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Abstract

Quantized or low-bit neural networks are attractive due to their inference efficiency.
However, training deep neural networks with quantized activations involves
minimizing a discontinuous and piecewise constant loss function. Such a loss function
has zero gradient almost everywhere (a.e.), which makes the conventional
gradient-based algorithms inapplicable. To this end, we study a novel class of biased
first-order oracle, termed coarse gradient, for overcoming the vanished gradient issue.
A coarse gradient is generated by replacing the a.e. zero derivative of quantized (i.e.,
staircase) ReLU activation composited in the chain rule with some heuristic proxy
derivative called straight-through estimator (STE). Although having been widely used in
training quantized networks empirically, fundamental questions like when and why the
ad hoc STE trick works, still lack theoretical understanding. In this paper, we propose a
class of STEs with certain monotonicity and consider their applications to the training of
a two-linear-layer network with quantized activation functions for nonlinear
multi-category classification. We establish performance guarantees for the proposed
STEs by showing that the corresponding coarse gradient methods converge to the
global minimum, which leads to a perfect classification. Lastly, we present experimental
results on synthetic data as well as MNIST dataset to verify our theoretical findings and
demonstrate the effectiveness of our proposed STEs.

Keywords: Quantized neural networks, Nonlinear classification, Coarse gradient
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1 Introduction
Deep neural networks (DNNs) have been the main driving force for the recent wave in
artificial intelligence (AI). They have achieved remarkable success in a number of domains
including computer vision [14,19], reinforcement learning [18,23] and natural language
processing [4], to name a few. However, due to the huge number of model parameters, the
deployment of DNNs can be computationally and memory intensive. As such, it remains
a great challenge to deploy DNNs on mobile electronics with low computational budget
and limited memory storage.
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Recent efforts have been made to the quantization of weights and activations of DNNs
while in the hope of maintaining the accuracy. More specifically, quantization techniques
constrain the weights or/and activation values to low-precision arithmetic (e.g., 4-bit)
instead of using the conventional floating-point (32-bit) representation [2,12,17,31–33].
In this way, the inference of quantized DNNs translates to hardware-friendly low-bit
computations rather than floating-point operations. That being said, quantization brings
three critical benefits for AI systems: energy efficiency, memory savings and inference
acceleration.
The approximation power of weight quantized DNNs was investigated in [6,8], while

the recent paper [22] studies the approximation power of DNNs with discretized activa-
tions. On the computational side, training quantized DNNs typically calls for solving a
large-scale optimization problem, yet with extra computational and mathematical chal-
lenges. Although people often quantize both the weights and activations of DNNs, they
can be viewed as two relatively independent subproblems. Weight quantization basi-
cally introduces an additional set constraint that characterizes the quantized model
parameters, which can be efficiently carried out by projected gradient-type methods
[5,10,15,16,28,30]. Activation quantization (i.e., quantizing ReLU), on the other hand,
involves a staircase activation function with zero derivative almost everywhere (a.e.) in
place of the subdifferentiable ReLU. Therefore, the resulting composite loss function is
piecewise constant and cannot be minimized via the (stochastic) gradient method due to
the vanished gradient.
To overcome this issue, a simple and hardware-friendly approach is to use a straight-

through estimator (STE) [1,9,26]. More precisely, one can replace the a.e. zero derivative
of quantized ReLU with an ad hoc surrogate in the backward pass, while keeping the
original quantized function during the forward pass. Mathematically, STE gives rise to
a biased first-order oracle computed by an unusual chain rule. This first-order oracle is
not the gradient of the original loss function because there exists a mismatch between the
forward and backward passes. Throughout this paper, this STE-induced type of “gradient”
is called coarse gradient.While coarse gradient is not the true gradient, in practice it works
as it miraculously points toward a descent direction (see [26] for a thorough study in the
regression setting). Moreover, coarse gradient has the same computational complexity as
standard gradient. Just like the standard gradient descent, the minimization procedure of
training activation quantized networks simply proceeds by repeatedly moving one step at
current point in the opposite of coarse gradient with some step size. The performance of
the resulting coarse gradient method, e.g., convergence property, naturally relies on the
choice of STE. How to choose a proper STE so that the resulting training algorithm is
provably convergent is still poorly understood, especially in the nonlinear classification
setting.

1.1 Related works

The idea of STE dated back to the classical perceptron algorithm [20,21] for binary clas-
sification. Specifically, the perceptron algorithm attempts to solve the empirical risk min-
imization problem:

minw

N∑

i=1
(sign(x�

i w) − yi)2, (1.1)
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where (xi, yi) is the ith training sample with yi ∈ {±1} being a binary label; for a given
input xi, the single-layer perceptron model with weights w outputs the class prediction
sign(x�

i w). To train perceptrons, Rosenblatt [20] proposed the following iteration for
solving (1.1) with the step size η > 0:

wt+1 = wt − η

N∑

i=1
(sign(x�

i wt ) − yi) · xi (1.2)

We note that the above perceptron algorithm is not the same as gradient descent algo-
rithm. Assuming the differentiability, the standard chain rule computes the gradient of
the ith sample loss function by

(sign(x�
i wt ) − yi) · (sign)′(x�

i wt ) · xi. (1.3)

Comparing (1.3) with (1.2), we observe that the perceptron algorithm essentially uses a
coarse (and fake) gradient as if (sign)′ composited in the chain rule was the derivative of
identity function being the constant 1.
The idea of STE was extended to train deep networks with binary activations [9]. Suc-

cessful experimental results have demonstrated the effectiveness of the empirical STE
approach. For example, [1] proposed a STE variant which uses the derivative of sigmoid
function instead of identity function. [11] used the derivative of hard tanh function, i.e.,
1{|x|≤1}, as an STE in training binarized neural networks. To achieve less accuracy degra-
dation, STE was later employed to train DNNs with quantized activations at higher bit-
widths [2,3,12,29,32], where some other STEs were proposed including the derivatives
of standard ReLU (max{x, 0}) and clipped ReLU (min{max{x, 0}, 1}).
Regarding the theoretical justification, it has been established that the perceptron algo-

rithm in (1.2) with identity STE converges and perfectly classifies linearly separable data;
see, for example, [7,25] and references therein. Apart from that, to our knowledge, there
had been almost no theoretical justification of STE until recently: [26] considered a two-
linear-layer network with binary activation for regression problems. The training data
are assumed to be instead linearly non-separable, being generated by some underlying
model with true parameters. In this setting, [26] proved that the working STE is actually
non-unique and that the coarse gradient algorithm is descent and converges to a valid
critical point if choosing the STE to be the proxy derivative of either ReLU (i.e., max{x, 0})
or clipped ReLU function (i.e., min{max{x, 0}, 1}). Moreover, they proved that the iden-
tity STE fails to give a convergent algorithm for learning two-layer networks, although it
works for single-layer perception.

1.2 Main contributions

Figure 1 shows examples of 1-bit (binary) and 2-bit (ternary) activations. We see that a
quantized activation function zeros out any negative input, while being increasing on the
positive half. Intuitively, a working surrogate of the quantized function used in backward
pass should also enjoy this monotonicity, as conjectured by [26] which proved the effec-
tiveness of coarse gradient for two specific STEs: derivatives of ReLU and clipped ReLU,
and for binarized activation. In this work, we take a further step toward understanding
the convergence of coarse gradient methods for training networks with general quantized
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Fig. 1 Quantized activation functions. τ is a value determined in the network training; see Sect. 8.2

Table 1 Frequently used notations

Symbols Definitions

[n] {1, 2, . . . , n}
1S (x) Indicator function which takes value 1 for x ∈ S and 0 for x /∈ S
|x| �2-norm of vector x
|W | The column-wise �2-norm sum for a matrixW . ForW :=[w1 , . . . ,wk ], |W | =∑k

j=1 |wj |
Hd d-dimensional Hausdorff measure

x̃ The unit vector in the direction of x, i.e., x̃:= x
|x| . Additionally, 0̃:=0.

σ Quantized ReLU function

�W {x ∈ X : l(W ; {x, y}) > 0}
�a

v {x ∈ X : 〈v, x〉 > a}
�W j �W ∩ �0

wj

activations and for classification of linearly non-separable data. A major analytical chal-
lenge we face here is that the network loss function is not in closed analytical form, in sharp
contrast to [26]. We present more general results to provide meaningful guidance on how
to choose STE in activation quantization. Specifically, we study multi-category classifica-
tion of linearly non-separable data by a two-linear-layer networkwithmulti-bit activations
and hinge loss function. We establish the convergence of coarse gradient methods for a
broad class of surrogate functions. More precisely, if a function g : R → R satisfies the
following properties:

• g(x) = 0 for all x ≤ 0,
• g ′(x) ≥ δ > 0 for all x > 0 with some constant δ,

then with proper learning rate, the corresponding coarse gradient method converges and
perfectly classifies the nonlinear data when g ′ serves as the STE during the backward pass.
This gives the affirmation of a conjecture in [26] regarding good choices of STE for a
classification (rather than regression) task under weaker data assumptions, e.g., allowing
non-Gaussian distributions.

1.3 Notations

We have Table 1 for notations used in this paper.
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2 Problem setup
2.1 Data assumptions

In this section, we consider the n-ary classification problem in the d-dimensional space
X = R

d . LetY = [n] be the set of labels, and for i ∈ [n] letDi be probabilistic distributions
over X × Y . Throughout this paper, we make the following assumptions on the data:

1. (Separability)There are n orthogonal subspacesVi ⊆ X , i ∈ [n] where dimVi = di,
such that

P{x,y}∼Di

[x ∈ Vi and y = i
] = 1, for all i ∈ [n].

2. (Boundedness of data) There exist positive constantsm andM, such that

P{x,y}∼Di
[m < |x| < M] = 1, for all i ∈ [n].

3. (Boundedness of p.d.f.) For i ∈ [n], let pi be the marginal probability distribution
function ofDi on Vi. For any x ∈ Vi withm < |x| < M, it holds that

0 < pi(x) < pmax < ∞.

Later on, we denoteD to be the evenly mixed distribution ofDi for i ∈ [n].

Remark 1 The orthogonality of subspaces Vi ’s in the data assumption (1) above is tech-
nically needed for our proof here. However, the convergence in Theorem 3.1 to a perfect
classification with random initialization is observed in more general settings when Vi ’s
form acute angles and contain a certain level of noise. We refer to Sect. 8.1 for supporting
experimental results.

Remark 2 Assumption (3) can be relaxed to the following, while the proof remains basi-
cally the same.
Di is a mixture of ni distributions, namely Di,j for j ∈ [ni]. There exists a linear decom-

position of Vi = ⊕ni
j=1 Vi,j and Di,j ; each has a marginal probability distribution function

pi,j on Vi,j . For any x ∈ Vi,j and < m < |x| < M, it holds that

0 < pi,j(x) ≤ pmax < ∞.

2.2 Network architecture

We consider a two-layer neural architecture with k hidden neurons. Denote by W =
[w1, . . . ,wk ] ∈ R

d×k the weight matrix in the hidden layer. Let

hj = 〈wj , x
〉

the input to the activation function, or the so-called pre-activation. Throughout this
paper, we make the following assumptions:

Assumption 1 Theweightmatrix in the second layerV = [v1, . . . , vn] is fixed and known
in the training process and satisfies:

1. For any i ∈ [n], there exists some j ∈ [k] such that vi,j > 0.
2. If vi,j > 0, then for any r ∈ [n] and r �= i, we have vr,j = 0.
3. For any i ∈ [n] and j ∈ [k], we have vi,j < 1.

One can easily show that as long as k ≥ n, such a matrix V = (vi,j) is ubiquitous.
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For any input data x ∈ X = R
d , the neural net output is

f (W ; x) = [o1, . . . , on], (2.1)

where

oi = 〈vi, σ (h)〉 =
k∑

j=1
vi,jσ (hj).

The σ (·) is the quantized ReLU function acting element-wise; see Fig. 1, for example,
of binary and ternary activation functions. More general quantized ReLU function of the
bit-width b can be defined as follows:

σ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x ≤ 0,

ceil(x) if 0 < x < 2b − 1,

2b − 1 if x ≥ 2b − 1.

The prediction is given by the network output label

ŷ(W , x) = argmax
r∈[n]

or ,

ideally ŷ(x) = i for all x ∈ Vi. The classification accuracy in percentage is the frequency
that this event occurs (when network output label ŷmatches the true label) on a validation
data set.
Given the data sample {x, y}, the associated hinge loss function reads

l(W ; {x, y}) := max
{
0, 1 − fy

}
:= max

{
0, 1 −

(
oy − max

i �=y
oi
)}

. (2.2)

To train the network with quantized activation σ , we consider the following population
loss minimization problem

min
W∈Rd×k

l (W ) := E{x,y}∼D

[
l (W ; {x, y})] , (2.3)

where the sample loss l (W ; {x, y}) is defined in (2.2). Let li be the population loss function
of class i with the label y = i, i ∈ [n]. More precisely,

li(W ) = E{x,y}∼Di

[
max

{
0, 1 − fi

}]

= E{x,y}∼Di

[
max

{
0, 1 −

(
oi − max

r �=i
or
)}]

.

Thus, we can rewrite the loss function as

l(W ) = 1
n

n∑

i=1
li(W ).

Note that the population loss

li(W ) = E{x,y}∼Di

[
l(W ; {x, y})]

fails tohave simple closed-formsolution even ifpi are constant functions on their supports.
We do not have closed-form formula at hand to analyze the learning process, whichmakes
our analysis challenging.
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For notational convenience, we define:

�W = {x ∈ X : l(W ; {x, y}) > 0
}
,

�a
v = {x ∈ X : 〈v, x〉 > a} ,

and

�
j
W = �W ∩ �0

wj .

2.3 Coarse gradient methods

We see that derivative of quantized ReLU function σ is a.e. zero, which gives a trivial
gradient of sample loss function with respect to (w.r.t.) wj . Indeed, differentiating the
sample loss function with respect to wj , we have

∇wj l(W ; {x, y}) = − (vy,j − vξ ,j
)
1�W (x) σ ′ (hj

) x = 0, a.e., 1 ≤ j ≤ k

where ξ = argmaxi �=y oi.
Thepartial coarse gradientw.r.t.wj associatedwith the sample {x, y} is givenby replacing

σ ′ with a straight-through estimator (STE) which is the derivative of function g , namely

∇̃wj l(W ; {x, y}) := − (vy,j − vξ ,j
)
1�W (x) g ′(hj)x. (2.4)

The sample coarse gradient ∇̃l(W ; {x, y}) is just the concatenation of ∇̃wj l(W ; {x, y})’s. It
is worth noting that coarse gradient is not an actual gradient, but some biased first-order
oracle which depends on the choice of g .
Throughout this paper, we consider a class of surrogate functions during the back-

ward pass with the following properties:

Assumption 2 g : R → R satisfies

1. g(x) = 0 for all x ≤ 0.
2. g ′(x) ∈ [δ, δ̃] for all x > 0 with some constants 0 < δ < δ̃ < ∞.

Such a g is ubiquitous in quantized deep networks training; see Fig. 2, for example, of g(x)
satisfying Assumption 2. Typical examples include the classical ReLU g(x) = max(x, 0)
and log-tailed ReLU [2]:

g(x) =

⎧
⎪⎨

⎪⎩

0 if x ≤ 0,
x if 0 < x ≤ qb,
qb + log(x − qb + 1) if x > qb,

where qb := 2b − 1 is the maximum quantization level. In addition, if the input of the
activation function is bounded by a constant, one also can use g(x) = max{0, qb(1 −
e−x/qb )}, which we call reverse exponential STE.
To train the network with quantized activation σ , we use the expectation of coarse

gradient over training samples:

∇̃l(W ) := E{x,y}∼D
∇̃l(W ; {x, y}),

where ∇̃l(W ; {x, y}) is given by (2.4). In this paper, we study the convergence of coarse
gradient algorithm for solving the minimization problem (2.3), which takes the following
iteration with some learning rate η > 0:

W t+1 = W t − η ∇̃l(W t ). (2.5)
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Fig. 2 Different choices of g(x) for the straight-through estimator

3 Main result and outline of proof
We show that if the iterates {W t} are uniformly bounded in t, coarse gradient decent
with the proxy function g under Assumption 2 converges to a global minimizer of the
population loss, resulting in a perfect classification.

Theorem 3.1 Suppose data assumptions (1)–(3) and STE Assumptions 1–2 hold. If the
network initialization satisfies w0

j,i �= 0 for all j ∈ [k] and i ∈ [n] and W t is uniformly
bounded by R in t, then for all vi,j > 0 we have

lim
t→∞

∣∣∣∇̃wj li(W t )
∣∣∣ = 0.

Furthermore, ifW∞ is an accumulation point of {W t} and all nonzero unit vectors w̃∞
j,i ’s

are distinct for all j ∈ [k] and i ∈ [n], then

P{x,y}∼D

(
ŷ
(W∞, x) �= y

) = 0.

We outline the major steps in the proof below.
Step 1: Decompose the population loss into n components. Recall the definition

of li which is population loss functions for {x, y} ∼ Di. In Sect. 4, we show under cer-
tain decomposition of W , the coarse gradient decent of each one of them only affects a
corresponding component ofW .
Step 2: Bound the total increment of weight norm from above. Show that for all

vi,j > 0, |wj,i|’s are monotonically increasing under coarse gradient descent. Based on
boundedness on W , we further give an upper bound on the total increment of all |wj|’s,
from which the convergence of coarse gradient descent follows.
Step 3: Show that when the coarse gradient vanishes, so does the population loss.

In Sect. 6, we show that when the coarse gradient vanishes toward the end of training, the
population loss is zero which implies a perfect classification.

4 Space decomposition
With V = ⊕n

i=1 Vi, we have the orthogonal complement of V in X = R
d , namely Vn+1.

Now, we can decompose X = R
d into n + 1 linearly independent parts:

R
d = V

⊕
Vn+1 =

n+1⊕

i=1
Vi
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and for any vector wj ∈ R
d , we have a unique decomposition of wj :

wj =
n+1∑

i=1
wj,i,

where wj,i ∈ Vi for i ∈ [n + 1]. To simply notation, we let

W i = [w1,i , . . . ,wk,i
]
.

Lemma 4.1 For anyW ∈ R
k×d and i ∈ [n], we have

li (W ) = li

( n∑

r=1
W r

)
= li(W i).

Proof Note that for any x ∈ Vi and j ∈ [k], we have x ∈ V , so
〈wj,n+1, x

〉 = 0

and

hj = 〈wj , x
〉 =
〈 k∑

j=1
wj,i, x

〉
= 〈wj,i, x

〉
.

Hence,

f (W ; x) = f

⎛

⎝
k∑

j=1
W i; x

⎞

⎠ = f (W i)

for allW ∈ R
d×k , x ∈ Vi. The desired result follows. ��

Lemma 4.2 Running the algorithm (2.5) on li only does not change the value ofW r for all
r �= i. More precisely, for anyW ∈ R

d×k , let

W ′ = W − η∇̃li(W ),

then for any r ∈ [n] and r �= i

W ′
r = W r .

Proof of Lemma 4.2 Assume i, r ∈ [n] and i �= r. Note that

w′
j = wj − η∇̃wj li(W )

and

∇̃wj li(W ) = − E{x,y}∼Di

[(
vy,j − vξ ,j

)
1�W (x) g ′(hj)x

] ∈ Vi.

Since Vi ’s are linearly independent, we have

w′
j,i = wj,i − η∇̃wj li(W )

and

w′
j,r = wj,r .

��
By the above result, we know (2.5) is equivalent to

W t+1
i = W t

i − η

n
∇̃li
(W t) . (4.1)
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5 Learning dynamics
In this section, we show that some components of the weight iterates have strictly increas-
ing magnitude whenever coarse gradient does not vanish, and it quantifies the increment
during each iteration.

Lemma 5.1 Assume

v̂j = max
i1 ,i2∈[n]

vi1 ,j − vi2 ,j ,

we have the following estimate:

P{x,y}∼Di

(
�

j
W

)
≥ 1

v̂j δ̃M

∣∣∣∇̃wj li (W )
∣∣∣ .

Proof of Lemma 5.1

∣∣∣∇̃wj li(W )
∣∣∣ =
∣∣∣∣ E{x,y}∼Di

[(
vy,j − vξ ,j

)
1�W (x) g ′(hj)x

]∣∣∣∣

≤v̂j δ̃M E{x,y}∼Di

[
1

�
j
W
(x)
]

=v̂j δ̃M P{x,y}∼Di

(
�

j
W
)

��

Lemma 5.2 For any j ∈ [k], if

ṽi,j := vi,j − max
r �=i

vr,j > 0

we have
〈
w̃j,i,−∇̃wj li(W )

〉
≥ ṽi,jδ

2Cp
P{x,y}∼Di

(
�

j
W

)2
,

where

Cp = max
v∈Vi,a∈R

∫

〈v,x〉=a
pi(x) dHdi−1(x).

Proof of Lemma 5.2 First, we prove an inequality which will be used later. Recall that
|x| ≤ M, and that ∇̃wj l(W , {x, y}) �= 0 only when x ∈ �

j
W . Hence, we have

〈w̃j,i, x
〉
> 0.

We have

P{x,y}∼Di

(
�

j
W ∩ {x :

〈w̃j,i, x
〉
< t
}) =

∫

�
j
W
1{〈w̃j,i ,x〉<t}(x)pi(x) d x

=
∫ t

0

∫

〈w̃j,i ,x〉=s
pi(x) dHdi−1(x) d s

≤t Cp.

Now, we use Fubini’s theorem to simplify the inner product:
〈
w̃j,i,−∇̃wj li(W )

〉
= E{x,y}∼Di

[(
vy,j − vξ ,j

)
1

�
j
W
(x) g ′(hj) 〈w̃j,i, x〉

]

≥ṽi,j δ
∫

�
j
W ∩Vi

〈w̃j,i, x〉pi(x) d x
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=ṽi,j δ
∫

�
j
W ∩Vi

∫ ∞

0
1{〈w̃j,i ,x〉>t} d t pi(x) d x

=ṽi,j δ
∫ ∞

0

∫

�
j
W ∩Vi

1{〈w̃j,i ,x〉>t} pi(x) d x d t

=ṽi,j δ
∫ ∞

0
P{x,y}∼Di

(
�

j
W ∩ {x : 〈w̃j,i, x〉 > t

})
d t.

Now, using the inequality just proved above, we have

P{x,y}∼Di

(
�

j
W ∩ {x : 〈w̃j,i, x〉 > t

})

= P{x,y}∼Di

(
�

j
W
)

− P{x,y}∼Di

(
�

j
W ∩ {x : 〈w̃j,i, x〉 < t

})

≥max
{

P{x,y}∼Di

(
�

j
W
)

− t Cp, 0
}
.

Combining the above two inequalities, we have

〈
w̃j,i,−∇̃wj li(W )

〉
≥ṽi,j δ

∫ ∞

0
max

{
P{x,y}∼Di

(
�

j
W
)

− t Cp, 0
}

d t

≥ ṽi,j δ
2Cp

P{x,y}∼Di

(
�

j
W
)2

.

��

Lemma 5.3 If ṽi,j > 0 in Lemma 5.2, then {|wt
j,i|} in Eq. (2.1) is non-decreasing with coarse

gradient decent (2.5). Moreover, under the same assumption, we have
∣∣∣wt+1

j,i

∣∣∣−
∣∣∣wt

j,i

∣∣∣ ≥ ηṽi,jδ
2nCpv̂2j δ̃2M2

∣∣∣∇̃wj li(W t )
∣∣∣
2
,

where Cp is defined as in Lemma 5.2 and v̂j as in Lemma 5.1.

Proof of Lemma 5.3 Since wt+1
j,i = wt

j,i − η
n ∇̃wj li(W t ), we have

∣∣∣wt+1
j,i

∣∣∣−
∣∣∣wt

j,i

∣∣∣ ≥
〈
wt+1
j,i − wt

j,i, w̃t
j,i

〉
=
〈
−η

n
∇̃wj li(W t ), w̃t

j,i

〉
.

Hence, it follows from Lemmas 5.1 and 5.2 that

∣∣∣wt+1
j,i

∣∣∣−
∣∣∣wt

j,i

∣∣∣ ≥ ηṽi,jδ
2nCpv̂2j δ̃2M2

∣∣∣∇̃wj li(W t )
∣∣∣
2
, (5.1)

which is the desired result. ��

Note that one component of wj is increasing but the weights are bounded by assumption,
hence, summation of the increments over all steps should also be bounded. This gives the
following proposition:

Proposition 1 Assume {|wt
j |} is bounded by R, then if ṽi,j > 0 in Lemma 5.2, then

∞∑

t=1

∣∣∣∇̃wj li(W t )
∣∣∣
2 ≤ 2nCpv̂2j δ̃

2M2R
ηṽi,jδ

< ∞,
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where Cp is as defined in Lemma 5.2 and v̂j defined in Lemma 5.1. This implies that

lim
t→∞

∣∣∣∇̃wj li(W t )
∣∣∣ = 0

as long as ṽi,j > 0.

Remark 3 Lemmas 5.1, 5.2, 5.3 and Proposition 1 were proved without Assumption 1.
Under Assumption 1, we have v̂j = maxi∈[n] vi,j in Lemma 5.1 and ṽi,j = v̂j if vi,j > 0 and
ṽi,j = −v̂j if vi,j = 0 in Lemma 5.2.

6 Landscape properties
Wehave shown that under boundedness assumptions, the algorithmwill converge to some
point where the coarse gradient vanishes. However, this does not immediately indicate
the convergence to a valid point because coarse gradient is a fake gradient. We will need
the following lemma to prove Proposition 2, which confirms that the points with zero
coarse gradient are indeed global minima.

Lemma 6.1 Let � = {x ∈ R
l : m < |x| < M

}
, where 0 < m < M < ∞. For j ∈ [k], let

�j = {x : 〈wj , x〉 > a
}
, where a ≥ 0 and�i �= �j for all i �= j. If for i ∈ [k] and x ∈ �i ∩�,

there exists some j �= i such that x ∈ �j , then
(

k∪
j=1

�j

)
∩ � = ∅ or �.

Proof (Proof of Lemma 6.1) Define �̃ =⋃k
j=1 �j , by De Morgan’s law, we have

�̃c =
(

k∪
j=1

�j

)c
= k∩

j=1
�c

j .

Note that k is finite and 0 ∈ �c
j for all j ∈ [k], we know �̃c is a generalized polyhedron

and hence either
(
∂�̃
) ∩ � = ∅

or

Hl−1 ((∂�̃
) ∩ �

)
> 0.

The first case is trivial. We show that the second case contradicts our assumption. Note
that

∂�̃ = ∂

(
k∪

j=1
�j

)
⊆ k∪

j=1
∂�j ,

we know there exists some j
 ∈ [k] such that Hl−1 (∂�j
 ∩ �
)

> 0. It follows from our
assumption that �̃ = ∪k

j=1 �j = ∪j �=j
 �j , and hence,

Hl−1 (∂�j
 ∩ ∂�j
)

> 0.

Note that ∂�j ’s are hyperplanes. Therefore, �j = �j
 , contradicting with our assumption
that all �j ’s are distinct. ��

The following result shows that the coarse gradient vanishes only at a global minimizer
with zero loss, except for some degenerate cases.
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Proposition 2 Under Assumption 1, if ∇̃wj li(W ) = 0 for all ṽi,j > 0 and w̃j,i ’s are distinct,
then li(W ) = 0.

Proof of Proposition 2 For quantized ReLU function, let qb := max
x∈R σ (x) be the maximum

quantization level, so that

σ (x) =
qb−1∑

a=0
1{x>a}(x).

Note that

fi (W ; x) = oi − oξ =
k∑

j=1

(
vi,j − vξ ,j

)
σ (hj) =

k∑

j=1

(
vi,j − vξ ,j

) qb∑

a=0
1�awj

(x).

By assumption, ∇̃wj li(W ) = 0 for all ṽi,j > 0 which implies 1�W (x)1�awj
(x) = 0 for all

ṽi,j > 0 and a ∈ [n] almost surely. Now, for any x ∈ �a
wj we have x /∈ �W . Note that

x ∈ �W if and only if oi − oξ ≥ 1, then for any x ∈ �a
wj , since vi,j − vξ ,j < 1, there exist

j′ �= j and a′ ∈ [n] such that vi,j′ > 0 and x ∈ �a′
wj′ . By Lemma 6.1, P{x,y}∼Di [�W ] = 0 is

empty, and thus, li(W ) = 0. ��

The following lemma shows that the expected coarse gradient is continuous except at
wj,i = 0 for some j ∈ [k].

Lemma 6.2 Consider the network in (2.1). ∇̃wj li(W ) is continuous on
{
W ∈ R

k×d : |wj,i| > 0 for all j ∈ [k], i ∈ [n]
}
.

Proof of Lemma 6.2 It suffices to prove the result for j ∈ [k]. Note that

∇̃wj li(W ) = E{x,y}∼Di

[− (vy,j − vξ ,j
)
1�W (x) g ′(hj)x

]

For anyW 0 satisfying our assumption, we know

lim
W→W 0

1�W (x)g ′(hj) = 1�W 0 (x)g ′(h0j ), a.e.

The desired result follows from the dominant convergence theorem. ��

7 Proof of main results
Equipped with the technical lemmas, we present:

Proof of Theorem 3.1 It is easily noticed from Assumption 1 that vi,j > 0 if and only if
ṽi,j > 0. By Lemma 5.3, if vi,j > 0 and |w0

j,i| > 0, then |wt
j,i| > 0 for all t. Since W is

randomly initialized, we can ignore the possibility that w0
j,i = 0 for some j ∈ [k] and

i ∈ [n]. Moreover, Proposition 1 and Eq. (2.5) imply for all vi,j > 0

lim
t→∞

∣∣∣∇̃wj li(W t )
∣∣∣ = 0.

SupposeW∞ is an accumulation point andw∞
j,r �= 0 for all j ∈ [k] and r ∈ [n], we know

for all vi,j > 0

∇̃wj li
(W∞) = 0.
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Next, we consider the case when wj,r = 0 for some j ∈ [k] and r ∈ [n]. Lemma 5.2
implies vr,j = 0. We construct a new sequence

ŵt
j,r =

⎧
⎨

⎩
wt
j,r if w∞

j,r �= 0,

0 if w∞
j,r = 0,

and

Ŵ t
r = [ŵt

1,r , . . . , ŵt
k,r
]
.

With

ôr =
k∑

j=1
vr,jσ (ĥj) =

k∑

j=1
vr,jσ

(〈ŵj,r , x
〉)
,

we know ôr = or for all r ∈ [n]. Hence, we have

l
(
Ŵ t , {x, i}

)
= ReLU

(
1 − ôi + ôξ

) = l
(W t , {x, i}) .

This implies that �Ŵ t = �W t , so we have for all j ∈ [k],
∣∣∣
〈
∇̃wj li(Ŵ

t
1), w̃t

j,i

〉∣∣∣ ≤
∣∣∣
〈
∇̃wj li(W t

i ), w̃t
j,i

〉∣∣∣ ≤
∣∣∣∇̃wj li(W t

i )
∣∣∣ .

Letting t go to infinity on both side, we get
∣∣∣
〈
∇̃wj li(Ŵ

∞), w̃∞
j,i

〉∣∣∣ = 0.

By Lemmas 5.1 and 5.2, we know

∇̃wj li(W∞) = ∇̃wj li(W∞
i ) = 0,

so ∇̃W li(W∞) = 0. By Proposition 2, li(W t ) = 0, which completes the proof. ��

8 Experiments
In this section, we conduct experiments on both synthetic and MNIST data to verify and
complement our theoretical findings. Experiments on larger networks and data sets will
left for a future work.

8.1 Synthetic data

Let {e1, e2, e3, e4} be orthonormal basis of R4, θ be an acute angle and v1 = e1, v2 =
sin θ e2 + cos θ e3, v3 = e3, v4 = e4. Now, we have two linearly independent subspaces
of R4, namely V1 = Span ({v1, v2}) and V2 = Span ({v3, v4}). We can easily calculate that
the angle between V1 and V2 is θ . Next, with

Sr =
{

j
10

: j ∈ [20] − [9]
}
, Sϕ =

{
jπ
40

: j ∈ [80]
}
,

we define

X̂1 = {r (cosϕ v1 + sin ϕ v2) : r ∈ Sr ,ϕ ∈ Sϕ

}

and

X̂2 = {r (cosϕ v3 + sin ϕ v4) : r ∈ Sr ,ϕ ∈ Sϕ

}
.

Let D̂i beuniformdistributedon X̂i×{i} and D̂ be amixtureof D̂1 and D̂2. Let X̂ = X̂1∪X̂2.
The activation function σ is 4-bit quantized ReLU:

σ (x) =

⎧
⎪⎨

⎪⎩

0 if x < 0,
ceil(x) if 0 ≤ x < 15,
15 if x ≥ 15.
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Fig. 3 Left: Iterations to convergence v.s. θ , Right: Norm of weights v.s. θ

For simplicity, we take k = 24 and vi,j = 1
2 if j − 12(i − 1) ∈ [12] for i ∈ [2] and j ∈ [24]

and 0 otherwise. Now, our neural network becomes

fi = (−1)i−1

2

⎡

⎣
12∑

j=1
σ (hj) −

12∑

j=1
σ (hj+12)

⎤

⎦

where hj = 〈wj , x〉 and x ∈ R
4. The population loss is given by

l(W ) = E{x,y}∼D̂
[
l(W ; {x, y})] = E

{x,y}∼D̂

[
max

{
1 − fi

}]
.

We choose the ReLU STE (i.e., g(x) = max{0, x}) and use the coarse gradient

∇̃W l(W ) = E
{x,y}∼D̂

[∇̃W l (W , {x, y})]

= 1
|X̂ |

⎡

⎣
∑

x∈X̂1

∇̃W l (W ; {x, 1}) +
∑

x∈X̂2

∇̃W l (W ; {x, 2})
⎤

⎦ .

Taking learning rate η = 1, Eq. 2.5 becomes

W t+1 = W t − ∇̃W l
(W t) .

We find that the coarse gradient method converges to a global minimumwith zero loss.
As shown in box plots of Fig. 3, the convergence still holds when the subspaces V1 and
V2 form an acute angle, and even when the data come from two levels of Gaussian noise
perturbations ofV1 andV2. The convergence is faster andwith a smaller weight normwhen
θ increases toward π

2 or V2 are orthogonal to each other. This observation clearly supports
the robustness of Theorem 1 beyond the regime of orthogonal classes.

8.2 MNIST experiments

Our theoryworks for a board range of STEs, while their empirical performances on deeper
networks may differ. In this subsection, we compare the performances of the three types
of STEs in Fig. 2.
As in [2], we resort to a modified batch normalization layer [13] and add it before each

activation layer. As such, the inputs to quantized activation layers always follow unitGaus-
sian distribution. Then, the scaling factor τ applied to the output of quantized activation
layers can be pre-computed via k-means approach and get fixed during the whole training
process. The optimizer we use to train quantized LeNet-5 is the (stochastic) coarse gra-
dient method with momentum = 0.9. The batch size is 64, and learning rate is initialized
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Fig. 4 Validation accuracies in training LeNet-5 with quantized (2-bit and 4-bit) ReLU activation

Fig. 5 2D projections of MNIST features from a trained convolutional neural network [24] with quantized
activation function. The 10 classes are color coded, and the feature points cluster near linearly independent
subspaces

to be 0.1 and then decays by a factor of 10 after every 20 epochs. The three backward
pass substitutions g for the straight-through estimator are (1) ReLU g(x) = max{x, 0}, (2)
reverse exponential g(x) = max{0, qb(1− e−x/qb )} and (3) log-tailed ReLU. The validation
accuracy for each epoch is shown in Fig. 4. The validation accuracies at bit-widths 2 and
4 are listed in Table 2. Our results show that these STEs all perform very well and give
satisfactory accuracy. Specifically, reverse exponential and log-tailed STEs are compara-
ble, both of which are slightly better than ReLU STE. In Fig. 5, we show 2D projections of
MNIST features at the end of 100 epoch training of a 7 layer convolutional neural network
[24] with quantized activation. The features are extracted from input to the last fully con-
nected layer. The data points cluster near linearly independent subspaces. Together with
Sect. 8.1, we have numerical evidence that the linearly independent subspace data struc-
ture (working as an extension of subspace orthogonality) occurs for high-level features in
a deep network for a nearly perfect classification, rendering support to the realism of our
theoretical study. Enlarging angles between linear subspaces can improve classification
accuracy, see [27] for such an effort on MNIST and CIFAR-10 data sets via linear feature
transform.
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Table 2 Validation accuracy (%) on MNIST with LeNet-5

g(x) Bit-width (b) Valid. accuracy

32 99.45

ReLU 2 99.10

4 99.38

Reverse exp. 2 99.17

4 99.46

Log-tailed ReLU 2 99.24

4 99.36

Fig. 6 CIFAR-10 experiments for VGG-11 and ResNet-20: weight �2-norm vs epoch

8.3 CIFAR-10 experiments

In this experiment, we train VGG-11/ResNet-20 with 4-bit activation function on CIFAR-
10 data set to numerically validate the boundedness assumption upon the �2-norm of
weight. The optimizer is momentum SGD with no weight decay. We used initial learning
rate = 0.1, with a decay factor of 0.1 at the 80-th and 140-th epoch.
We see from Fig. 6 that the �2 norm of weights is bounded during the training process.

This figure also shows that the norm of weights is generally increasing in epochs which
coincides with our theoretical finding shown in Lemma 5.3.

9 Summary
We studied a novel and important biased first-order oracle, called coarse gradient, in
training quantized neural networks. The effectiveness of coarse gradient relies on the
choice of STE used in backward pass only. We proved the convergence of coarse gradient
methods for a class of STEs bearing certain monotonicity in nonlinear classification using
one-hidden-layer networks. In experiments on LeNet andMNIST data set, we considered
three different proxy functions satisfying the monotonicity condition for backward pass:
ReLU, reverse exponential function and log-tailed ReLU for training LeNet-5 with quan-
tized activations. All of them exhibited good performance which verified our theoretical
findings. In future work, we plan to expand theoretical understanding of coarse gradient
descent for deep activation quantized networks.
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