
Nonconvex Regularization for Network Slimming:
Compressing CNNs Even More

Kevin Bui1, Fredrick Park2, Shuai Zhang1, Yingyong Qi1, and Jack Xin1

1 Department of Mathematics; University of California, Irvine;
Irvine, CA 92697, United States.

{kevinb3,szhang3,yqi,jack.xin}@uci.edu
2 Department of Mathematics & Computer Science; Whittier College;

Whittier, CA 90602, United States.
fpark@whittier.edu

Abstract. In the last decade, convolutional neural networks (CNNs) have evolved
to become the dominant models for various computer vision tasks, but they can-
not be deployed in low-memory devices due to its high memory requirement and
computational cost. One popular, straightforward approach to compressing CNNs
is network slimming, which imposes an `1 penalty on the channel-associated scal-
ing factors in the batch normalization layers during training. In this way, channels
with low scaling factors are identified to be insignificant and are pruned in the
models. In this paper, we propose replacing the `1 penalty with the `p and trans-
formed `1 (T`1) penalties since these nonconvex penalties outperformed `1 in
yielding sparser satisfactory solutions in various compressed sensing problems.
In our numerical experiments, we demonstrate network slimming with `p and
T`1 penalties on VGGNet and Densenet trained on CIFAR 10/100. The results
demonstrate that the nonconvex penalties compress CNNs better than `1. In addi-
tion, T`1 preserves the model accuracy after channel pruning, and `1/2,3/4 yield
compressed models with similar accuracies as `1 after retraining.

Keywords: Convolutional neural networks · Sparse optimization · `1 regularization ·
`p regularization · Batch normalization · Channel pruning · Nonconvex optimization

1 Introduction

In the past years, convolutional neural networks (CNNs) evolved into superior models
for various computer vision tasks, such as image classification [18, 26, 41] and image
segmentation [10, 32, 38]. Unfortunately, training a highly accurate CNN is computa-
tionally demanding. State-of-the-art CNNs such as Resnet [18] can have up to at least a
hundred layers and thus require millions of parameters to train and billions of floating-
point-operations to execute. Consequently, deploying CNNs in low-memory devices,
such as mobile smartphones, is difficult, making their real-world applications limited.

To make CNNs more practical, many works proposed several different directions
to compress large CNNs or to learn smaller, more efficient models from scratch. These
directions include low-rank approximation [13, 23, 45, 46, 47], weight quantization [11,
12, 27, 59, 53], and weight pruning [1, 16, 28, 19]. One popular direction is to sparsify

2 Bui et al.

the CNN while training it [2, 6, 39, 44]. Sparsity can be imposed on various types of
structures existing in CNNs, such as filters and channels [44].

One interesting yet straightforward approach in sparsifying CNNs was network
slimming [31]. This method imposes `1 regularization on the scaling factors in the
batch normalization layers. Due to `1 regularization, scaling factors corresponding to
insignificant channels are pushed towards zeroes, narrowing down the important chan-
nels to retain, while the CNN model is being trained. Once the insignificant channels
are pruned, the compressed model may need to be retrained since pruning can degrade
its original accuracy. Overall, network slimming yields a compressed model with low
run-time memory and number of computing operations.

In this paper, we propose replacing `1 regularization in network slimming with an
alternative nonconvex regularization that promotes better sparsity. Because the `1 norm
is a convex relaxation of the `0 norm, a better penalty would be nonconvex and it would
interpolate `0 and `1. Considering these properties, we examine `p [7, 9, 48] and trans-
formed `1 (T`1) [56, 57] because of their superior performances in recovering satis-
factory sparse solutions in various compressed sensing problems. Furthermore, both
regularizers have explicit formulas for their subgradients, which allow us to directly
perform subgradient descent [40].

2 Related Works

2.1 Compression Techniques for CNNs

Low-rank decomposition. Denton et al. [13] compressed the weight tensors of con-
volutional layers using singular value decomposition to approximate them. Jaderberg
et al. [23] exploited the redundancy between different feature channels and filters to
approximate a full-rank filter bank in CNNs by combinations of a rank-one filter ba-
sis. These methods focus on decomposing pre-trained weight tensors. Wen et al. [45]
proposed force regularization to train a CNN towards having a low-rank representation.
Xu et al. [46, 47] proposed trained rank pruning, an optimization scheme that incorpo-
rates low-rank decomposition into the training process. Trained rank pruning is further
strengthened by nuclear norm regularization.

Weight Quantization. Quantization aims to represent weights with low-precision
(≤8 bits arithmetic). The simplest form of quantization is binarization, constraining
weights to only two values. Courbariaux et al. [12] proposed BinaryConnect, a method
that trains deep neural networks (DNNs) with strictly binary weights. Neural networks
with ternary weights have also been developed and investigated. Li et al. [27] proposed
ternary weight networks, where the weights are only −1, 0, or +1. Zhu et al. [59] pro-
posed Trained Ternary Quantization that constrains the weights to more general val-
ues −Wn, 0, and W p, where Wn and W p are parameters learned through the training
process. For more general quantization, Yin et al. [53] proposed BinaryRelax, which
relaxes the quantization constraint into a continuous regularizer for the optimization
problem needed to be solved in CNNs.

Pruning. Han et al. [16] proposed a three-step framework to first train a CNN,
prune weights if below a fixed threshold, and retrain the compressed CNN. Aghasi

Nonconvex Regularization for Network Slimming: Compressing CNNs Even More 3

-5 0 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

(a) `0

-5 0 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

(b) `1

-5 0 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

(c) `1/2

-5 0 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

(d) T`1, a = 1

Fig. 1: Contour plots of sparse regularizers.

et al. [1] proposed using convex optimization to determine which weights to prune
while preserving model accuracy. For CNNs, channel or filter pruning are preferred over
individual weight pruning since the former significantly eliminates more unnecessary
weights. Li et al. [28] calculated the sum of absolute weights for each filter of the
CNN and pruned the filters with the lowest sums. On the other hand, Hu et al. [19]
proposed a metric that measures the redundancies in channels to determine which to
prune. Network slimming [31] is also another method of channel pruning since it prunes
channels with the lowest associated scaling factors.

Sparse optimization. Sparse optimization methods aim to train DNNs towards a
compressed structure from scratch by introducing a sparse regularization term to the
objective function being minimized. BinaryRelax [53] and network slimming [31] are
examples of sparse optimization methods for CNNs. Alvarez and Salzmann [2] and
Scardapane et al. [39] applied group lasso [55] and sparse group lasso [39] to CNNs
to obtain group-sparse networks. Non-convex regularizers have also been examined
recently. Xue and Xin [51] applied `0 and transformed `1 to three-layer CNNs that
classify shaky vs. normal handwriting. Ma et al. [36] proposed integrated T`1, which
combines group sparsity and T`1, and applied it to CNNs for image classification.

2.2 Regularization Penalty

Let x = (x1, . . . , xn) ∈ Rn. The `1 penalty is described by

‖x‖1 =

n∑
i=1

|xi|, (1)

while the `0 penalty is described by

‖x‖0 =

n∑
i=1

1{xi 6=0}, where 1{z 6=0} =

{
1 if z 6= 0

0 if z = 0.
(2)

Although `1 regularization is popular in sparse optimization in various applications such
as compressed sensing [4, 3, 54] and compressive imaging [24, 35], it may not actually
yield the sparsest solution [7, 34, 33, 48, 57]. Moreover, it is sensitive to outliers and it
may yield biased solutions [15].

A nonconvex alternative to the `1 penalty is the `p penalty

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

(3)

4 Bui et al.

for p ∈ (0, 1). The `p penalty interpolates `0 and `1 because as p → 0+, we have
`p → `0, and as p → 1−, we have `p → `1. It was shown to recover sparser solution
than did `1 for certain compressed sensing problems [9, 8]. Empirical studies [9, 49]
demonstrated that for p ∈ [1/2, 1), as p decreases, the solution becomes sparser by
`p minimization, but for p ∈ (0, 1/2), the performance becomes no longer signifi-
cant. In [50], `1/2 was verified to be an unbiased estimator. Moreover, it demonstrated
success in image deconvolution [25, 5], hyperspectral unmixing [37], and image seg-
mentation [29]. Numerically, in compressed sensing, a small value ε is added to xi to
avoid blowup in the subgradient when xi = 0. In this work, we will examine across
different values of p since `p regularization may work differently in deep learning than
in other areas.

Lastly, the T`1 penalty is formulated as

Pa(x) =

n∑
i=1

(a+ 1)|xi|
a+ |xi|

(4)

for a > 0. T`1 interpolates `0 and `1 because as a → 0+, we have T`1 → `0, and as
a → +∞, we have T`1 → `1. This penalty enjoys three properties – unbiasedness,
sparsity, and continuity – that a sparse regularizer should have [15]. The T`1 penalty
was demonstrated to be robust by outperforming `1 and `p in compressed sensing prob-
lems with both coherent and incoherent sensing matrices [56, 57]. Additionally, the T`1
penalty yields satisfactory, sparse solutions in matrix completion [58] and deep learn-
ing [36].

Figure 1 displays the contour plots of the aforementioned regularizers. With `1 reg-
ularization, the solution tends to coincide with one of the corners of the rotated squares,
making it sparse. For `1/2 and T`1, the level lines are more curved compared to `1,
which encourages the solutions to coincide with one of the corners. Hence, solutions
tend to be sparser with `1/2 and T`1 regularization than with `1 regularization.

3 Proposed Method

3.1 Batch Normalization Layer

Batch normalization [22] has been instrumental in speeding the convergence and im-
proving generalization of many deep learning models, especially CNNs [43, 18]. In
most state-of-the-arts CNNs, a convolutional layer is always followed by a batch nor-
malization layer. Within a batch normalization layer, features generated by the pre-
ceding convolutional layer are normalized by their mean and variance within the same
channel. Afterward, a linear transformation is applied to compensate for the loss of their
representative abilities.

We mathematically describe the process of the batch normalization layer. First we
suppose that we are working with 2D images. Let x be a feature computed by a con-
volutional layer. Its entry xi is indexed by i = (iN , iC , iH , iW), where N is the batch
axis, C is the channel axis, H is the spatial height axis, and W is the spatial width axis.
We define the index set Si = {k : kC = iC}, where kC and iC are the respective

Nonconvex Regularization for Network Slimming: Compressing CNNs Even More 5

𝜇1, 𝜎1
2

𝜇2, 𝜎2
2

𝜇3, 𝜎3
2

𝜇4, 𝜎4
2

One Batch (batch size = N)

H
eigh

t

Width

Fig. 2: Visualization of batch normalization on a feature map. The mean and variance of
the values of the pixels of the same colors corresponding to the channels are computed
and are used to normalize these pixels.

subindices of k and i along the C axis. The mean µi and variance σ2
i are computed as

follows:

µi =
1

|Si|
∑
k∈Si

xk, σ2
i =

1

|Si|
∑
k∈Si

(xk − µi)2 + ε (5)

for some small value ε > 0, where |A| denotes the cardinality of the set A. Then x
is normalized as x̂i = xi−µi

σi
for each index i. In short, the mean and variance are

computed from pixels of the same channel index, and these values are used to normal-
ize these pixels. Visualization is provided in Figure 2. Lastly, the output of the batch
normalization layer is computed as a linear transformation of the normalized features:

yi = γiC x̂i + βiC , (6)

where γiC , βiC ∈ R are trainable parameters.

3.2 Network Slimming with Nonconvex Sparse Regularization

Since the scaling factors γiC ’s in (6) are associated with the channels of a convolutional
layer, we aim to penalize them with a sparse regularizer in order to determine which
channels are irrelevant to the compressed CNN model. Suppose we have a training
dataset that consists of N input-output pairs {(xi, yi)}Ni=1 and a CNN with L con-
volutional layers, where each is followed by a batch normalization layer. Then we
have a set of vectors {(γl, βl)}Ll=1 for each layer l, where γl = (γl,1, . . . , γl,Cl

) and
βl = (βl,1, . . . , βl,Cl

) with Cl being the number of channels in the lth convolutional
layer. Let W be the set of weight parameters such that {(γl, βl)}Ll=1 ⊂ W . Hence, the
trainable parameters W of the CNN are learned by minimizing the following objective
function:

1

N

N∑
i=1

L(h(xi,W), yi) + λ

L∑
l=1

R(γl), (7)

6 Bui et al.

Table 1: Sparse regularizers and their subgradients.
Name R(x) ∂R(x)

`1 ‖x‖1 =
n∑

i=1

|xi| ∂‖x‖1 =

{
z ∈ Rn : zi =

{
sgn(xi) if xi 6= 0

zi ∈ [−1, 1] if xi = 0

}

`p ‖x‖pp =
n∑

i=1

|xi|p ∂‖x‖pp =

z ∈ Rn : zi =

p · sgn(xi)

|xi|1−p
if xi 6= 0

zi ∈ R if xi = 0

T`1 Pa(x) =

n∑
i=1

(a+ 1)|xi|
a+ |xi|

∂Pa(x) =

z ∈ Rn : zi =

a(a+ 1)sgn(xi)

(a+ |xi|)2
if xi 6= 0

0 if xi = 0

where h(·, ·) is the output of the CNN used for prediction, L(·, ·) is a loss function,
R(·) is a sparse regularizer, and λ > 0 is a regularization parameter for R(·). When
R(·) = ‖ · ‖1, we have the original network slimming method. As mentioned earlier,
since `1 regularization may not yield the sparsest solution, we investigate the method
with a nonconvex regularizer, whereR(·) is ‖ · ‖pp or Pa(·). To minimize (7) in general,
stochastic gradient descent is applied to the first term while subgradient descent is ap-
plied to the second term [40]. Subgradients of the regularizers are presented in Table 1.
After the CNN is trained, channels with low scaling factors are pruned, leaving us with
a compressed model.

4 Experiments

We apply the proposed nonconvex network slimming with `p and T`1 regularization on
CIFAR 10/100 datasets on VGGNet [41] and Densenet [20]. Code for the experiments is
given at https://github.com/kbui1993/NonconvexNetworkSlimming.

Both sets of CIFAR 10/100 consist of 32 × 32 natural images. CIFAR 10 has 10
classes; CIFAR 100 has 100 classes. CIFAR 10/100 is split between a training set of
50,000 images and a test set of 10,000 images. Standard augmentation [18, 21, 30] is
applied to the CIFAR 10/100 images.

For our experiments, we train VGGNet with 19 layers and Densenet with 40 lay-
ers for five runs with and without scaling-score regularization as done in [31]. (We
refer “regularized models” as the models with scaling-score regularization.) On CIFAR
10/100, the models are trained for 160 epochs with a training batch size of 64. They are
optimized using stochastic gradient descent with learning rate 0.1. The learning rate de-
creases by a factor of 10 after 80 and 120 epochs. We use weight decay of 10−4 and Nes-
terov momentum [42] of 0.9 without dampening. Weight initialization is based on [17]
and scaling factor initialization is set to all be 0.5 as done in [31]. With regularization
parameter λ = 10−4, we train the regularized models with `1, `p(p = 0.25, 0.5, 0.75),
and T`1(a = 0.5, 1) penalties on the scaling factors.

https://github.com/kbui1993/NonconvexNetworkSlimming

Nonconvex Regularization for Network Slimming: Compressing CNNs Even More 7

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

VGGNet Trained on CIFAR 10

ℓ1
ℓ3/4
ℓ1/2
ℓ1/4
Tℓ1(a= 1)
Tℓ1(a= 0.5)
Baseline

(a) VGGNet trained on CIFAR 10 with
λ = 10−4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

VGGNet Trained on CIFAR 100

ℓ1
ℓ3/4
ℓ1/2
ℓ1/4
Tℓ1(a= 1)
Tℓ1(a= 0.5)
Baseline

(b) VGGNet trained on CIFAR 100 with
λ = 10−4

Fig. 3: Effect of channel pruning ratio on the mean test accuracy of five runs of VGGNet
on CIFAR 10/100. Baseline refers to the mean test accuracy of the unregularized model
that is not pruned.

Table 2: Effect of channel pruning ratio on the mean pruned ratio of parameters of five
runs of VGGNet trained on CIFAR 10/100 for each regularization.

CIFAR 10 CIFAR 100
Pruning
Ratio `1 `3/4 `1/2 `1/4

T`1
(a = 1)

T`1
(a = 0.5)

`1 `3/4 `1/2 `1/4
T`1

(a = 1)
T`1

(a = 0.5)
0.10 0.2110 0.2114 0.2112 0.1995 0.2116 0.2094 0.2191 0.2198 0.2202 0.2200 0.2187 0.2167
0.20 0.3934 0.3955 0.3962 0.3766 0.3935 0.3929 0.4036 0.4064 0.4085 0.4071 0.4047 0.4033
0.30 0.5488 0.5513 0.5529 0.5299 0.5494 0.5492 0.5583 0.5604 0.5629 0.5621 0.5599 0.5597
0.40 0.6756 0.6796 0.6809 0.6620 0.6788 0.6783 0.6745 0.6801 0.6841 0.6853 0.6822 0.6849
0.50 0.7753 0.7799 0.7810 0.7707 0.7806 0.7822 0.7535 0.7654 0.7719 0.7816 0.7718 0.7799
0.60 0.8471 0.8524 0.8543 0.8576 0.8555 0.8592 N/A N/A 0.8307 0.8571 0.8290 0.8409
0.70 0.8881 0.8969 0.9001 0.9214 0.9034 0.9088 N/A N/A N/A 0.9148 N/A N/A
0.80 N/A N/A N/A 0.9654 N/A N/A N/A N/A N/A 0.9654 N/A N/A
0.90 N/A N/A N/A 0.9905 N/A N/A N/A N/A N/A N/A N/A N/A

4.1 Channel Pruning

After training, we prune the regularized models globally. In particular, we specify a ra-
tio such as 0.35 or a percentage such as 35%, determine the 35th percentile among all
scaling scores of the network and set it as a threshold, and prune away channels whose
scaling scores are below that threshold. After pruning, we compute the compressed net-
works’ mean test accuracies. Mean test accuracies are compared against the baseline
test accuracy computed from the unregularized models. We evaluate the mean test ac-
curacies as we increase the channel pruning ratios in increment of 0.05 to the point
where a layer has no more channels.

For VGGNet, the mean test accuracies across the channel pruning ratios are shown
in Figure 3. The mean pruned ratios of parameters (the number of parameters pruned
to the total number of parameters) are shown in Table 2. For CIFAR 10, according to
Figure 3a, the mean test accuracies for `1/2 and `1/4 are not robust against pruning
since they gradually decrease as the channel pruning ratio increases. On the other hand,
`3/4 and T`1 are more robust than `1 to channel pruning since their accuracies drop
at higher pruning ratios. So far, we see T`1(a = 0.5) to be the most robust with its
mean test accuracy to be close to its pre-pruned mean test accuracy. For CIFAR 100, in
Figure 3b, `1 is less robust than `3/4, `1/2 and T`1. Like for CIFAR 10, T`1(a = 0.5)

8 Bui et al.

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.2

0.4

0.6

0.8

1.0

Te
st
 A
cc
ur
ac
y

Densenet Trained on CIFAR 10

ℓ1
ℓ3/4
ℓ1/2
ℓ1/4
Tℓ1(a=1)
Tℓ1(a=0.5)
Baseline

(a) Densenet-40 trained on CIFAR 10 with
λ = 10−4

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st
 A
cc
ur
ac
y

Densenet Trained on CIFAR 100

ℓ1
ℓ3/4
ℓ1/2
ℓ1/4
Tℓ1(a=1)
Tℓ1(a=0.5)
Baseline

(b) Densenet-40 trained on CIFAR 100 with
λ = 10−4

Fig. 4: Effect of channel pruning ratio on the mean test accuracy of five runs of Densenet
on CIFAR 10/100. Baseline refers to the mean test accuracy of the unregularized model
that is not pruned.

Table 3: Effect of channel pruning ratio on the mean pruned ratio of parameters of five
runs of Densenet-40 trained on CIFAR 10/100 for each regularization.

CIFAR 10 CIFAR 100
Pruning
Ratio `1 `3/4 `1/2 `1/4

T`1
(a = 1)

T`1
(a = 0.5)

`1 `3/4 `1/2 `1/4
T`1

(a = 1)
T`1

(a = 0.5)
0.10 0.0922 0.0932 0.0933 0.0935 0.0935 0.0935 0.0918 0.0919 0.0920 0.0926 0.0926 0.0925
0.20 0.1835 0.1864 0.1859 0.1871 0.1863 0.1872 0.1834 0.1839 0.1841 0.1853 0.1846 0.1849
0.30 0.2757 0.2787 0.2797 0.2813 0.2785 0.2808 0.2753 0.2757 0.2762 0.2785 0.2772 0.2775
0.40 0.3673 0.3714 0.3726 0.3752 0.3717 0.3739 0.3669 0.3676 0.3685 0.3717 0.3691 0.3698
0.50 0.4595 0.4642 0.4662 0.4705 0.4641 0.4673 0.4584 0.4595 0.4606 0.4651 0.4615 0.4624
0.60 0.5515 0.5562 0.5588 0.5669 0.5573 0.5616 0.5498 0.5513 0.5526 0.5594 0.5535 0.5546
0.70 0.6438 0.6490 0.6512 0.6656 0.6514 0.6549 0.6412 0.6433 0.6444 0.6573 0.6455 0.6471
0.80 0.7375 0.7425 0.7447 0.7702 0.7446 0.7488 0.7339 0.7356 0.7367 0.7628 0.7378 0.7392
0.90 0.8376 0.8402 0.8436 N/A 0.8423 0.8445 N/A 0.8334 N/A N/A 0.8348 0.8360

is the most robust since its accuracy does not drop off until after 55% of channels are
pruned while the accuracies of the other regularizers drop by when 50% of channels are
pruned. According to Table 2, the pruned ratio of parameters are comparable among the
regularizers for each channel pruning percentage, but always a nonconvex regularizer
prunes more weight parameters than does `1.

For Densenet-40, the mean test accuracies across the channel pruning ratios are
depicted in Figure 4. The mean pruned ratios of parameters are shown in Table 3. For
both CIFAR 10/100, `1/4 is the least robust among the regularizers and following it is `1.
T`1(a = 0.5) is the most robust because its test accuracy drops at a higher pruning ratio
than do other regularizers. According to Table 3, `1 compresses the models the least
while generally `1/4 prunes the most number of parameters for both CIFAR 10/100.

Overall, we see that as p→ 0+, `p regularization tends to prune more weight param-
eters, but its mean test accuracy decreases and it becomes less robust against pruning.
Because smaller value of p strongly encourages sparsity, many of the scaling factors are
close to zeroes, causing their respective subgradients to become larger and thus affect-
ing the model accuracy. For T`1, a = 0.5 manages to prune more weight parameters
than does a = 1.0 and it improves the robustness of the model against pruning.

Nonconvex Regularization for Network Slimming: Compressing CNNs Even More 9

Table 4: Results from retrained VGGNet on CIFAR 10/100 after pruning. Baseline
refers to the VGGNet model trained without regularization on the scaling factors.

Number of Parameters Pruning Percentage (%) Average Test Accuracy
before Retraining (%)

Average Test Accuracy
after Retraining (%)

Baseline 20.04M 0.00 93.83 N/A

`1 (0% Pruned) 20.04M 0.00 93.63 N/A
`1 (70% Pruned) 2.24M 88.81 28.28 93.91

`3/4 (0% Pruned) 20.04M 0.00 93.53 N/A
`3/4 (70% Pruned) 2.07M 89.69 88.87 93.90
`3/4 (75% Pruned) 1.79M 91.06 16.18 93.79

`1/2 (0% Pruned) 20.04M 0.00 93.57 N/A
`1/2 (70% Pruned) 2.00M 90.01 40.07 93.77
`1/2 (75% Pruned) 1.66M 91.70 13.65 93.82

`1/4 (0% Pruned) 20.04M 0.00 86.97 N/A
`1/4 (70% Pruned) 1.58M 92.14 47.59 92.15
`1/4 (90% Pruned) 0.19M 99.05 10.00 81.57

T`1(a = 1) (0% Pruned) 20.04M 0.00 93.55 N/A
T`1(a = 1) (70% Pruned) 1.93M 90.35 93.54 93.86
T`1(a = 1) (75% Pruned) 1.66M 91.71 86.83 93.82

T`1(a = 0.5) (0% Pruned) 20.04M 0.00 93.15 N/A
T`1(a = 0.5) (70% Pruned) 1.83M 90.88 93.14 93.75
T`1(a = 0.5) (75% Pruned) 1.53M 92.38 92.38 93.77

(a) CIFAR 10

Number of Parameters Pruning Percentage (%) Average Test Accuracy
before Retraining (%)

Average Test Accuracy
after Retraining (%)

Baseline 20.08M 0.00 72.73 N/A

`1 (0% Pruned) 20.08M 0.00 72.57 N/A
`1 (55% Pruned) 4.31M 78.53 1.00 72.98

`3/4 (0% Pruned) 20.08M 0.00 72.14 N/A
`3/4 (55% Pruned) 4.10M 79.59 3.40 73.26

`1/2 (0% Pruned) 20.08M 0.00 72.06 N/A
`1/2 (55% Pruned) 3.95M 80.35 27.32 73.25
`1/2 (60% Pruned) 3.40M 91.70 1.08 71.45

`1/4 (0% Pruned) 20.08M 0.00 70.95 N/A
`1/4 (55% Pruned) 3.58M 82.19 6.30 72.20
`1/4 (80% Pruned) 0.69M 99.05 1.00 15.43

T`1(a = 1) (0% Pruned) 20.08M 0.00 72.07 N/A
T`1(a = 1) (55% Pruned) 3.94M 80.37 69.13 73.08
T`1(a = 1) (60% Pruned) 3.43M 91.71 1.84 72.93

T`1(a = 0.5) (0% Pruned) 20.08M 0.00 71.63 N/A
T`1(a = 0.5) (55% Pruned) 3.72M 81.46 71.57 72.69
T`1(a = 0.5) (60% Pruned) 3.20M 92.38 66.50 72.61

(b) CIFAR 100

4.2 Retraining after Pruning

After a model is pruned, we retrain it without regularization on the scaling factors with
the same optimization setting as the first time training it. The purpose of retraining is to
at least recover the model’s original accuracy prior to pruning. For VGGNet, the results
are shown in Table 4; for Densenet-40, the results are shown in Table 5.

For VGGNet on CIFAR 10, we examine models pruned at 70%, the highest percent-
age that `1-regularized models can be pruned at. According to Table 4a, the nonconvex
regularized models, except for `1/4, attain similar mean test accuracy after retraining as
the `1-regularized models. However, test accuracies of only `1, `3/4, and T`1(a = 1.0)

10 Bui et al.

Table 5: Results from retrained Densenet-40 on CIFAR 10/100 after pruning. Baseline
refers to the Densenet-40 model trained without regularization on the scaling factors.

Number of Parameters Pruning Percentage (%) Average Test Accuracy
before Retraining (%)

Average Test Accuracy
after Retraining (%)

Baseline 1.02M 0.00 94.25 N/A

`1 (0 % Pruned) 1.02M 0.00 93.46 N/A
`1 (82.5% Pruned) 0.25M 76.21 78.27 93.46
`1 (90% Pruned) 0.17M 83.76 17.47 91.42

`3/4 (0% Pruned) 1.02M 0.00 93.19 N/A
`3/4 (82.5% Pruned) 0.25M 76.57 90.17 93.33
`3/4 (90% Pruned) 0.16M 84.02 15.06 91.54

`1/2 (0% Pruned) 1.02M 0.00 93.28 N/A
`1/2 (82.5% Pruned) 0.25M 76.84 83.17 93.43
`1/2 (90% Pruned) 0.16M 84.36 13.76 91.31

`1/4 (0% Pruned) 1.02M 0.00 89.48 N/A
`1/4 (82.5% Pruned) 0.22M 79.81 11.29 91.68
`1/4 (85% Pruned) 0.18M 82.57 10.05 91.44

T`1(a = 1) (0% Pruned) 1.02M 0.00 93.16 N/A
T`1(a = 1) (82.5% Pruned) 0.25M 76.80 93.17 93.26
T`1(a = 1) (90% Pruned) 0.16M 84.23 18.91 91.70

T`1(a = 0.5) (0% Pruned) 1.02M 0.00 92.78 N/A
T`1(a = 0.5) (82.5% Pruned) 0.24M 77.21 92.74 93.05
T`1(a = 0.5) (90% Pruned) 0.16M 84.45 18.12 91.69

(a) CIFAR 10

Number of Parameters Pruning Percentage (%) Average Test Accuracy
before Retraining (%)

Average Test Accuracy
after Retraining (%)

Baseline 1.06M 0.00 74.58 N/A

`1 (0% Pruned) 1.06M 0.00 73.24 N/A
`1 (75% Pruned) 0.35M 68.74 54.68 73.73
`1 (85% Pruned) 0.23M 78.08 2.94 72.40

`3/4 (0% Pruned) 1.06M 0.00 72.97 N/A
`3/4 (75% Pruned) 0.34M 68.93 68.60 73.75
`3/4 (85% Pruned) 0.23M 78.26 4.44 72.63
`3/4 (90% Pruned) 0.18M 83.34 1.23 69.33

`1/2 (0% Pruned) 1.06M 0.00 72.98 N/A
`1/2 (75% Pruned) 0.34M 69.13 66.59 73.39
`1/2 (85% Pruned) 0.23M 78.42 5.05 72.52

`1/4 (0% Pruned) 1.06M 0.00 69.02 N/A
`1/4 (75% Pruned) 0.32M 70.81 7.25 71.62
`1/4 (85% Pruned) 0.19M 82.28 1.00 67.76

T`1(a = 1) (0% Pruned 1.06M 0.00 72.63 N/A
T`1(a = 1) (75% Pruned) 0.34M 69.13 72.34 73.42
T`1(a = 1) (85% Pruned) 0.23M 78.47 7.5 72.52
T`1(a = 1) (90% Pruned) 0.18M 83.49 1.24 69.98

T`1(a = 0.5) (0% Pruned) 1.06M 0.00 72.57 N/A
T`1(a = 0.5) (75% Pruned) 0.34M 69.33 72.59 73.23
T`1(a = 0.5) (85% Pruned) 0.23M 78.58 13.41 72.56
T`1(a = 0.5) (90% Pruned) 0.17M 83.60 1.37 70.16

(b) CIFAR 100

exceed the baseline mean test accuracy. Although `1 has higher test accuracy than other
nonconvex regularized models, it is less compressed than the other regularized models.
We also examine higher percentages for other nonconvex regularized models. Mean
test accuracies improve for `1/2 and T`1(a = 0.5), but they drop slightly for most other
models. `1/4 experiences the worst decrease, but it is due to having 90% of its chan-

Nonconvex Regularization for Network Slimming: Compressing CNNs Even More 11

nel pruned, resulting in significantly more weight parameters pruned compared to other
nonconvex regularized models.

For VGGNet on CIFAR 100, we examine the mean test accuracy at 55%, the highest
percentage that the `1-regularized models can be pruned at. By Table 4b, only `3/4,
`1/2, and T`1(a = 1.0) outperform `1 in terms of compression and mean test accuracy.
Increasing the pruning percentages higher for some other models, we observe slight
decrease in test accuracies for `1/2 and T`1(a = 0.5, 1). The `1/4-regularized models
are unable to recover its original test accuracy as evident by their mean test accuracy of
15.43% with 80% of channels pruned.

For Densenet-40 on CIFAR 10, from Table 5a, when 82.5% channels are pruned, `1
has the least number of weight parameters pruned. In addition, with better compression,
the other nonconvex regularized models have slightly lower mean test accuracies after
retraining. Models regularized with `1/4 have the worst mean test accuracy of 91.68%.
Increasing the channel pruning percentages, we observe that the mean test accuracies
decrease from at least 93% to 91-92% for all models, except `1/4. Models regularized
with `3/4 and T`1(a = 0.5, 1) have higher mean test accuracy and less weight param-
eters than models regularized with `1. For this set of models, the trade off between
accuracy and compression is apparent.

In Table 5b, all regularized models, except for `1/4 have at least 73% as their mean
test accuracies after pruning 75% of their total channels and retraining them. The `1
regularized models are the least compressed compared to the nonconvex regularized
models. Pruning at least 85% of the total channels decreases the mean test accuaracies
after retraining. Again, accuracy is sacrificed by compressing the models even further.

5 Conclusion

We suggest a novel improvement to the network slimming method by replacing the
`1 penalty with either the `p or T`1 penalties on the scaling factors in the batch nor-
malization layer. We demonstrate the effectiveness of the nonconvex regularizers with
VGGNet and Densenet-40 trained on CIFAR 10/100 in our experiments. We observe
that nonconvex regularizers compress the models more than `1 at the same channel
pruning ratios. In addition, T`1 preserves the model accuracy against channel prun-
ing, while `3/4 and `1/2 result in more compressed models than does `1 with similar
or higher model accuracy after retraining the pruned models. Hence, if deep learning
practitioners do not have the option to retrain a compressed model, they should select
T`1 penalty for network slimming. Otherwise, they should choose `p, p ≥ 0.5 for a
model with better accuracy attained after retraining. For future direction, we plan to
apply relaxed variable splitting method [14] to regularization of the scaling factors in
order to apply other nonconvex regularizers such as `1 − `2 [34, 52].

Acknowledgements. The work was partially supported by NSF grants IIS-1632935,
DMS-1854434, DMS-1952644, and a Qualcomm Faculty Award. The authors thank
Mingjie Sun for having the code for [31] available on GitHub.

12 Bui et al.

References

1. Aghasi, A., Abdi, A., Romberg, J.: Fast convex pruning of deep neural networks. SIAM
Journal on Mathematics of Data Science 2(1), 158–188 (2020)

2. Alvarez, J.M., Salzmann, M.: Learning the number of neurons in deep networks. In: Ad-
vances in Neural Information Processing Systems. pp. 2270–2278 (2016)

3. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction
from highly incomplete frequency information. IEEE Transactions on information theory
52(2), 489–509 (2006)

4. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate
measurements. Communications on Pure and Applied Mathematics 59(8), 1207–1223 (2006)

5. Cao, W., Sun, J., Xu, Z.: Fast image deconvolution using closed-form thresholding formulas
of Lq(q = 1/2, 2/3) regularization. Journal of visual communication and image represen-
tation 24(1), 31–41 (2013)

6. Changpinyo, S., Sandler, M., Zhmoginov, A.: The power of sparsity in convolutional neural
networks. arXiv preprint arXiv:1702.06257 (2017)

7. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE
Signal Processing Letters 14(10), 707–710 (2007)

8. Chartrand, R., Staneva, V.: Restricted isometry properties and nonconvex compressive sens-
ing. Inverse Problems 24(3), 035020 (2008)

9. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: 2008
IEEE International Conference on Acoustics, Speech and Signal Processing. pp. 3869–3872.
IEEE (2008)

10. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic im-
age segmentation with deep convolutional nets, atrous convolution, and fully connected crfs.
IEEE transactions on pattern analysis and machine intelligence 40(4), 834–848 (2017)

11. Chen, W., Wilson, J., Tyree, S., Weinberger, K., Chen, Y.: Compressing neural networks with
the hashing trick. In: International conference on machine learning. pp. 2285–2294 (2015)

12. Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: Training deep neural networks with
binary weights during propagations. In: Advances in neural information processing systems.
pp. 3123–3131 (2015)

13. Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear structure
within convolutional networks for efficient evaluation. In: Advances in neural information
processing systems. pp. 1269–1277 (2014)

14. Dinh, T., Xin, J.: Convergence of a relaxed variable splitting method for learning sparse
neural networks via `1,`0, and transformed-`1 penalties. In: Proceedings of SAI Intelligent
Systems Conference. pp. 360–374. Springer (2020)

15. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle proper-
ties. Journal of the American statistical Association 96(456), 1348–1360 (2001)

16. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neu-
ral network. In: Advances in neural information processing systems. pp. 1135–1143 (2015)

17. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In: Proceedings of the IEEE international conference
on computer vision. pp. 1026–1034 (2015)

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778
(2016)

19. Hu, H., Peng, R., Tai, Y.W., Tang, C.K.: Network trimming: A data-driven neuron pruning
approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250 (2016)

Nonconvex Regularization for Network Slimming: Compressing CNNs Even More 13

20. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional
networks. In: Proceedings of the IEEE conference on computer vision and pattern recogni-
tion. pp. 4700–4708 (2017)

21. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic
depth. In: European conference on computer vision. pp. 646–661. Springer (2016)

22. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reduc-
ing internal covariate shift. In: International Conference on Machine Learning. pp. 448–456
(2015)

23. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural networks with
low rank expansions. arXiv preprint arXiv:1405.3866 (2014)

24. Jung, H., Ye, J.C., Kim, E.Y.: Improved k–t blast and k–t sense using focuss. Physics in
Medicine & Biology 52(11), 3201 (2007)

25. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors. In: Ad-
vances in neural information processing systems. pp. 1033–1041 (2009)

26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Advances in neural information processing systems. pp. 1097–1105
(2012)

27. Li, F., Zhang, B., Liu, B.: Ternary weight networks. arXiv preprint arXiv:1605.04711 (2016)
28. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets.

arXiv preprint arXiv:1608.08710 (2016)
29. Li, Y., Wu, C., Duan, Y.: The TVp regularized mumford-shah model for image labeling and

segmentation. IEEE Transactions on Image Processing 29, 7061–7075 (2020)
30. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)
31. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional

networks through network slimming. In: Proceedings of the IEEE International Conference
on Computer Vision. pp. 2736–2744 (2017)

32. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp.
3431–3440 (2015)

33. Lou, Y., Osher, S., Xin, J.: Computational aspects of constrained L1 − L2 minimization for
compressive sensing. In: Modelling, Computation and Optimization in Information Systems
and Management Sciences, pp. 169–180. Springer (2015)

34. Lou, Y., Yin, P., He, Q., Xin, J.: Computing sparse representation in a highly coherent dic-
tionary based on difference of L1 and L2. Journal of Scientific Computing 64(1), 178–196
(2015)

35. Lustig, M., Donoho, D., Pauly, J.M.: Sparse mri: The application of compressed sensing for
rapid mr imaging. Magnetic Resonance in Medicine: An Official Journal of the International
Society for Magnetic Resonance in Medicine 58(6), 1182–1195 (2007)

36. Ma, R., Miao, J., Niu, L., Zhang, P.: Transformed `1 regularization for learning sparse deep
neural networks. Neural Networks 119, 286–298 (2019)

37. Qian, Y., Jia, S., Zhou, J., Robles-Kelly, A.: Hyperspectral unmixing via L1/2 sparsity-
constrained nonnegative matrix factorization. IEEE Transactions on Geoscience and Remote
Sensing 49(11), 4282–4297 (2011)

38. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical im-
age segmentation. In: International Conference on Medical image computing and computer-
assisted intervention. pp. 234–241. Springer (2015)

39. Scardapane, S., Comminiello, D., Hussain, A., Uncini, A.: Group sparse regularization for
deep neural networks. Neurocomputing 241, 81–89 (2017)

40. Shor, N.Z.: Minimization methods for non-differentiable functions, vol. 3. Springer Science
& Business Media (2012)

14 Bui et al.

41. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556 (2014)

42. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and mo-
mentum in deep learning. In: International conference on machine learning. pp. 1139–1147
(2013)

43. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception archi-
tecture for computer vision. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 2818–2826 (2016)

44. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural
networks. In: Advances in neural information processing systems. pp. 2074–2082 (2016)

45. Wen, W., Xu, C., Wu, C., Wang, Y., Chen, Y., Li, H.: Coordinating filters for faster deep
neural networks. In: Proceedings of the IEEE International Conference on Computer Vision.
pp. 658–666 (2017)

46. Xu, Y., Li, Y., Zhang, S., Wen, W., Wang, B., Qi, Y., Chen, Y., Lin, W., Xiong, H.: Trained
rank pruning for efficient deep neural networks. arXiv preprint arXiv:1812.02402 (2018)

47. Xu, Y., Li, Y., Zhang, S., Wen, W., Wang, B., Qi, Y., Chen, Y., Lin, W., Xiong, H.: Trp:
Trained rank pruning for efficient deep neural networks. arXiv preprint arXiv:2004.14566
(2020)

48. Xu, Z., Chang, X., Xu, F., Zhang, H.: `1/2 regularization: A thresholding representation
theory and a fast solver. IEEE Transactions on neural networks and learning systems 23(7),
1013–1027 (2012)

49. Xu, Z., Guo, H., Wang, Y., Hai, Z.: Representative of L1/2 regularization among Lq(0 ≤
q ≤ 1) regularizations: an experimental study based on phase diagram. Acta Automatica
Sinica 38(7), 1225–1228 (2012)

50. Xu, Z., Zhang, H., Wang, Y., Chang, X., Liang, Y.: L1/2 regularization. Science China In-
formation Sciences 53(6), 1159–1169 (2010)

51. Xue, F., Xin, J.: Learning sparse neural networks via `0 and T`1 by a relaxed variable splitting
method with application to multi-scale curve classification. In: World Congress on Global
Optimization. pp. 800–809. Springer (2019)

52. Yin, P., Lou, Y., He, Q., Xin, J.: Minimization of `1−2 for compressed sensing. SIAM Journal
on Scientific Computing 37(1), A536–A563 (2015)

53. Yin, P., Zhang, S., Lyu, J., Osher, S., Qi, Y., Xin, J.: Binaryrelax: A relaxation approach for
training deep neural networks with quantized weights. SIAM Journal on Imaging Sciences
11(4), 2205–2223 (2018)

54. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for `1-
minimization with applications to compressed sensing. SIAM Journal on Imaging sciences
1(1), 143–168 (2008)

55. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68(1), 49–67
(2006)

56. Zhang, S., Xin, J.: Minimization of transformed l1 penalty: Closed form representation and
iterative thresholding algorithms. Communications in Mathematical Sciences 15(2), 511 –
537 (2017)

57. Zhang, S., Xin, J.: Minimization of transformed l1 penalty: theory, difference of convex
function algorithm, and robust application in compressed sensing. Mathematical Program-
ming 169(1), 307–336 (2018)

58. Zhang, S., Yin, P., Xin, J.: Transformed Schatten-1 iterative thresholding algorithms for low
rank matrix completion. Communications in Mathematical Sciences 15(3), 839 – 862 (2017)

59. Zhu, C., Han, S., Mao, H., Dally, W.J.: Trained ternary quantization. arXiv preprint
arXiv:1612.01064 (2016)

	Nonconvex Regularization for Network Slimming: Compressing CNNs Even More

