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Sparsification of neural networks is one of the effective complexity reduction methods

to improve efficiency and generalizability. Binarized activation offers an additional

computational saving for inference. Due to vanishing gradient issue in training networks

with binarized activation, coarse gradient (a.k.a. straight through estimator) is adopted in

practice. In this paper, we study the problem of coarse gradient descent (CGD) learning of

a one hidden layer convolutional neural network (CNN) with binarized activation function

and sparse weights. It is known that when the input data is Gaussian distributed,

no-overlap one hidden layer CNN with ReLU activation and general weight can be

learned by GD in polynomial time at high probability in regression problems with ground

truth. We propose a relaxed variable splitting method integrating thresholding and coarse

gradient descent. The sparsity in network weight is realized through thresholding during

the CGD training process. We prove that under thresholding of ℓ1, ℓ0, and transformed-ℓ1
penalties, no-overlap binary activation CNN can be learned with high probability, and the

iterative weights converge to a global limit which is a transformation of the true weight

under a novel sparsifying operation. We found explicit error estimates of sparse weights

from the true weights.

Keywords: sparsification, 1-bit activation, regularization, convergence, coarse gradient descent

1. INTRODUCTION

Deep neural networks (DNN) have achieved state-of-the-art performance on many machine
learning tasks such as speech recognition [1], computer vision [2], and natural language processing
[3]. Training such networks is a problem of minimizing a high-dimensional non-convex and
non-smooth objective function, and is often solved by first-order methods such as stochastic
gradient descent (SGD). Nevertheless, the success of neural network training remains to be
understood from a theoretical perspective. Progress has been made in simplified model problems.
Blum and Rivest [4] showed that even training a three-node neural network is NP-hard, and Shamir
[5] showed learning a simple one-layer fully connected neural network is hard for some specific
input distributions. Recently, several works [6, 7] focused on the geometric properties of loss
functions, which is made possible by assuming that the input data distribution is Gaussian. They
showed that SGD with random or zero initialization is able to train a no-overlap neural network in
polynomial time.
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Another prominent issue is that DNNs contain millions of
parameters and lots of redundancies, potentially causing over-
fitting and poor generalization [8] besides spending unnecessary
computational resources. One way to reduce complexity is
to sparsify the network weights using an empirical technique
called pruning [9] so that the non-essential ones are zeroed
out with minimal loss of performance [10–12]. Recently a
surrogate ℓ0 regularization approach based on a continuous
relaxation of Bernoulli random variables in the distribution sense
is introduced with encouraging results on small size image data
sets [13]. This motivated our work here to study deterministic
regularization of ℓ0 via its Moreau envelope and related ℓ1
penalties in a one hidden layer convolutional neural network
model [7]. Moreover, we consider binarized activation which
further reduces computational costs [14].

The architecture of the network is illustrated in Figure 1

similar to Brutzkus and Globerson [7]. We consider the
convolutional setting in which a sparse filter w ∈ R

d is shared
among different hidden nodes. The input sample is Z ∈ R

k×d.
Note that this is identical to the one layer non-overlapping case
where the input is x ∈ R

k×d with k non-overlapping patches,
each of size d. We also assume that the vectors of Z are i.i.d.
Gaussian random vectors with zeromean and unit variance. Let G
denote this distribution. Finally, let σ denote the binarized ReLU
activation function, σ (z) : = χ{z>0} which equals 1 if z > 0, and
0 otherwise. The output of the network in Figure 1 is given by:

h(w,Z) = 1Tσ (Zw). (1)

We address the realizable case, where the response training data
is mapped from the input training data Z by Equation (1) with
a ground truth unit weight vector w∗. The input training data
is generated by sampling m training points Z

1, ..,Zm from a
Gaussian distribution. The learning problem seeksw to minimize
the empirical risk function:

l(w,Z) : = 1

m

m
∑

j=1
(h(w,Zj)− h(w∗,Zj))2 (2)

Due to binarized activation, the gradient of l in w is almost
everywhere zero, hence in-effective for descent. Instead, an
approximate gradient on the coarse scale, the so called coarse
gradient (denoted as ∇̃wl) is adopted as proxy and is proved to
drive the iterations to global minimum [14].

In the limit m ↑ ∞, the empirical risk l converges to the
population risk:

f (w) : = EZ∼G
[

(h(w,Z)− h(w∗,Z))2
]

(3)

which is more regular in w than l. However, the “true gradient”
∇wf is inaccessible in practice. On the other hand, the coarse
gradient ∇̃w l in the limit m ↑ ∞ forms an acute angle with the
true gradient [14]. Hence the expected coarse gradient descent
(CGD) essentially minimizes the population risk f as desired.

Our task is to sparsify w in CGD. We note that the
iterative thresholding algorithms (IT) are commonly used for

FIGURE 1 | The architecture of a no-overlap neural network.

retrieving sparse signals [[15–19] and references therein]. In
high dimensional setting, IT algorithms provide simplicity and
low computational cost, while also promote sparsity of the
target vector. We shall investigate the convergence of CGD with
simultaneous thresholding for the following objective function

φ(w) = f (w)+ λP(w) (4)

where f (w) is the population loss function of the network, and P
is ℓ0, ℓ1, or the transformed-ℓ1 (Tℓ1) function: a one parameter
family of bilinear transformations composed with the absolute
value function [20, 21]. When acting on vectors, the Tℓ1 penalty
interpolates ℓ0 and ℓ1 with thresholding in closed analytical form
for any parameter value [19]. The ℓ1 thresholding function is
known as soft-thresholding [15, 22], and that of ℓ0 the hard-
thresholding [17, 18]. The thresholding part should be properly
integrated with CGD to be applicable for learning CNNs. As
pointed out in Louizos et al. [13], it is beneficial to attain sparsity
during the optimization (training) process.

1.1. Contribution
We propose a Relaxed Variable Splitting (RVS) approach
combining thresholding and CGD for minimizing the following
augmented objective function

Lβ (u,w) = f (w)+ λP(u)+ β

2
‖w − u‖2

for a positive parameter β . We note in passing that minimizing
Lβ in u recovers the original objective (4) with penalty P replaced
by its Moreau envelope [23]. We shall prove that our algorithm
(RVSCGD), alternately minimizing u and w, converges for ℓ0, ℓ1,
and Tℓ1 penalties to a global limit (w̄, ū) with high probability.
A key estimate is the Lipschitz inequality of the expected coarse
gradient (Lemma 4). Then the descent of Lagrangian function (9)
and the angles between the iterated w and w

∗ follows. The w̄ is
a novel shrinkage of the true weight w∗ up to a scalar multiple.
The ū is a sparse approximation of w∗. To our best knowledge,
this result is the first to establish the convergence of CGD for sparse
weight binarized activation networks. In numerical experiments,
we observed that the ū limit of RVSCGD with the ℓ0 penalty
recovers sparse w∗ accurately.
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1.2. Outline
In section 2, we briefly overview related mathematical results
in the study of neural networks and complexity reduction.
Preliminaries are in section 3. In section 4, we state and discuss
the main results. The proofs of the main results are in section 5,
and conclusion in section 6.

2. RELATED WORK

In recent years, significant progress has been made in the study
of convergence in neural network training. From a theoretical
point of view, optimizing (training) neural network is a non-
convex non-smooth optimization problem. Blum and Rivest
[4], Livni et al. [24], Shalev-Shwartz et al. and [25] showed
that training a neural network is hard in the worst cases.
Shamir [5] showed that if either the target function or input
distribution is “nice,” optimization algorithms used in practice
can succeed. Optimization methods in deep neural networks
are often categorized into (stochastic) gradient descent methods
and others.

Stochastic gradient descent methods were first proposed
by Robbins and Monro [26]. The popular back-propagation
algorithm was introduced in Rumelhart et al. [27]. Since then,
many well-known SGD methods with adaptive learning rates
were proposed and applied in practice, such as the Polyak
momentum [28], AdaGrad [29], RMSProp [30], Adam [31], and
AMSGrad [32].

The behavior of gradient descent methods in neural networks
is better understood when the input has Gaussian distribution.
Tian [6] showed that the population gradient descent can
recover the true weight vector with random initialization
for one-layer one-neuron model. Brutzkus and Globerson [7]
proved that a convolution filter with non-overlapping input
can be learned in polynomial time. Du et al. [33] showed
(stochastic) gradient descent with random initialization can
learn the convolutional filter in polynomial time and the
convergence rate depends on the smoothness of the input
distribution and the closeness of patches. Du et al. [34] analyzed
the polynomial convergence guarantee of randomly initialized
gradient descent algorithm for learning a one-hidden-layer
convolutional neural network. A hybrid projected SGD (so
called BinaryConnect) is widely used for training various weight
quantized DNNs [35, 36]. Recently, a Moreau envelope based
relaxation method (BinaryRelax) is proposed and analyzed to
advance weight quantization in DNN training [37]. Also a
blended coarse gradient descent method [14] is introduced
to train fully quantized DNNs in weights and activation
functions, and overcome vanishing gradients. For earlier work on
coarse gradient (a.k.a. straight through estimator) (see [38–40]
among others).

Non-SGD methods for deep learning include the Alternating
Direction Method of Multipliers (ADMM) to transform a fully-
connected neural network into an equality-constrained problem
[41]; method of auxiliary coordinates (MAC) to replace a nested
neural network with a constrained problem without nesting [42].
Zhang et al. [43] handled deep supervised hashing problem by an
ADMM algorithm to overcome vanishing gradients.

For a similar model to (9) and treatment in a general context
(see [44]); and in image processing (see [45]).

3. PRELIMINARIES

3.1. The One-Layer Non-overlap Network
Consider the network introduced in Figure 1. Let σ denote the
binarized ReLU activation function, σ (z) : = χ{z>0}. The training
sample loss is

l(w,Z) : = 1

2
(1Tσ (Zw)− 1Tσ (Zw∗))2, (5)

where w∗ ∈ R
d is the underlying (non-zero) teaching parameter.

Note that (5) is invariant under scaling w → w/c, w∗ → w
∗/c,

for any scalar c > 0. Without loss of generality, we assume
‖w∗‖ = 1. Given independent training samples {Z1, ...,ZN}, the
associated empirical risk minimization reads

min
w∈Rd

1

N

N
∑

i=1
l(w,Zi). (6)

The empirical risk function in (6) is piece-wise constant and
has i.e., zero partial w gradient. If σ were differentiable, then
back-propagation would rely on:

∂ l

∂w
(w,Z) = Z

Tσ ′(Zw)(σ (Zw)− σ (Zw∗)). (7)

However, σ has zero derivative i.e., rendering (7) inapplicable.
We study the coarse gradient descent with σ ′ in (7) replaced by
the (sub)derivative µ′ of the regular ReLU function µ(x) : =
max(x, 0). More precisely, we use the following surrogate of
∂ l
∂w

(w,Z):

g(w,Z) =
√

2

π
Z
Tµ′(Zw)(σ (Zw)− σ (Zw∗)) (8)

with µ′(x) = σ (x). The constant
√

2
π

represents a ReLU

function µ with smaller slope, and will be necessary to give a
stronger convergence result for our main findings. To simplify
our analysis, we let N ↑ ∞ in (6), so that its coarse
gradient approaches EZ[g(w,Z)]. The following lemma asserts
that EZ[g(w,Z)] has positive correlation with the true gradient
∇f (w), and consequently, −EZ[g(w,Z)] gives a reasonable
descent direction.

Lemma 1. [14] If θ(w,w∗) ∈ (0,π), and ‖w‖ 6= 0, then the inner
product between the expected coarse and true gradient w.r.t. w is

〈

EZ[g(w,Z)],∇f (w)
〉

= sin(θ(w,w∗))

4π2‖w‖ k2 ≥ 0.

3.2. The Relaxed Variable Splitting Coarse
Gradient Descent Method
Suppose we want to train the network in a way that wt converges
to a limit w̄ in some neighborhood of w∗, and we also want
to promote sparsity in the limit w̄. A classical approach is to
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minimize the Lagrangian: φ(w) = f (w)+λ‖w‖1, for some λ > 0.
In practice, the ℓ1 penalty can also be replaced by ℓ0 or Tℓ1.
Our proposed relaxed variable splitting (RVS) proceeds by first
extending φ into a function of two variables f (w) + λ‖u‖1, and
consider the augmented Lagrangian:

Lβ (u,w) = f (w)+ λ ‖u‖1 +
β

2
‖w − u‖2 (9)

Let Sα be the soft thresholding operator, Sα(x) =
sgn(x)max{|x| − α, 0}. The resulting RSVCGD method is
described in Algorithm 1:

Algorithm 1: RVSCGD Algorithm

1: Input:The step size η, parameters λ,β
2: Initialize: u1,w1

3: for t = 1, 2, . . . ,T do

4: u
t+1 ← argminu Lβ (w

t , u) = Sλ/β (w
t)

5: ŵ
t+1 ← w

t − ηEZ[ g(w
t ,Z)]− ηβ(wt − u

t+1)

6: w
t+1 = ŵ

t+1

‖ŵt+1‖
7: Output: ut ,wt

3.3. Comparison With ADMM
A well-known, modern method to solve the minimization
problem φ(w) = f (w) + λ‖w‖1 is the Alternating Direction
Method of Multipliers (or ADMM). In ADMM, we consider the
Lagrangian

Lβ (w, u, z) = f (w)+ λ‖u‖1 + 〈z,w − u〉 + β

2
‖w − u‖2. (10)

and apply the updates:











w
t+1 ← argminw Lβ (w, u

t , zt)

u
t+1 ← argminu Lβ (w

t+1, u, zt)

z
t+1 ← z

t + β(wt+1 − u
t+1)

(11)

Although widely used in practice, the ADMMmethod has several
drawbacks when it comes to regularizing deep neural networks:
Firstly, the ℓ1 penalty is often replaced by ℓ0 in practice; but
‖·‖0 is non-differentiable and non-convex, thus current theory in
optimization does not apply [46]. Secondly, the update wt+1 ←
argminw Lβ (w

t+1, u, zt) is not applicable in practice on DNN, as
it requires one to know fully how f (w) behaves. In most ADMM
adaptations on DNN, this step is replaced by a simple gradient
descent. Lastly, the Lagrange multiplier zt tends to reduce the
sparsity of the limit of ut , as it seeks to close the gap between w

t

and u
t .

In contrast, the RVSCGDmethod resolves all these difficulties
presented by ADMM. Firstly, without the linear term 〈z,w − u〉,
one has an explicit formula for the update of u, which can be
easily implemented. Secondly, the update of wt is not an argmin
update, but rather a gradient descent iteration itself, so our theory
does not deviate from practice. Lastly, without the Lagrange

multiplier term z
t , there will be a gap between w

t and u
t at the

limit. The u
t is much more sparse than in the case of ADMM,

and numerical results showed that f (wt) and f (ut) behave very
similarly on deep networks. An intuitive explanation for this is
that when the dimension of wt is high, most of its components
that will be pruned off to get ut have very small magnitudes, and
are often the redundant weights.

In short, the RVSCGD method is easier to implement (no
need to keep track of the variable z

t), can greatly increase
sparsity in the weight variable ut , while alsomaintaining the same
performance as the ADMM method. Moreover, RVSCGD has
convergence guarantee and limit characterization as stated below.

4. MAIN RESULTS

Theorem 1. Suppose that the initialization and penalty
parameters of the RVSCGD algorithm satisfy:
(i) θ(w0,w∗) ≤ π − δ, for some δ > 0;

(ii) β ≤ k sin δ

2
√
2π

, and λ < k

2
√
2πd

;

(iii) η is small such η ≤ min
{

1
β+L ,

2
√
2π
k

}

, where L

is the Lipschitz constant in Lemma 4; and for all t,
η ‖EZ[g(w

t ,Z)]+ β (wt − u
t+1)‖ ≤ 1

2 .
Then the Lagrangian Lβ (u

t ,wt) decreases monotonically; and
(ut ,wt) converges sub-sequentially to a limit point (ū, w̄), with
ū = Sλ/β (w̄), such that:
(i) Let θ : = θ(w̄,w∗) and γ : = θ(ū, w̄), then θ < δ;
(ii) The limit point (ū, w̄) satisfies ū = Sλ/β (w̄) and

w
∗ = 2

√
2π

k
β(w̄ − Sλ/β (w̄))+ Cw̄ (12)

where Sλ/β (·) is the soft-thresholding operator of ℓ1, for some

constant C ≥ k−2λ
√
2πd

k
;

(iii) The limit point w̄ is close to the ground truth w∗ such that

‖w∗ − w̄ ‖ ≤ 4
√
2πβ sin γ

k
. (13)

Remark 1. As the sign of (w̄ − Sλ/β (w̄)) agrees with w̄, Equation
(12) implies that w∗ equals an expansion of C w̄ or equivalently w̄
is (up to a scalar multiple) a shrinkage of w∗, which explains the
source of sparsity in w̄. The assumption on η is reasonable, as will
be shown below: ‖EZ[g(w

t ,Z)]‖ is bounded away from zero, and
thus ‖EZ[g(w

t ,Z)]+ β(wt − u
t+1)‖ is also bounded.

The proof is provided in details in section 5. Here we provide
an overview of the key steps. First, we show that there exists a
constant Lf such that

‖∇f (wt+1)− ∇f (wt)‖ ≤ Lf ‖wt+1 − w
t‖

thenwe show that the Lipschitz gradient property still holds when
replaced by the coarse gradient:

‖EZ[g(w
t+1,Z)]− EZ[g(w

t ,Z)]‖ ≤ K‖wt+1 − w
t‖
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and subsequently show

f (w2)− f (w1) ≤ 〈EZ[g(w1,Z)],w2 − w1〉 +
L

2
‖w2 − w1‖2.

These inequalities hold when ‖wt‖ ≥ M, for someM > 0. It can
be shown that with bad initialization, one may have ‖wt‖ → 0 as
t → ∞. We circumvent this problem by normalizing wt at each
iteration.
Next, we show the iterations satisfy θ t+1 ≤ θ t , and
Lβ (u

t+1,wt+1) ≤ Lβ (u
t ,wt). Finally, an analysis of the

stationary point yields the desired bound.
In none of these steps do we use convexity of the ℓ1 penalty
term. Here we extend our result to ℓ0 and transformed ℓ1 (Tℓ1)
regularization [21].

Corollary 1.1. Suppose that the initialization of the RVSCGD
algorithm satisfies the conditions in Theorem 1, and that the ℓ1
penalty is replaced by ℓ0 or Tℓ1. Then the RVSCGD iterations
converge to a limit point (ū, w̄) satisfying Equation (12) with ℓ0’s
hard thresholding operator [18] or Tℓ1 thresholding [19] replacing
Sλ/β , and similar bound (13) holds.

5. PROOF OF MAIN RESULTS

The following Lemmas give an outline for the proof of
Theorem 1.

Lemma 2. If every entry of Z is i.i.d. sampled from
N (0, 1), ‖w∗‖ = 1, and ‖w‖ 6= 0, then the true gradient of
the population loss f (w) is

∇f (w) = −k
2π‖w‖

(

I− ww
T

‖w‖2
)

w
∗

∥

∥

∥

(

I− wwT

‖w‖2
)

w∗
∥

∥

∥

, (14)

for θ(w,w∗) ∈ (0,π); and the expected coarse gradient w.r.t. w is

EZ[g(w,Z)] =
k

π





w

‖w‖ − cos

(

θ(w,w∗)

2

) w

‖w‖ + w
∗

∥

∥

∥

w

‖w‖ + w∗
∥

∥

∥





(15)

Lemma 3. (Properties of true gradient)
Given w1,w2 with min{‖w1‖, ‖w2‖} = c > 0 and
max{‖w1‖, ‖w2‖} = C, there exists a constant Lf > 0 depends
on c and C such that

‖∇f (w1)− ∇f (w2)‖ ≤ Lf ‖w1 − w2‖

Moreover, we have

f (w2) ≤ f (w1)+ 〈∇f (w1),w2 − w1〉 +
Lf

2
‖w2 − w1‖2.

Lemma 4. (Properties of expected coarse gradient)
Ifw1,w2 satisfy

1
2 ≤ ‖w1‖, ‖w2‖ ≤ 3

2 , and θ(w1,w
∗), θ(w2,w

∗) ∈
(0,π), then there exists a constant K such that

‖EZ[g(w1,Z)]− EZ[g(w2,Z)]‖ ≤ K‖w1 − w2‖ (16)

Moreover, there exists a constant L such that

f (w2)− f (w1) ≤ 〈EZ[g(w1,Z)],w2 − w1〉 +
L

2
‖w2 − w1‖2.

(17)

Remark 2. The condition 1
2 ≤ ‖w1‖, ‖w2‖ ≤ 3

2 in Lemma 4 is to
match the RVSCGD algorithm and to give an explicit value for K.
The result still holds in general when 0 < c ≤ ‖w1‖, ‖w2‖ ≤ C.
Compared to Lemma 3, when c = 1

2 and C = 1
2 , one has

Lf = 4
√
k

π
, which is a sharper bound than K = k√

2π
in the coarse

gradient case.

Lemma 5. (Angle Descent)
Let θ t : = θ(wt ,w∗). Suppose the initialization of the RVSCGD

algorithm satisfies θ0 ≤ π − δ and β ≤ k sin δ

2
√
2π

, then θ t+1 ≤ θ t .

Lemma 6. (Lagrangian Descent)
Suppose the initialization of the RVSCGD algorithm satisfies
η ≤ 1

β+L , where L is the Lipschitz constant in Lemma 4, then

Lβ (u
t+1,wt+1) ≤ Lβ (u

t ,wt).

Lemma 7. (Properties of limit point)
Suppose the initialization of the RVSCGD algorithm satisfies:

θ(w0,w∗) ≤ π − δ, for some δ > 0, λ is small such that
2
√
2π
k

λ
√
d < 1, and η is small such that η k

2
√
2π

< 1. Let θ : =
θ(w̄,w∗) and γ : = θ(ū, w̄), then (ut ,wt) converges to a limit point
(ū, w̄) such that

θ < δ and ‖w∗ − w̄‖ ≤ 4
√
2πβ sin γ

k
.

Lemmas 2, 3 follow directly from Yin et al. [14]. The proof of
Lemmas 4, 5, 6, 7 are provided below.

5.1. Proof of Lemma 4
First suppose ‖w1‖ = ‖w2‖ = 1. By Lemma 2, we have

EZ[g(wj,Z)] =
k

π

[

wj − cos

(

θ(wj,w
∗)

2

)

wj + w
∗

∥

∥wj + w∗
∥

∥

]

for j = 1, 2. Consider the plane formed by wj and w
∗, since

‖w∗‖ = 1, we have an equilateral triangle formed by wj and w
∗

(see Figure 2).
Simple geometry shows

cos

(

θ(wj,w
∗)

2

)

=
1
2‖wj + w

∗‖
‖w∗‖ = 1

2
‖wj + w

∗‖

Thus the expected coarse gradient simplifies to

EZ[g(wj,Z)] =
k

π

[

wj −
wj + w

∗

2

]

= k

2π
wj −

k

2π
w
∗ (18)

which implies

‖EZ[g(w1,Z)]− EZ[g(w2,Z)]‖ ≤ K‖w1 − w2‖ (19)
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FIGURE 2 | Geometry of wt and w
∗ when ‖wt‖ = ‖w∗‖ = 1.

with K = k
2π .

Now suppose 1
2 ≤ ‖w1‖, ‖w2‖ ≤ 3

2 . By Equation (15), we have
EZ[g(w,Z)] = EZ[g(

w

C ,Z)], for all C > 0. Then,

‖EZ[g(w1,Z)]− EZ[g(w2,Z)]‖

=
∥

∥

∥

∥

EZ

[

g

(

w1

‖w1‖
,Z

)]

− EZ

[

g

(

w2

‖w2‖
,Z

)]∥

∥

∥

∥

≤K ′
∥

∥

∥

∥

w1

‖w1‖
− w2

‖w2‖

∥

∥

∥

∥

≤2K ′‖w1 − w2‖

where the first inequality follows from (19), and the second
inequality is from the constraint 1

2 ≤ ‖w1‖, ‖w2‖ ≤ 3
2 , with

equality when ‖w1‖ = ‖w2‖ = 1
2 . Letting K = 2K ′ = k

π
, the

first claim is proved.
It remains to show the gradient descent inequality. By Yin et al.

[14], we have

f (w) = 1

8

[

1T(I + 11T)1− 21T
((

1− 2

π
θ(w,w∗)

)

I + 11T
)

1

+ 1T(I + 11T)1

]

Let θ1 = θ(w1,w
∗), θ2 = θ(w2,w

∗). Then

f (w2)− f (w1) =
1

4

[

1T
((

2

π
θ2 −

2

π
θ1

)

I

)

1

]

= k

2π
(θ2 − θ1)

We will show

f (w2)− f (w1) ≤ 〈EZ[g(w1,Z)],w2 − w1〉 + L‖w2 − w1‖2

for ‖w1‖ = ‖w2‖ = 1 and θ2 ≤ θ1. By Equation (18),

EZ[g(w1,Z)] =
k

2π

(

w1 − w
∗)

It remains to show

k

2π
(θ2 − θ1) ≤

〈

k

2π

(

w1 − w
∗) ,w2 − w1

〉

+ L‖w2 − w1‖2

or there exists a constant K1 such that

θ2 − θ1 ≤ 〈w1 − w
∗,w2 − w1〉 + K1‖w2 − w1‖2

Notice that by writing K1 = 1
2 + K2, we have

〈w1 − w
∗,w2 − w1〉 + K1‖w2 − w1‖2

=〈w1 − w
∗,w2 − w1〉 + K1〈w2 − w1,w2 − w1〉

=〈w1 − w
∗,w2 − w1〉 +

1

2
〈w2 − w1,w2 − w1〉 + K2‖w2 − w1‖2

=〈1
2
w1 +

1

2
w2 − w

∗,w2 − w1〉 + K2‖w2 − w1‖2

=〈−w∗,w2 − w1〉 +
1

2
〈w1 + w2,w2 − w1〉 + K2‖w2 − w1‖2

=〈−w∗,w2 − w1〉 + K2‖w2 − w1‖2

where the last equality follows since ‖w1‖ = ‖w2‖ = 1 implies
〈w1 + w2,w2 − w1〉 = 0. On the other hand,

〈−w∗,w2 − w1〉
= −‖w∗‖‖w2‖ cos θ2 + ‖w∗‖‖w1‖ cos θ1 = cos θ1 − cos θ2

so it suffices to show there exists a constant K2 such that

θ2 + cos θ2 − θ1 − cos θ1 ≤ K2‖w2 − w1‖2

Notice the function θ 7→ θ+cos θ is monotonically increasing on
[0,π]. For θ1, θ2 ∈ [0,π] with θ2 ≤ θ1, the LHS is non-positive,
and the inequality holds. Thus, one can take K2 = 0,K1 = 1

2 , and

L = k
4π .

5.2. Proof of Lemma 5
Due to normalization in the RVSCGD algorithm, ‖wt‖ = 1 for
all t. By Equation (18), we have

w
t − ηEZ[g(w

t ,Z)] =
(

1− η
k

2
√
2π

)

w
t + η

k

2
√
2π

w
∗

and the update of u is the well-known soft-thresholding of w
[15, 22]:

u
t+1 = argmin

u
Lβ (u,w

t) = Sλ/β (w
t)

where Sλ/β (·) is the soft-thresholding operator:

Sλ/β (x) =











x− λ/β , x > λ/β

0, |x| ≤ λ/β

x+ λ/β , x < −λ/β

and Sλ/β (w) applies the thresholding to each component of w.
Then the update of w has the form

w
t+1 = Ct

w
t + η

k

2
√
2π

w
∗ + ηβut+1

for some constant Ct > 0. Suppose the initialization satisfies
θ(w0,w∗) ≤ π − δ, for some δ > 0. It suffices to show that if
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FIGURE 3 | Worst case of the update on wt.

θ t ≤ π−δ, then θ t+1 ≤ π−δ. To this end, since ut+1 = Sλ/β (w
t),

we have θ(wt , ut+1) ≤ π
2 . Consider the worst case scenario:

w
t ,w∗, ut+1 are co-planar with θ(ut+1,wt) = π

2 , and w
∗, ut+1

are on two sides of wt (see Figure 3). We need k
2
√
2π

w
∗ + βut+1

to be in region I. This condition is satisfied when β is small such
that

sin δ ≥ β‖ut+1‖
k

2
√
2π
‖w∗‖

= 2
√
2πβ‖ut+1‖

k

or

β ≤ k sin δ

2
√
2π‖ut+1‖

since ut+1 = Sλ/β (w
t), we have ‖ut+1‖ ≤ 1. Thus, it suffices to

have β ≤ k sin δ

2
√
2π

.

5.3. Proof of Lemma 6
By definition of the update on u, we have Lβ (u

t+1,wt) ≤
Lβ (u

t ,wt). It remains to show Lβ (u
t+1,wt+1) ≤ Lβ (u

t+1,wt).
First notice that since

w
t+1 = Ct(wt − ηEZ[g(w

t ,Z)]− ηβ(wt − u
t+1))

where Ct > 0 is the normalizing constant, thus

EZ[g(w
t ,Z)] = 1

η

(

w
t − w

t+1

Ct

)

− β(wt − u
t+1)

For a fixed u : = u
t+1 we have

Lβ (u,w
t+1)− Lβ (u,w

t)

=f (wt+1)− f (wt)+ β

2

(

‖wt+1 − u‖2 − ‖wt − u‖2
)

≤〈EZ[g(w
t ,Z)],wt+1 − w

t〉 + L

2
‖wt+1 − w

t‖2

+ β

2

(

‖wt+1 − u‖2 − ‖wt − u‖2
)

= 1

η
〈wt − w

t+1

Ct
,wt+1 − w

t〉 − β〈wt − u,wt+1 − w
t〉

+L

2
‖wt+1 − w

t‖2 + β

2

(

‖wt+1 − u‖2 − ‖wt − u‖2
)

= 1

η
〈wt − w

t+1

Ct
,wt+1 − w

t〉 +
(

L

2
+ β

2

)

‖wt+1 − w
t‖2

+β

2
‖wt+1 − u‖2 − β

2
‖wt − u‖2 − β〈wt − u,wt+1 − w

t〉

− β

2
‖wt+1 − w

t‖2

= 1

η
〈wt − w

t+1

Ct
,wt+1 − w

t〉 +
(

L

2
+ β

2

)

‖wt+1 − w
t‖2

Since ‖wt‖, ‖wt+1‖ = 1, we know (wt+1 − w
t) bisects the

angle between w
t+1 and−wt . The assumption ‖ηEZ[g(w

t ,Z)]+
ηβ(wt −u

t+1)‖ ≤ 1
2 guarantees

2
3 ≤ Ct ≤ 2 and θ(−wt ,wt+1) <

π . It follows that θ(wt+1 − w
t ,wt) and θ(wt+1 − w

t ,wt+1) are

strictly less than π
2 . On the other hand,

(

w
t+1
Ct − w

t
)

also lies in

the plane bounded by wt+1 and−wt . Therefore,

θ

(

w
t+1

Ct
− w

t ,wt+1 − w
t

)

<
π

2
.

This implies 〈wt+1
Ct −wt ,wt+1−wt〉 ≥ 0. Moreover, when Ct ≥ 1:

〈w
t+1

Ct
− w

t ,wt+1 − w
t〉 =〈w

t+1

Ct
− w

t

Ct
,wt+1 − w

t〉

− 〈C
t − 1

Ct
w
t ,wt+1 − w

t〉

≥ 1

Ct
‖wt+1 − w

t‖2

And when 2
3 ≤ Ct ≤ 1:

〈w
t+1

Ct
− w

t ,wt+1 − w
t〉 =〈wt+1 − w

t ,wt+1 − w
t〉

+ 〈1− Ct

Ct
w
t+1,wt+1 − w

t〉

≥‖wt+1 − w
t‖2

Thus, we have

Lβ (u,w
t+1)− Lβ (u,w

t) ≤
(

L

2
+ β

2
−

χ{Ct≥1}
ηCt

−
χ{ 23≤Ct≤1}

η

)

‖wt+1 − w
t‖2

Therefore, if η is small so that η ≤ 2
Ct(β+L) and η ≤ 2

β+L , the

update on w will decrease Lβ . Since Ct ≤ 2, the condition is
satisfied when η ≤ 1

β+L .

5.4. Proof of Lemma 7
Since Lβ (u

t ,wt) is non-negative, by Lemma 5, 6, Lβ converges to
some limit L. This implies (ut ,wt) converges to some stationary
point (ū, w̄). By the update of wt , we have

w̄ = C̄(c1w̄ + ηc2w
∗ + ηβū) (20)
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FIGURE 4 | Behavior of θ (wt,w∗) and Lβ (w
t, ut ) on the one-layer non-overlap network.

TABLE 1 | Accuracy and sparsity of RVSCGD on a LeNet variation, on the MNIST

dataset.

Penalty β λ Accuracy Sparsity

Base model 1 0 89.31 0

RGSM (GL) 1 1.e-7 87.17 33.31

1 1.e-5 85.34 66.67

1 1.e-3 84.92 83.76

for some constant C̄, c1, c2 > 0, where c2 = k
2
√
2π

, c1 > 0 due to

our assumption, and ū = Sλ/β (w̄). For expression (20) to hold,
we need

c2w
∗ + βū//w̄ (21)

Expression (21) implies w̄, ū, and w
∗ are co-planar. Let γ : =

θ(ū, w̄). From expression (21), and the fact that ‖w̄‖ = ‖w∗‖ = 1,
we have

(〈c2w∗ + βū, w̄〉)2 = ‖c2w∗ + βū‖2‖w̄‖2

which implies c22 cos
2 θ+2c2β‖ū‖ cos θ cos γ +β2‖ū‖2 cos2 γ =

c22+2c2β‖ū‖ cos(θ+γ )+β2‖ū‖2 Recall cos(a+b) = cos a cos b−
sin a sin b. Thus,

c22 sin
2 θ − 2c2β‖ū‖ sin θ sin γ + β2‖ū‖2 sin2 γ = 0

which implies

k

2
√
2π

sin θ = β‖ū‖ sin γ (22)

By the initialization of β , we have k
2
√
2π

sin θ < k
2
√
2π

sin δ. This

implies θ < δ.
Finally, expression (20) can also be written as

(

w
∗ − 2

√
2π

k
β(w̄ − ū)

)

//w̄ (23)

From expression (23), we see that w
∗, after subtracting

some vector whose signs agree with w̄, and whose non-zero

components are at most 2
√
2π
k

λ, is parallel to w̄. This implies w̄
is some soft-thresholded version of w∗, modulo normalization.

Moreover, since
∥

∥

∥

2
√
2π
k

β(w̄ − ū)
∥

∥

∥
≤ 2
√
2π
k

λ
√
d, for small λ such

that 2
√
2π
k

λ
√
d < 1, we must have

θ

(

w
∗ − 2

√
2π

k
β(w̄ − ū), w̄

)

= 0

On the other hand,
∥

∥

∥

∥

∥

w
∗ − 2

√
2π

k
β(w̄ − ū)

∥

∥

∥

∥

∥

≥ ‖w∗‖ −
∥

∥

∥

∥

∥

2
√
2π

k
β(w̄ − ū)

∥

∥

∥

∥

∥

≥ 1− 2
√
2π

k
λ
√
d

therefore, w∗ − 2
√
2π
k

β(w̄ − ū) = Cw̄, for some constant C such

that C ≥ k−2λ
√
2πd

k
.

Finally, consider the equilateral triangle
with sides w

∗, w̄, and w
∗ − w̄. By the law

of sines,

‖w∗ − w̄‖
sin θ

= ‖w∗‖
sin θ(w̄,w∗ − w̄)

= 1

sin θ(w̄,w∗ − w̄)

as θ is small, θ(w̄,w∗−w̄) is near π
2 . We can assume sin θ(w̄,w∗−

w̄) ≥ 1
2 . Together with expression (22), we have

‖w∗ − w̄‖ ≤ 2 sin θ = 4
√
2πβ‖ū‖ sin γ

k
≤ 4
√
2πβ sin γ

k
.

5.5. Proof of Theorem 1
Combining Lemmas 2–7, Theorem 1 is proved.
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5.6. Proof of Corollary
Lemma 8. [19] Let

fλ,x(y) =
1

2
(y− x)2 + λ ρa(y),

gλ(x) = sgn(x)

{

2

3
(a+ |x|) cos

(

φ(x)

3

)

− 2a

3
+ |x|

3

}

where φ(x) = arccos
(

1− 27λa(a+1)
2(a+|x|)3

)

. Then y∗λ(x) =
argminy fλ,x(y) is the Tℓ1 thresholding, equal to gλ(x) if |x| > t;

zero elsewhere. Here t = λ a+1
a if λ ≤ a2

2(a+1) ; t =
√
2λ(a+ 1)− a

2 ,

elsewhere.

Lemma 9. [18] Let fλ,x(y) = 1
2 (y − x)2 + λ ‖y‖0. Then y∗λ(x) =

argminy fλ,x(y) is the ℓ0 hard thresholding y∗λ(x) = x, if |x| >√
2λ; zero elsewhere.

We proceed by an outline similar to the proof of Theorem 1:
Step 1. First we show that Lβ ,Tℓ1 (u

t ,wt) and Lβ ,0(u
t ,wt) both

decrease under the update of u
t and w

t . To see this, notice
that the update on u

t decreases Lβ ,Tℓ1 (u
t ,wt) and Lβ ,0(u

t ,wt) by
definition. Then, for a fixed u = u

t+1, the update on w
t decreases

Lβ ,Tℓ1 (u
t ,wt) and Lβ ,0(u

t ,wt) by a similar argument to that found
in Theorem 1.

Step 2. Next, we show θ(wt ,w∗) ≤ π − δ, for some δ > 0, for
all t, with initialization θ(w0,w∗) = π − δ. For Lβ ,Tℓ1 (u

t ,wt), by
Lemma 8, we have

u
t+1 = (gλ/β (w

t
1), gλ/β (w

t
2), ..., gλ/β (w

t
d))

And for Lβ ,0(u
t ,wt), by Lemma 9,

u
t+1 = (wt

1χ{|wt
1|≥t},w

t
2χ{|wt

2|≥t}, ...)

In both cases, each component of ut+1 is a thresholded version of
the corresponding component of wt . This implies θ(ut+1,wt) ≤
π
2 , and thus the argument in Theorem 1 follows through, and we
have θ(wt ,w∗) ≤ π − θ , for all t.

Step 3. Finally, the equilibrium condition from Equation (21)
still holds for the limit point, and a similar argument shows that
θ(w̄,w∗) < δ.

6. NUMERICAL EXPERIMENTS

In this section, we demonstrate two simple experiments on
implementing RVSCGD in practice.

Firstly, we numerically verify our result on the one-layer,
non-overlap network, using RVSCGD with ℓ0 penalty. The
experiment was run with parameters k = 20, d = 50,β =
4.e − 3, λ = 1.e − 4, and η = 1.e − 5. Results are
displayed in Figure 4. It can be seen that the RVSCGD
converges quickly for this toy model; and the quantities

Lβ (w
t , ut), θ(wt ,w∗), decrease monotonically, as stated in

Theorem 1.
Secondly, we extend our method to a multi-layer network.

Consider a variation of LeNet [47], where we replace all ReLU
activations with the binarized ReLU function. The model is then
trained on the MNIST dataset for 100 epochs using SGD with
momentum 0.9, weight decay 5.e-4, and learning rate 1.e-3,
which is decayed by a factor of 10 at epoch 60. The RVSCGD
algorithm is applied on this model using the same training
setting. The results are displayed in Table 1. Notice that the
base model has an accuracy of 89.13%, which is lower than
reported in Lecun [47]; this is because of the binarized ReLU
replacement. Table 1 also shows that RVSCGD can effectively
sparsify this variation of LeNet, with sparsity up to 83.76 and
4.39% loss in performance. We believe the loss in accuracy
is mainly from 1-bit ReLU activation, which has too low a
resolution to preserve important deep network information.
We believe with higher bit quantization of weights and/or
activations, networks can be more effectively pruned while still
maintaining good performance (see [14]). This is a topic for our
future studies.

7. CONCLUSION

We introduced a variable splitting coarse gradient descent
method to learn a one-hidden layer neural network with
sparse weight and binarized activation in a regression
setting. The proof is based on the descent of a Lagrangian
function and the angle between the sparse and true
weights, and applies to ℓ1, ℓ0 and Tℓ1 sparse penalties.
We plan to extend our work to a classification setting
in the future.
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