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Abstract. We study sparsification of convolutional neural networks
(CNN) by a relaxed variable splitting method of �0 and transformed-�1
(T�1) penalties, with application to complex curves such as texts writ-
ten in different fonts, and words written with trembling hands simulating
those of Parkinson’s disease patients. The CNN contains 3 convolutional
layers, each followed by a maximum pooling, and finally a fully connected
layer which contains the largest number of network weights. With �0
penalty, we achieved over 99% test accuracy in distinguishing shaky vs.
regular fonts or hand writings with above 86% of the weights in the fully
connected layer being zero. Comparable sparsity and test accuracy are
also reached with a proper choice of T�1 penalty.
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1 Introduction

Sparsification of neural networks is one of the effective complexity reduction
methods to improve efficiency and generalizability [3,4]. In this paper, we spar-
sify convolutional neural networks (CNN) for classifying curves with multi-scale
structures. Such curves arise in hand writings of people with neurological dis-
orders e.g. Parkinson disease (PD) patients, and in neuropsychological exams.
Distinguishing hand writings of normal and PD subjects computationally will
greatly help diagnosis and reduce physicians’ workload in evaluations.

People with PD tend to lose control of their hands, and their writing or
drawing shows oscillatory behavior as shown in Fig. 2, a century old image avail-
able online. Such oscillatory features can be learned during CNN training. Since
we do not have large amount of PD hand writings, we shall generate on the
computer a large number of oscillatory shapes that mimic shaky writings of PD
subjects. Indeed, we found that CNN is quite successful for this task and can
reach accuracy as high as 99% on our synthetic data set with three convolution
layers and one fully connected layer as shown in Fig. 1. However, we also found
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that there is a lot of redundancy in the weights of the trained CNNs, especially
in the fully connected layer where we aim to significantly sparsify the network
weights with minimal loss of accuracy.

Since the natural sparsity promoting penalty �0 is discontinuous, we shall
adopt the relaxed variable splitting method (RVSM, [3]) for network sparsifica-
tion. Even though Lipschitz continuous penalties such as �1 and transformed-
�1 [2,8] are almost everywhere differentiable, the splitting approach [3] is more
effective for enforcing sparsity than directly placing a penalty function inside the
stochastic gradient descent (SGD) algorithm. The RVSM is also much simpler
than the statistical �0 regularization approach in [4]. A systematic comparison
with [4] will be conducted elsewhere.

The rest of the paper is organized as follows. In Sect. 2, we review RVSM for
�0, transformed-�1, and �1 penalties and present a convergence theorem. A new
critical point condition is introduced for the limit. We apply RVSM to CNNs
for multi-scale curve classification. In Sect. 3, we describe our data set, CNN
architecture and training, the CNN performance in terms of network accuracy
and sparsity. We compare weight distributions of sparse and non-sparse networks.
Concluding remarks are in Sect. 4.

2 Sparse Neural Network Training Algorithm

When training neural networks, one minimizes a penalized objective function of
the form:

l(w) := f(w) + λ P (w),

where f(w) is a standard loss function in neural network models such as cross
entropy [7], and P (w) is a penalty function. In SGD, the expected loss f is
replaced by an empirical loss over batches of training samples [7]. In this section,
we shall consider the expected loss function f which has better regularity than
the empirical loss functions [6], and is more conducive to analysis. In the actual
training, SGD and the sample averaged empirical loss function will be imple-
mented. The standard penalty is �2 norm, also known as weight decay. However,
�2 penalty cannot reduce the number of redundant parameters, resulting in a
network with on the order of millions of nonzero weights. Thus we turn to �0
penalty, which produces zero weights during training [4], however leads to a
non-convex discontinuous optimization problem. In [4], a statistical approach is
proposed to regularized �0. In this paper, we utilize the Relaxed Variable Split-
ting Method (RSVM) studied in [3] for a neural network regression problem.
RSVM is much simpler to state and implement than [4]. To this end, let us
consider the following objective function for parameter β > 0:

Lβ(u,w) = f(w) + λ P (u) +
β

2
‖w − u‖22.

Let η be the learning rate. We minimize Lβ(u,w) with the RVSM algorithm
below where the u step is thresholding and the w step is gradient descent followed
by a normalization:
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Algorithm 1. RVSM
Initialize u0, w0 randomly.
while not converged do

ut+1 ← arg minu Lβ(u,wt)
ŵt+1 ← wt − η∇f(wt) − ηβ(wt − ut+1)
wt+1 ← ŵt+1

‖ŵt+1‖
end

The main theorem of [3] guarantees the convergence of RVSM algorithm
under some conditions on the parameters (λ, β, η) and initial weights in case of
one convolution layer network and Gaussian input data. The latter conditions
are used to prove that the loss function f has Lipschitz gradient away from the
origin. Assuming that the Lipschitz gradient condition holds for f , we adapt the
main result of [3] into:

Theorem 1. Suppose that f is bounded from below, and satisfies the Lips-
chitz gradient inequalities: ‖∇f(x) − ∇f(y)‖ ≤ L1 ‖x − y‖, and |f(x) − f(y) −
〈∇f(x), x − y〉| ≤ L2 ‖x − y‖2, ∀(x, y) with ‖x‖ ≥ δ0, ‖y‖ ≥ δ0 for some
positive constants δ0, L1, and L2. Then there exists a positive constant η0 =
η0(δ0, L1, L2, β) ∈ (0, 1) so that if η < η0, the Lagrangian function Lβ(ut, wt)
is descending and converging in t, with (ut, wt) of RVSM algorithm satisfying
‖(ut+1, wt+1) − (ut, wt)‖ → 0 as t → +∞, and subsequentially approaching a
limit point (ū, w̄).

For the �0 penalty, our objective function (the Lagrangian) becomes

Lβ(u,w) = f(w) + λ‖u‖0 +
β

2
‖w − u‖22.

In this case, we simply obtain

ut+1 = arg min
u

Lβ(u,wt) = Hλ/β(wt),

where Hγ is the hard-thresholding operator [1]. On each component

Hγ(wi) =

{
0 if |wi| ≤ √

2γ

wi if |wi| >
√

2γ.
(1)

For the �1 case, it is also clear that

ut+1 = Sλ/β(wt),

where Sγ is the soft-thresholding operator [2]

Sγ(wi) =

⎧⎪⎨
⎪⎩

wi + γ if wi ≤ −γ

0 if |wi| < γ

wi − γ if wi ≥ γ.

(2)
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We also consider the transformed �1 (TL1) penalty [8], which nicely interpolates
the �0 and �1 penalties:

ρa(x) =
(a + 1)|x|
a + |x|

to each component of a vector, where a is a positive parameter. It is clear that

lim
a→0+

ρa(x) = I{x�=0}, lim
a→+∞ ρa(x) = |x|.

By solving the problem with TL1 penalty, we can also get a thresholding operator
Ta,γ in closed form [8]:

Ta,γ(wi) =

{
0 if |wi| ≤ t

ga,γ(wi) if |wi| > t,
(3)

where

ga,γ(x) = sgn(x)
{

2
3
(a + |x|) cos

(
φ(x)

3

)
− 2a

3
+

|x|
3

}

and φ(x) = arccos
(
1 − 27γa(a+1)

2(a+|x|)3
)
. Here the parameter t depends on γ as:

t =

{
γ a+1

a if γ ≤ a2

2(a+1)√
2γ(a + 1) − a

2 if γ > a2

2(a+1) .
(4)

Remark 1. It follows from the Theorem above that the limit point (ū, w̄) satisfies
the equilibrium equations for the �0, �1 and transformed-�1 penalties respectively
as:

ū = Hλ/β(w̄), or Sλ/β(w̄), or Ta,λ/β(w̄);
∇f(w̄) = −β (w̄ − ū). (5)

The system (5) serves as a novel “critical point condition”. This is particularly
useful in the �0 case where the Lagrangian function Lβ(u,w) is discontinuous in
u.

3 Experimental Results

We apply the RVSM algorithm to convolutional neural networks to see how
it brings about a sparse network. After training, the w̄ is sparse with small
components removed, and it serves as the network weight for inference. In the
following experiment, we consider a convolutional neural network of 3 layers and
a data set of 100 × 100 binary images. What we care about is the percentage
of the weights which are zero after training the sparse network. Many of the
algorithms can result in a sparsity of over 90%, which means only less than
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Fig. 1. CNN architecture in this study.

10% of the parameters contribute to the model. This makes our model far more
efficient than the original one without regularization.

In order to find out how the weights are distributed in each layer, we go
through the structure of the network. Figure 1 shows the number of nodes in
each layer, from which we can simply calculate the number of weights needed
to connect the nodes.1 We apply 32 3 × 3 filters to the initial image to get the
first convolutional layer, which results in 32 × 3 × 3 = 288 weights. Similarly,
each of the second and the third convolutional layer contains 32 × 32 × 3 ×
3 = 9216 weights, if we apply 32 3 × 3 filters again. After each convolutional
layer, we add one max pooling layer with a 2 × 2 filter and a stride of 2. The
dimension of each image is not changed after each convolution, since we have
applied padding. But it is reduced by a half on both the width and the height
after max pooling because of a stride of 2. Thus the dimension of the image
is reduced from 100 × 100 to 50 × 50, to 25 × 25 and finally to 13 × 13. So
this produces 13 × 13 × 32 × 128 = 692224 weights when constructing a dense
layer of 128 nodes. Finally, 128 × 2 = 256 weights are used to connect the dense
layer to the output layer of 2 nodes, if our goal is to classify the images into
two categories. From the above discussion, we notice that 97.3% of the weights
are concentrated to the dense layer. We will see that most of them contribute
nothing to the model after we train the sparse network.

The first data set we use is the images of the handwritten alphabet by Parkin-
son’s disease (PD) patients and normal handwritten alphabet. We know that
many PD patients may suffer from tremors in their daily life and work. One
remarkable feature is that the words they write can be much shakier than the
normal, which can be used to distinguish a PD patient during diagnosis. Figure 22

shows one real example of handwritten sentence by a PD patient.

1 When generating the figure, we used a tool by Alex Lenail available at http://
alexlenail.me/NN-SVG/LeNet.html.

2 https://en.wikipedia.org/wiki/Micrographia (handwriting).
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Fig. 2. Handwritten sentence by a PD patient.

From our point of view, these two writing styles – normal vs. shaky – can
be treated as two fonts. There is one Parkinson’s font available on the internet,3

which contains the whole alphabet of the 52 uppercase and lowercase letters. We
simulate a training set of 5,000 observations and a test set of 1,000 observations
by adding some rotations, affine transformations and elastic distortions [5]. As
we have mentioned, this is a data set of 100 × 100 binary images, of which some
samples are shown in Fig. 3. Though our model is used to distinguish the letters
written by a Parkinson’s disease patient in this single experiment, it can be
simply applied to classify any other fonts.

Fig. 3. Sample images of PD patients’ handwriting.

As most of the redundancy appears in the dense layer, we apply the threshold
step of the algorithm to the weights in dense layer only. This is because if we
use the same λ and β in all the layers, the proportion of zero weights in the
convolutional layers might be high, where the zero weights can indeed grade
the model. Compared to the dense layer of 700,000 weights, there is not much
freedom to modify the convolutional layer of 10,000 weights. Too much sparsity
leads to a sizable loss of accuracy.

In our models, we have the freedom to set the thresholding parameters,
namely β, λ and a. A higher threshold usually means more sparsity, since more
weights are forced to zero by the threshold. From the formula (1) and (2) for the
�0 and �1 penalties, it is clear that the larger λ is and the smaller β is, the higher
the threshold γ will be. Given the same thresholding parameter γ, the �0 model
may result in a sparser model than �1, since its threshold is a square root of γ,

3 https://www.dafont.com/parkinsons.font.
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which is higher. From the formula (3) and (4) for the TL1 penalty, the smaller a
is, the higher the threshold is. As discussed in the previous section, when a goes
to infinity, TL1 becomes �1. When a goes to 0, it becomes �0. So as to achieve
more sparsity, we may choose a small a.

Our algorithm converges quickly after a few iterations. In most of the cases, it
obtains an accuracy of 95% and a sparsity of 60% after 10 epochs. The accuracy
soon goes up to 98% within 20 epochs, while some models achieve a sparsity of
around 90% eventually. Figure 4 shows the convergence of the training algorithm.

Fig. 4. Training and testing loss functions vs. epochs.

Table 1 shows our results of sparsity and testing accuracy. It verifies what
we discussed on the thresholding parameter. That is, when the threshold grows
higher, the sparsity also grows correspondingly. When a is less than 0.1, we
achieve a sparsity of 86%, while the accuracy remains high. The key point should
be noticed is that these sparse networks achieve almost the same, or even better
accuracy than the non-sparse model. Thus we affirm that around 90% of the
parameters are redundant, as they hardly contribute to the accuracy of the
model.

Another data set we consider is the images of normal vs. shaky planar shapes
like triangles and quadrangles (not necessarily convex). It can be viewed as
another demonstration of PD patients’ handwriting, as what they draw are some-
how shaky, likewise the letters they write. This data set of 100×100 binary images
is simulated by adding random noise to the normal planar shapes. Figure 5 shows
some sample images of our shapes. The results on this data set are similar to
those of the first data set, as shown in Table 2. So RVSM also achieves high
accuracy and sparsity on multi-scale planar curve data.

More properties of our sparse networks are as follows. First, there is a remark-
able difference in distributions of the weights between the sparse and non-sparse
models. For the sparse model, most of the weights are zero, while the rest are
very close to zero. So its distribution looks like a vertical line plus some noise on
the interval close to zero. In our example of non-sparse model, it also has a peak
at zero. However, very few weights are exactly zero. Many of them are merely
close to zero, while a large proportion are far away from zero. What’s more, the
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distribution of this non-sparse model seems to be bell shaped. The distributions
are shown in Fig. 6, where the weights are normalized for better viewing.

Fig. 5. Normal vs. shaky shapes.

Fig. 6. Distribution of weights: Sparse vs. Non-sparse networks

What we also notice is that, RVSM performs much better than applying SGD
directly to the TL1 penalized loss functions. As shown in Table 3, most of the
normalized weights in the SGD model are distributed between 10−5 and 10−3. It
seems there is no apparent criterion to judge if a weight of 10−4 should be set to
zero or it does contribute to the network. However, for the RVSM method when
a = 0.01, it is clear that 8.7% of the weights are greater than 10−4 and 84.9% of
the weights are less than 10−10. There is a significant gap between the two scales
of 10−4 and 10−10, which makes it reasonable to set all the weights less than
10−10 to zero. This leads to a network of 84.9% sparsity. Another point worth
mentioning is that applying SGD directly to the penalized loss function may hurt
the accuracy a lot at a = 0.01, resulting in 96.7% accuracy for the model. This
is because when a is small, the penalized term behaves like �0, which renders
the objective function nearly singular. RVSM resolves this issue by making the
penalty implicit to a thresholding process, which gives an accuracy of 99.5%.

Table 4 shows another interesting phenomenon. Since the weights are ran-
domly initialized with mean zero, there is roughly even split of plus/minus signs
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Table 1. Testing sparsity and accuracy for the data of alphabets.

λ β a Penalty Sparsity (%) Accuracy (%)

0.0005 0.1 0 �0 86.1 99.4

0.01 TL1 87.6 99.0

0.1 TL1 85.8 99.7

1 TL1 78.1 99.3

100 TL1 82.0 99.3

∞ �1 76.5 99.0

Table 2. Testing sparsity and accuracy for the data of planar shapes.

λ β a Penalty Sparsity (%) Accuracy (%)

0.0005 0.1 0 �0 90.2 99.9

0.01 TL1 83.5 99.1

0.1 TL1 87.6 99.8

1 TL1 74.9 99.9

100 TL1 75.0 99.9

∞ �1 74.6 99.6

Table 3. Sparsity and accuracy: RVSM vs. Direct SGD for TL1 penalty

a Algorithm Sparsity (%) of 10−n scale Accuracy (%)

10−2 10−3 10−4 10−5 10−10

0.01 RVSM 99.7 96.0 91.3 88.6 84.9 99.5

0.01 SGD 99.9 99.9 45.9 5.44 10−5 96.7

100 RVSM 99.9 97.5 92.7 88.5 80.3 99.3

100 SGD 99.9 99.7 48.1 6.68 10−5 99.0

Table 4. Number of sign changes and relative % in kernels of convolutional layers.

a Layer 1 Layer 2 Layer 3

0.01 72 (25.0%) 1120 (12.2%) 769 (8.34%)

1 45 (15.6%) 1133 (12.3%) 784 (8.51%)

100 35 (12.2%) 1001 (10.9%) 995 (10.8%)

in all layers. At the end of training, we counted the number of sign changes in the
kernel of each convolutional layer, and found that more weights changed signs in
the first convolutional layer than in the next two layers. This is consistent with
the network filters structured towards low pass in depth after training.
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4 Conclusions

In this paper, we have applied the RVSM algorithm to learn sparse neural net-
works. We have achieved an accuracy of 99% and a sparsity of 87% when training
CNNs on a data set consisted of synthetic handwritten letters and planar curves
by PD patients, and normal handwriting. We have also discussed the tuning
of thresholding parameters, and verified the fact that a higher threshold can
produce higher sparsity. What’s more, our experiments show that the RVSM
outperforms the direct application of SGD on the penalized loss function, in
both sparsity and accuracy. The RVSM generates a significant gap between the
weights of large scale and small scale, which acts as an indicator to show sparsity.
In future work, we plan to explore a wider variety of PD patient data and more
refined multi-class classification tasks.

Acknowledgements. The work was partially supported by NSF grant IIS-1632935.
The authors would like to thank Profs. Xiang Gao and Wenrui Hao at Penn State
Universty for helpful discussions of handwritings and drawings on neuropsychological
exams and diagnosis.

References

1. Blumensath, T., Davies, M.: Iterative thresholding for sparse approximations. J.
Fourier Anal. Appl. 14(5–6), 629–654 (2008)

2. Daubechies, I., Michel, D., De Mol, C.: An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11),
1413–1457 (2004)

3. Dinh, T., Xin, J.: Convergence of a relaxed variable splitting method for learn-
ing sparse neural networks via �1, �0, and transformed-�1 penalties (2018).
arXiv:1812.05719

4. Louizos, C., Welling, M., Kingma, D.: Learning sparse neural networks through �0
regularization. In: ICLR (2018). arXiv:1712.01312v2

5. Simard, P., Steinkraus, D., Platt, J.: Best practices for convolutional neural net-
works applied to visual document analysis. In: Seventh International Conference on
Document Analysis and Recognition, pp. 958–963. IEEE (2003)

6. Yin, P., Zhang, S., Lyu, J., Osher, S., Qi, Y-Y., Xin, J.: Blended coarse gradient
descent for full quantization of deep neural networks. Res. Math. Sci. 6(1), 14 (2019).
arXiv:1808.05240

7. Yu, D., Deng, L.: Automatic Speech Recognition: A Deep Learning Approach. Sig-
nals and Communication Technology. Springer, New York (2015)

8. Zhang, S., Xin, J.: Minimization of transformed l1 penalty: closed form representa-
tion and iterative thresholding algorithms. Comm. Math. Sci. 15(2), 511–537 (2017)

jack.xin@uci.edu

http://arxiv.org/abs/1812.05719
http://arxiv.org/abs/1712.01312v2
http://arxiv.org/abs/1808.05240

