapted easily to its search space. NATS-Bench has measured
each architecture’s performance under the same training
settings, and hence fair comparisons can be made between
the discovered architectures since no further evaluation is
needed on the local machines. In our experiments, we set
batch size = 64, initial weight learning rate = 0.025,
momentum = 0.9, weight decay = 0.0005, initial alpha
learning rate= 0.0003, alpha weight decay= 0.001, number
of epochs = 100. Table 4 presents the search results of
DARTS vs. RARTS on NATS- Bench. RARTS has surpassed
both DARTS-1 and DARTS-2 in accuracy by more than
20% on CIFAR-10 and 6% on CIFAR-100. Besides its
success in accuracy, RARTS has totally escaped from the
architecture collapse issue, i. e., the architectures found
by RARTS from NATS-Bench contain no skip-connections.
On the contrary, both architectures found by DARTS-1 and
DARTS-2 contain 100% and 38.9% (average of 3 runs) skip-
connections on CIFAR-10 and CIFAR-100, respectively. It is
clear that too many skip-connections resulting in architec-
ture collapse will impact the performance of the models
greatly.
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B. SEARCH FOR WIDTH
To search the width of the architecture (number of channels
in convolutional layers), we follow the settings of Network
Slimming [21], by introducing scoring parameters α to
measure channel importance. Denote the original feature map
by Fi,j and define the new feature map F̃i,j = αi,j Fi,j, where
(i, j) are the layer and channel indices. Multiplying a channel
of output feature map by α is equivalent to multiplying the
convolutional kernels connecting to this output feature map
by the same α. We prune a channel if the corresponding
α is 0 or very small. The αij’s are learnable architecture
parameters independent of channel weights, and hence is
considered to have similar roles to the architecture parameters
in the case of searching topological architecture.

Although such treatment of scoring parameters is much
like that in Network Slimming [21], we point out that the
single level formulation of RARTS and the training algorithm
to learn those scoring parameters are novel. The first
difference is that Network Slimming trains both weight and
architecture parameters on the whole (training and validation)
data, unlike DARTS or RARTS, without using either dataset
splitting or network splitting. Another key difference between
RARTS pruning and Network Slimming is in the search
algorithm, i.e., Network Slimming trains the weights and the
architecture jointly in one step, while RARTS trains them
in a three-step iteration. Moreover, Network Slimming has
used batch normalization weights as the scoring parameters.
We point out that we could still define such a set of learnable
architecture parameters α, even if the batch normalization
operation is not contained in the architecture.

We also compare RARTS with TAS [20], which is another
width search method based on differentiable NAS, relying
on both continuous relaxation via feature maps of various
sizes andmodel distillation. The first difference is on how the
channel scoring parameters are applied to the feature maps.
For TAS, the channel parameters are treated as probabilities
of candidate feature maps, smoothed by Gumbel-Softmax.
Then a subset of feature maps is sampled to alleviate the high
memory costs. RARTS is much simpler in its formulation,
as it is a dot product of the channel parameters with the filter
to be pruned. The second key difference is the use of a training
technique called Knowledge Distillation (KD) [51] by TAS to
improve accuracy. There are some other NAS based methods
for width search, or channel pruning [37], [48] mentioned in
Section II-B. Noting that our formulation of the problem and
the criterion to evaluate results are different, we emphasize
that out progress is in fusion of a new search algorithm and
the width search task.

When using RARTS to search for width, we follow the
hyperparameters and settings of Network Slimming as well.
That is, learning rate= 0.1, weight decay= 0.0001, epochs=
160 [21]. In Table 5, RARTS outperforms the un-pruned
baseline, Network Slimming (NS) and TAS [20] by over 10%
error reduction on CIFAR-10. While TAS does not offer an
option to specify the pruning ratio of channels (PRC), the
pruning ratio of FLOPs is around 30% for NS (40% PRC),

TABLE 5. Application of RARTS to ResNet-164 (baseline, 1.7 M
parameters) channel pruning on CIFAR-10 and CIFAR-100, in comparison
with the baseline, TAS and network slimming. the numbers in the
parentheses indicate the pruning ratio of channels (PRC). For NS and
RARTS, PRC is fixed at 40% or 60%. NS = network slimming.

TABLE 6. Application of RARTS to mobileNetV2 pruning on the
ImageNet-R dataset (a randomly sampled subset of ImageNet-1000, with
20 object classes), compared with the baseline, random pruning, 1st and
2nd-order DARTS. Here random pruning means that we zero out channels
randomly in accordance with the pruning ratio of RARTS. Average of
5 runs. PRC = the average pruning ratio of channels over the pruned
layers. We note that the PRC can be high because the dataset is much
smaller.

RARTS (40% PRC) and TAS. So the comparison is fair.
On CIFAR-100, RARTS still leads NS at the same PRC.
The gap is smaller as the baseline network is less redundant.
Our experimental results reveal that the accuracy of TAS
with KD is lower than (on CIFAR-10) or similar to (on
CIFAR-100) that of RARTS, while TAS without the training
technique like KD is 2% worse [20]. This supports the fact
that RARTSworks better as a differentiable method for width
search, without regard to any other training tricks. Apart from
the comparisons with the above methods, we also consider
a pruning task for comparing DARTS and RARTS, which
can be viewed as an ablation study of RARTS on the width
search task. For this task, we prune MobileNetV2 [52] on a
randomly sampled 20-class subset of ImageNet-1000, with
`1 regularization but unfixed pruning ratio. The pruning ratio
can be learned automatically by the strong regularization
term, as many of the architecture parameters are simply zero.
Table 6 shows that RARTS also beats both random pruning
and DARTS in accuracy. Even though the 2nd DARTS
obtains a higher sparsity, it sacrifices the accuracy.

V. CONCLUSION
We have developed RARTS, a novel relaxed differentiable
method for neural architecture search. We have proved
its convergence theorem and compared it with DARTS
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on an analytically solvable model. Thanks to the design
of data and network splitting, RARTS has achieved high
accuracy and search efficiency over the state-of-the-art
differentiable methods, especially DARTS, with a wide range
of experiments, including both topology search and width
search. These results support RARTS to be a more reliable
and robust differentiable neural architecture search tool for
various datasets and search spaces. In future work, we plan
to incorporate search space sampling and regularization
techniques to accelerate RARTS (as seen in several recent
variants of DARTS) for broader applications in deep learning.
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