1. Show that
\[\sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k} = \frac{2^{n+1} - 1}{n+1}. \]

2. Suppose \(x_1, x_2, \ldots \) is a sequence of positive real numbers satisfying \(x_{n+1} \leq x_n + 1/n^2 \) for all \(n \geq 1 \). Prove that \(\lim_{n \to \infty} x_n \) exists.

3. Show that
\[F_1 + F_2 + \cdots + F_n = F_{n+2} - 1 \]
where \(F_n \) is the \(n \)-th Fibonacci number.

4. Evaluate
\[S_1 = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots \]

5. Express \(\prod_{n=0}^{\infty} (1 + x^{2n}) \) as a rational function of \(x \) (a quotient of polynomials).