Math 194, solutions for problem set #6

(1) The horizontal line $y = c$ intersects the curve $y = 2x - 3x^3$ in the first quadrant as in the figure. Find c so that the areas of the two shaded regions are equal. (Putnam, 1993)

Solution: Let the final intersection of $y = c$ and $y = 2x - 3x^3$ occur at $x = d$. We then have $\int_0^d 2x - 3x^3 - c = 0$ so that $d^2 - \frac{3}{4}d^4 - cd = 0$. Solving for c, we have $c = d - \frac{3}{4}d^3$, and by the definition of d, we have $c = 2d - 3d^3$. Thus $0 = d - \frac{9}{4}d^3 = d(1 - \frac{3}{2}d^2)(1 + \frac{3}{2}d)$, so our d must be $\frac{2}{3}$. Thus $c = 2(\frac{2}{3}) - 3(\frac{2}{3})^3 = \frac{4}{9}$.

(2) A not uncommon calculus mistake is to believe that the product rule for derivatives says that $(fg)' = f'g'$. If $f(x) = e^{x^2}$, determine, with proof, whether there exists an open interval (a, b) and a nonzero function g defined on (a, b) such that this wrong product rule is true for x in (a, b).

(Putnam 1988)

Solution: Suppose $(fg)' = f'g + fg' = f'g'$. Then $g' = g + \frac{f}{f'}g' = g + \frac{1}{2x}g'$. Solving for g', we have $g' = \frac{2x}{2x-1}g$. Solving this differential equation, we have

$$g = c \cdot e^{\int \frac{2x}{2x-1} dx} = c \cdot e^{x + \frac{1}{2} \ln(2x-1)} = c \cdot e^x \sqrt{2x-1}$$

for any constant c. To justify all of our operations, we must have $x > 1/2$, so for any interval $(a, b) \subset (1/2, \infty)$ and for any nonzero c, the wrong product rule holds for f and g as defined above.

(3) If n is a positive integer, prove for $x > 0$ that $\frac{x^n}{(x + 1)^{n+1}} \leq \frac{n^n}{(n + 1)^{n+1}}$.

Solution: Let $f_n(x) = \frac{x^n}{(x + 1)^n+n+1}$, so that

$$f_n'(x) = \frac{nx^{n-1}(x + 1)^{n+1} - (n + 1)(x + 1)^n x^n}{(x + 1)^{2(n+1)}}$$

$$= \frac{x^{n-1}(x + 1)^n[n(x + 1) - (n + 1)x]}{(x + 1)^{2(n+1)}} = \frac{x^{n-1}(x + 1)^n(n - x)}{(x + 1)^{2(n+1)}}.$$

From this, we see that $f_n'(x) > 0$ for $x \in (0, n)$ and $f_n'(x) < 0$ for $x \in (n, \infty)$, so $f_n(x)$ is maximized at $x = n$.
(4) (a) Assuming that temperature is a continuous function, show that at any given
time on the earth’s equator there are two directly opposite points that have the
same temperature.

(b) A rock climber starts to climb a mountain at 7:00 AM on Saturday and gets
to the top at 5:00 PM. She camps on top and climbs back down on Sunday,
starting at 7:00 AM. Show that at some time of day on Sunday she was at the
same elevation as she was at that time on Saturday.

Solution to (a): Let \(t(x) \) be the difference in temperature between the point at \(x \)
degrees west of the prime meridian on the equator and the point directly opposite it
on Earth. Since \(t(0) = -t(180) \), either \(t(0) = 0 \), and we are done, or \(t(0) \) and \(t(180) \)
are of opposite sign. In the latter case, the intermediate value theorem insures us
that for some \(y \in (0, 180) \), \(t(y) = 0 \).

Solution to (b): Let \(f(t) \) be the elevation of the rock climber \(t \) hours after 7:00 AM
on Saturday, and let \(g(t) \) be the elevation of the rock climber \(t \) hours after 7:00
AM on Sunday. Since \(f \) and \(g \) are continuous, \(f - g \) is continuous. Also, since
\((f - g)(0) < 0 \) and \((f - g)(10) > 0 \), the intermediate value theorem insures us that
for some \(s \in (0, 10) \), \((f - g)(s) = 0 \).

(5) Suppose \(f \) and \(g \) are differentiable functions and for every \(x \), \(f'(x)g(x) \neq f(x)g'(x) \).
Show that between every two zeros of \(f \) there is a zero of \(g \).

Solution: Let \(a \) and \(b \) be zeros of \(f \) with \(a < b \), and suppose \(g(x) \neq 0 \) for any
\(x \in (a, b) \). Let \(h(x) = \frac{f(x)}{g(x)} \). Since \(g(a) \) and \(g(b) \) are both nonzero by our hypothesis,
\(h(a) = h(b) = 0 \), and \(h(x) \) is differentiable on \((a, b) \). By Rolle’s Theorem, there exists
some \(c \in (a, b) \) such that \(h'(c) = 0 \). However,

\[
h'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{g^2(c)} \neq 0
\]

by our hypothesis, a contradiction. Thus we must have \(g(x) = 0 \) for some \(x \in (a, b) \).

(6) (a) Suppose that \(f(x) \) is continuous and \(f(x) \geq 0 \) on \([0, 1]\). Show that if
\(\int_0^1 (x - 1)^2 f(x) dx = 0 \), then \(f(x) = 0 \) on \([0, 1]\).

(b) Find all continuous, positive functions \(f(x) \), \(0 \leq x \leq 1 \) such that

\[
\int_0^1 f(x) dx = 1, \quad \int_0^1 x f(x) dx = \alpha, \quad \int_0^1 x^2 f(x) dx = \alpha^2
\]

where \(\alpha \) is a given real number. \hspace{1cm} \text{(Putnam, 1964)}

Solution to (a): Suppose for some \(a \in [0, 1] \), \(f(a) \neq 0 \). Since \(f \) is continuous, there
exists an interval \(I \subset [0, 1] \) containing \(a \) such that \(f(x) > f(a)/2 \) for all \(x \in I \). Let
\([b, c] \) be the middle third of \(I \). Then, since \((x - 1)^2\) is positive and \(f(x) \geq 0 \) on \((0, 1)\),

\[
\int_0^1 (x - 1)^2 f(x) dx \geq \int_b^c (x - 1)^2 f(x) dx > (c - 1)^2 \frac{f(a)}{2} (c - b) > 0.
\]

Thus, if \(\int_0^1 (x - 1)^2 f(x) dx = 0 \), we must have \(f(x) = 0 \) for all \(x \in [0, 1] \).
Solution to (b): Since \((x - \alpha)^2\) and \(f(x)\) are positive unless \(x = \alpha\), by the argument in part (a) (choosing \([b, c]\) to not contain \(\alpha\)), we have \(\int_0^1 (x - \alpha)^2 f(x)dx > 0\). However, \(\int_0^1 (x - \alpha)^2 f(x)dx = \int_0^1 \left[x^2 f(x) - 2\alpha x f(x) + \alpha^2 f(x) \right] dx = \alpha^2 - 2\alpha^2 + \alpha^2 = 0\). Thus there is no continuous, positive function \(f(x)\) that meets the desired criteria.

(7) Suppose \(f\) is a differentiable function on \([0, 1]\), \(f(0) = 0\), and \(f'(x)\) is strictly increasing. Show that \(f(x)/x\) is strictly increasing.

Solution: For any fixed \(x_0 \in [0, 1]\), consider \(g(x) = f(x) - x\frac{f(x)}{x_0}\). By our hypotheses, \(g\) is differentiable, and \(g(0) = 0 = g(x_0)\). By Rolle’s Theorem, there exists \(c \in (0, x_0)\) such that \(g'(c) = 0\). Since \(f'(x)\) is strictly increasing, \(x_0 f'(x_0) > x_0 f'(c) = x_0 g'(c) + x_0 \frac{f(x_0)}{x_0} = f(x_0)\). Thus \(\left(\frac{f(x)}{x}\right)' \bigg|_{x=x_0} = \frac{x_0 f'(x_0) - f(x_0)}{x_0^2}\), and so \(f(x)/x\) is strictly increasing on \([0, 1]\).

(8) Suppose \(f\) is a continuous function on \([0, 1]\), \(n \in \mathbb{Z}^+, \int_0^1 x^k f(x)dx = 0\) for \(k = 0, 1, \ldots, n - 1\), and \(\int_0^1 x^n f(x)dx = 1\). Show that there is a \(c \in [0, 1]\) such that \(|f(c)| > 2^n(n+1)|\).

Solution: Applying the Binomial Theorem,
\[
\int_0^1 \left(x - \frac{1}{2}\right)^n f(x)dx = \int_0^1 \sum_{k=0}^n \binom{n}{k} x^k \left(-\frac{1}{2}\right)^{n-k} f(x)dx = \int_0^1 x^n f(x)dx = 1,
\]
since \(\int_0^1 x^k f(x)dx = 0\) for \(k = 0, 1, \ldots, n - 1\). Letting \(M = \sup\{|f(x)| : 0 \leq x \leq 1\}\), we also have
\[
\int_0^1 \left(x - \frac{1}{2}\right)^n f(x)dx \leq \int_0^1 \left|\left(x - \frac{1}{2}\right)^n\right| \cdot |f(x)|dx < M \int_0^1 \left|\left(x - \frac{1}{2}\right)^n\right| dx
= 2M \int_{\frac{1}{2}}^1 \left(x - \frac{1}{2}\right)^n dx = 2M \frac{\left(\frac{1}{2}\right)^{n+1}}{n + 1},
\]
where the strict inequality follows from the fact that \(|f(x)|\) cannot be constant, since \(\int_0^1 f(x)dx = 0\) while \(\int_0^1 x^n f(x)dx = 1\). Combining these, we have \(M > 2^n(n+1)\).