A NONLOCALLY WEIGHTED SOFT-CONSTRAINED NATURAL GRADIENT ALGORITHM FOR BLIND SEPARATION OF REVERBERANT SPEECH

Jack Xin, Meng Yu, Yingyong Qi, Hsin-I Yang, Fan-Gang Zeng

Mathematics and Biomedical Engineering
University of California at Irvine
Irvine, CA 92697, USA.
{jack.xin, m.yu}@uci.edu.

ABSTRACT

A nonlocally weighted soft-constrained natural gradient iterative method is introduced for robust blind separation in reverberant environment. The nonlocal weighting of the iterations promotes stability and convergence of the algorithm for long demixing filters. The scaling degree of freedom is controlled by soft-constraints built into the auxiliary difference equations. The small divisor problem of iterations in silence durations of speech is resolved. Computations on synthetic speech mixtures based on measured binaural room impulse responses show that the algorithm achieves higher signal-to-interference ratio improvement than existing method (natural gradient time domain algorithm) in an office size room with reverberation time over 0.5 second.

Index Terms— Adaptive estimation, weighted and controlled iteration, reverberant speech, blind separation.

1. INTRODUCTION

A variety of methods rooted in the independent component analysis have been generalized to convolutive mixtures in the past decade, [2, 3, 4, 5, 6, 7, 8, 9, 10, 12] among others. However room reverberation remains one of the main barriers to applications of blind source separation methods (BSS) in realistic listening conditions. A typical office size room has reverberation time \(T_{60} \) near 0.5 second. At 10 kHz sampling frequency, separating two channels of reverberant environment \(T_{60} \geq 0.5s \), with at least 5 dB improvement after processing. The 5 dB is a typical gain of beamforming directional microphones.

In this paper, we introduce a new time domain convolutive natural gradient algorithm for robust BSS of reverberant speech signals. Computational results shall demonstrate that it outperforms the recent method [4], and improves signal-to-interference ratio (SIR) of reverberant speech \(T_{60} = 0.56 \) second by over 10 dB.

To motivate the main ingredients of our algorithm design, let us recall the existing convolutive natural gradient method [2, 4]. Let the mixing model be

\[
x(t) = [A * s](t)
\]

where \([A * s](t) = \sum_{i=0}^{n} A(i)s(t-i)\) is the linear convolution of source vector \(s \in \mathbb{R}^n \) with \(A(i) \), a group of \(n \times n \) matrices. Let \(L \) be the demixing filter length, and \(N \) be the number of data points in each block (frame). The demixing (inversion) formula is:

\[
y_k(l) = \sum_{p=0}^{L} W_k(p)x(l-p).
\]

The scaled natural gradient method [4] is:

\[
W_{k+1}(p) = (1 + \mu)d_k^{-1}W_k(p) - \mu d_k^{-2}H_k(p),
\]

where \(\mu \) is the learning parameter, the scaling factor \(d_k \) is linear in the mixture signal \(x \) in the current block, and:

\[
H_k(p) = \frac{1}{N} \sum_{l=(k-1)N+1}^{(kN)} \sum_{q=0}^{L} f(y_k(l))y_k^\top(l-p + q)W_k(q),
\]

where \(y \) is related as in (1.2), and \(f \) is the sign function. The scaling variable \(d_k \) is intended to cure divergence that arises if \(d_k \) were a positive constant independent of \(k \) as originally proposed [2]. However, during silence (or near silence) period of speech, \(d_k \) may be very small to cause a drastic growth (instability) in the solution, or a small divisor problem. Specifically,

\[
d_k = \frac{1}{N} \sum_{l=0}^{N} \sum_{q=0}^{L} |g_k^q(l)|,
\]

where \(g_k^q(l) \) are entries of an \(n \times n \) matrix \(G \) for each \(k, q \). The matrix \(G \) is:

\[
G_k(q) \triangleq \sum_{p=0}^{L} F_k(q-p)W_k^\top(L-p), \quad q \in [0, 2L]
\]

where the matrix \(F_k \) is:

\[
F_k(p) \triangleq \frac{1}{N} \sum_{l=(k-1)N+1}^{(kN)} f(y_k(l))x^\top(l-p).
\]

In the sum of (1.6), \(F_k(p) \) is set to zero if \(p \not\in [0, L] \). It follows from a direct calculation that

\[
H_k(p) = \sum_{q=0}^{L} G_k(L+p-q)W_k(q).
\]

Partially supported by NSF Grant DMS-0712881, NIH Grant 2R44DC006734, UCI grant CORCLR-MI-2006-07-6.
which is another way to express \(H_k(p) \) in (1.4). One observes that if \(x(i) = 0 \) for \(i \) in a block, then \(F_k(p) = 0 \) by (1.7), implying that \(G_k(p) = 0 \) for \(p \in [0, L] \), and \(\sigma_k = 0 \). Likewise, if \(x(i) \approx 0 \) for \(i \) in a block, \(\sigma_k \approx 0 \) causing small divisor problem in (1.3). The expressions (1.6)-(1.8) are much less transparent than (1.4), but are helpful for implementation.

There is also an inconsistency problem in (1.2)-(1.4). Suppose that \(y_k \) converges up to a limiting signal \(s \) with independent components at large values of \(N \), and that \(W_k(q) \) converges to \(W_\infty(q) \), then

\[
H_\infty(p) \equiv \lim_{k \to \infty, N \to \infty} H_k(p) = \sum_{q=0}^{L} E[f(s)s^T(q-p)]W_\infty(q),
\]

(1.9)

which is a convolutive (non-local) product that cannot be balanced by the local term (constant multiple of \(W_k \) in (1.3))! The generalized correlation matrix \(E[f(s)s^T(\cdot-\eta)] \) is diagonal with diagonal entries being functions of \(\eta \) with finite support. Only in the special case that \(s \) is independent from time to time, the matrix \(E[f(s)s^T(\cdot-\eta)] \) is zero if \(\eta \neq 0 \), and the sum in (1.9) reduces to a local multiplication. In other words, with local term \((1 + \mu) d_k^{-1} \) \(W_k(p) \) in (1.3), convergence cannot happen for mixtures of colored stochastic signals such as speech for which \(f \) is the sign function as a consequence of Laplace distribution of speech performance. Conclusions are in section 4.

2. NONLOCALLY WEIGHTED SOFT-CONSTRAINED ITERATIVE SCHEME

Let us introduce the nonlocally weighted demixing matrix iteration as:

\[
W_{k+1}(p) = W_k(p) + \sigma_{1,k} [M \odot W_k](p) - \sigma_{2,k} H_k(p),
\]

(2.1)

where \(H \) is by (1.4) and \(\odot \) is a nonlocal product with a nonlinear kernel function \(M \):

\[
[M \odot W_k](p) \triangleq \sum_{i=1}^{L} M(i)W_k \left(p - \frac{L \cdot 1}{2} + i - 1 \right)
\]

(2.2)

and \(L_M \) is the length of the support of the kernel function. The kernel function \(M = M(i) \) used in our computation is plotted in Fig. 2. It is constructed from numerical data of (sliding window) generalized correlation functions of clean speech signals, see the Fig. 1 for a typical example. We simplify the “measured kernels” into a piecewise linear function (hat function) with \(L_M = 5 \) and amplitude equal to 0.03, shown in the right panel. The shape of kernel function is obtained by optimal searching. The value of \(W_k \) on the right hand side of (2.2) is set to zero if \(p - \frac{L \cdot 1}{2} + i - 1 \notin [0, L] \).

Notice that the nonlocal product in (2.2) captures the limiting form of \(H_k(p) \) in (1.9). For simplicity, we have chosen the same kernel function \(M \) for all entries of \(W_k(p) \) matrix. The locally scaled version (1.3) is a special case, for example when the support of piecewise linear \(M \) shrinks to a single point.

The scaling variables \((\sigma_{1,k}, \sigma_{2,k}) \) are updated by the equations:

\[
\sigma_{1,k+1} = \sigma_{1,k} \exp\{-\nu F_{1,k}(\sigma_{1,k}, \sigma_{2,k})\}
\]

\[
\sigma_{2,k+1} = \sigma_{2,k} \exp\{-\nu F_{2,k}(\sigma_{1,k}, \sigma_{2,k})\}
\]

(2.3)

where \(\nu \) is a positive constant, and:

\[
F_{1,k} \triangleq \sigma_{1,k} \sum_{p=0}^{L} \sum_{j=1}^{n} |W_k^{1,j}(p)| + \sigma_{2,k} \sum_{p=0}^{L} \sum_{j=1}^{n} |H_k^{1,j}(p)| - c_1,
\]

(2.4)

\[
F_{2,k} \triangleq \sigma_{1,k} \sum_{p=0}^{L} \sum_{j=1}^{n} |W_k^{2,j}(p)| + \sigma_{2,k} \sum_{p=0}^{L} \sum_{j=1}^{n} |H_k^{2,j}(p)| - c_2 + \sigma_{2,k} E
\]

(2.5)

where \(c_1, c_2 \) and \(E \) are positive constants.

Equations (2.3)-(2.5) say that if \(|W_k| \) were too large, \(F_1 \) and \(F_2 \) would be positive and reduce \((\sigma_1, \sigma_2) \) so that \(|W_k| \) would not continue to grow in \(k \) and become unbounded. Similarly, if \(|W_k| \) were too small, the nonlinear term \(H \) would be smaller, and so \(F_1 \) and \(F_2 \) would turn negative so that \((\sigma_1, \sigma_2) \) would grow in \(k \).
and not become trivial. The growth of \(\sigma_i \) in turn helps the growth of \(|W| \) which dominates that of \(H \) in equation (2.1) when \(|W| \) is small enough. It follows that the dynamics by (2.1)-(2.5) admit an invariant region where the iterates are bounded and nontrivial, which implies weak convergence of the iteration and the separation condition that the off-diagonal elements of \(< f(y_i(t))y_k^T(t-\eta) > \) tend to zero as \(k \gg 1 \) for a range of \(\eta < \cdot > \) being a temporal average in \(t \), [11].

3. EXPERIMENTAL RESULTS

The proposed nonlocally weighted soft-constrained natural gradient (NLW-SCNG) algorithm is tested on convolutive and reverberant speech mixtures. Two clean speech signals are convolved with a set of measured binaural room impulse responses (BRIRs), [14]. The source signals are two sentences of two male speakers, 5 seconds in duration, recorded at a sampling rate of 10 kHz. The BRIRs are measured in a 5 x 9 x 3.5 m ordinary classroom using the Knowles Electronic Manikin for Auditory Research (KEMAR), positioned at 1.5 m above the floor and at ear level [14]. The BRIR data are more faithful to the setting of a human wearing hearing aids, and are also used in [4, 8]. By convolving the speech signals with the pre-measured room impulse responses, one source is virtually placed directly at the front of the listener and the other at an angle of 60° in the azimuth to the right, while both are located at 1 m away from the KEMAR. We then calculate the reverberation time to quantify the degree of difficulty of a separation task [13]. To assess the separation ability of the algorithm, we calculate the signal-to-interference-ratio improvement (SIRI, [8]) by measuring the overall amount of crosstalk reduction achieved by the algorithm before (SIRIb) and after (SIRIa) the demixing stage. Following [8], the SIRI in dB is:

\[
\text{SIRI} = 10 \log_{10} \left(\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\text{Length}}{|x_j|^2} \right) - 10 \log_{10} \left(\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\text{Length}}{|z_j|^2} \right)
\]

(3.6)

where the \(\hat{z} \)'s are the output signals, and \(\hat{x} \)'s are the input signals; \(m \) denotes the number of microphones, \(n \) denotes the number of sources, and Length is for the length of speech signal. We shall focus on SIRI in this work, and report on subjective speech quality measure in a future study.

Let us compare the novel algorithm NLW-SCNG with the recent natural gradient time domain algorithm (NGTD). It is well known that beamforming initialization and data prewhitening improve separation. In order to evaluate the algorithms themselves, neither NGTD nor NLW-SCNG has beamforming initialization and prewhitening preprocessing.

First consider the BRIR mixtures with reverberation time \(T_{60} = 150 \) ms. We use the piecewise linear kernel in Fig. 2 with base width 5 and peak height 0.03. Two schemes are tested. Scheme I (in Fig. 3) refers to applying NLW-SCNG once through the mixtures, and scheme II (in Fig. 4) refers to processing by reinitializing and rerunning NLW-SCNG on the output of scheme I. The parameters are: \(\nu = 0.00125, c_1 = 1, c_2 = 3, E = 0.04 \), frame length is 10000, frame step size is 100 point, and demixing filter length \(L \) is 10000. The initial conditions are: \(W(0) = 0.2 I_2, I_2 \) the 2x2 identity matrix; \(W(p) = 0, p \geq 1; \sigma_1 = 1.2 \) and \(\sigma_2 = 0.24 \). We found that scheme II improves on scheme I under 1 dB in slightly reverberant conditions (\(T_{60} \leq 150 \) ms). The improved SIR is 17.37 dB.

Shown in Fig. 5 and Fig. 6 are the evolution of control variables \((F_1, F_2) \) and the scaling variables \((\sigma_1, \sigma_2) \) in terms of iteration numbers. The algorithm in reverberant environment converges in approximately 250 iterations as illustrated in the Figures. If only soft-constrained, i.e. without nonlocal weighting, the control and scaling sequences appear as damped oscillations which may take as many as 3000 iterations to converge. With additional nonlocal weighting, the control variables \((F_1, F_2) \) and scaling variables \((\sigma_1, \sigma_2) \) in the new algorithm NLW-SCNG converge significantly faster.

For the NGTD algorithm, the initial condition of \(W \) is given by \(W(1) = 0.001I_2, W(p) = 0 \) if \(p > 1 \); step size \(\mu = 0.2 \) [4], demixing filter length \(L = 1000 \); frame length 10000, and frame step size is equal to 100 sample points. Under the acoustic environment \(T_{60} = 150 \) ms, the improved SIR is 12.75 dB.

Now a typical reverberant room environment with \(T_{60} = 560 \)
ms is used to test NLW-SCNG and NGTD. The energy decay curves [13] of BRIRs are in Fig. 7. The parameters and initial conditions of the algorithms are kept the same as those for $T_{60} = 150$ ms. Table 1 shows that for NLW-SCNG, the scheme II with reinitialization improves on scheme I by nearly 1 dB, and both schemes exceed 9 dB SIRI, with NGTD lagging behind by 2.2 dB.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>SIR_i (dB)</th>
<th>SIR_{ic} (dB)</th>
<th>SIRI (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLW-SCNG I</td>
<td>-1.53</td>
<td>7.85</td>
<td>9.38</td>
</tr>
<tr>
<td>NLW-SCNG II</td>
<td>-1.53</td>
<td>8.68</td>
<td>10.21</td>
</tr>
<tr>
<td>NGTD</td>
<td>-1.53</td>
<td>6.48</td>
<td>8.01</td>
</tr>
</tbody>
</table>

Table 1: Performances of NLW-SCNG scheme I, NLW-SCNG scheme II and NGTD in a reverberant room with $T_{60} = 560$ ms.

4. CONCLUSIONS

In this paper, we introduced a nonlocally weighted soft-constrained natural gradient time domain iterative algorithm to fix the inconsistency and small divisor problems in previous convolutive natural gradient methods. The new algorithm is stable and rapidly convergent, and it offers over 10 dB signal-to-interference ratio improvement in reverberant room with reverberation time $T_{60} \geq 500$ ms, outperforming recent convolutive BSS method NGTD algorithm. Future work will incorporate preprocessing [15] and evaluate the resulting algorithm in strongly reverberant environments ($T_{60} \approx 1$ s). We also plan to evaluate our NLW-SCNG algorithm on patients with hearing loss, and collect subjective scores on performance.

5. REFERENCES

